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Dynamics of branched domain structures
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We consider Ising dipolar ferromagnets in a simple geometry (infinite slab of thickness D). When
D increases, these systems undergo phase transitions characterized by the appearance of branched
domain structures. %'e have studied the field-induced distortions of the highly branched case, in the
framework of the self-similar Privorotskii model. This enables us to calculate the response of the
system to a small field step, using a constrained dynamical model of Palmer et al. Relaxations fol-
low a lnt law. This behavior is to be contrasted to the stripe (unbranched) case, where a usual ex-
ponential relaxation is obtained. This slowing down can be traced back to the existence of many
length scales in the branched regime. Analogous results should hold for dipolar metamagnets.

I. INTRODUCTION

The study of size effects in dipolar ferromagnets and
metamagnets yields additional insight into the properties
of frustrated systems. For materials such as BaFe&iO/9
(Ref. 1) or FeC12 (Ref. 2), the source of frustration is the
competition between short-range exchange interactions
and long-range dipolar interactions. As a result, the
ground state consists of a complicated domain structure.
To simplify the analysis, we only consider samples of
thickness L, =D, confined between two plates of infinite
planar extent (L„,L„~ao). Furthermore, we shall focus
our attention on strongly uniaxial (Ising) magnets. The
Ising axis is then chosen to lie in the z direction. Since
our conclusions apply to both the ferromagnetic and
metamagnetic cases, we will only consider ferromagnetic
dipolar magnets.

At zero temperature (T=O K), in the absence of an
external magnetic field H, a commonly observed struc-
ture' is the stripe structure where up and down domains
alternate with a periodicity d [Fig. 1(a)]. This periodicity
results from a balance between the gain in surface magne-
tostatic energy, when the domain structure is formed, and
the cost of creating domain walls. Indeed, one finds'
d-(D5)', where the characteristic length 5 is the ratio
between the wall energy per unit area and the magnetos-
tatic energy per unit volume. Neglecting wall undula-
tions ' (we shall come back to this point in the discus-
sion), the stripe structure remains stable up to
D =D,' '=305. For D )D,'", a branching instability
develops in the stripe structure [Fig. 1(b)]. Beyond D,"',
the additional cost in wall and bulk magnetostatic ener-
gies in the branched structure is more thari offset by the
large extra reduction in surface magnetostatic energy. As
D is increased further, N branching generations develop
in succession through second-order transitions, at
D,'2', . . . ,D,'~' [Fig 1(c)]. .

For very large D, the ground state of the branched pat-
tern consists of layered periodic structures, the periodicity
d(z) of which varies quasicontinuously with z:

do &d(z) &d,
where do-5 is the surface periodicity and d -(D 5)'~ is
the periodicity deep inside the bulk. In this limit, the al-
most infinite number of branching generations has gen-
erated an almost infinite number of length scales. Furth-
ermore, since the surface magnetostatic energy of the sys-
tem is proportional to do, and since do«d, branching

h, fk Ai

FIG. 1. (a) Stripe phase: down spins are indicated by the
hatched areas. (b) Stage 1 of the branching process
(D,'"&D &D,' '). The triangular shape of the spikes is only an
approximation (see Ref. 7). (c) Stage 2 of the branching process
(D(2) ~D ~ D(3))
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has achieved a very effective reduction of the energy [see

Eq. (4d) below]. One may say that it is the physical
mechanism by which the source of frustration —the mag-

netic poles on the surface —is screened.

II. THE PRIVOROTSKII MODEL FOR 0=T=0

To study the statics and dynamics of very ramified
structures, we sha11 use a model due to Privorotskii. In
this model, the ground state of an N ly b-ranched pattern
consists of a self-similar structure of (X+ I) layers (Fig.
2) such that the follawing is true.

(i) The periodicity in the kth layer is dk ——d/3 for
k =0, 1,2, . . . , X (d denotes the bulk periodicity).

(ii) The width of the branched regions in the kth layer
is dk i/6 (k&1). For instance, in Fig. 2, one has

W„c—d/6 (layer 1) and Wz c =d /18 (layer 2}.
(iii) The thickness of the kth layer is lk ——Ii/A, " ' for

k =1,2, . . . , X. This value of lk is obtained through
minimization of the lk-dependent part of the energy in
Privorotskii's model (PM), and we have "'

E, =— 1—
3 2 3

J

and

X=33" .

Properties (i) and (ii) allow a very effective reductian of
the surface magnetostatic energy, for all X. Property (ii),
however, implies a high volume energy and, as a result,
the energy of PM is higher than that obtained from a
(more rigorous) variational calculation of the ground-state
structure. " Yet, as N increases, the characteristics of
the variational solution approach those of PM; also, the
variational method becames rapidly cumbersome, whereas
the Privorotskii scheme allows an easy computation of the
relevant quantities, for all N. This is our justification for
using PM in the large-X limit, as a reasonable approxima-
tion to the true ground state. For H=T=O, the nonex-
tensive part of PM energy reads as'

D
6'~ =20'I„—)

d
(3a)

~~ is the surface tension, (ii) the surface magnetostatic en-

ergy is

with Xz ——3;m i is the bulk magnetization, and (iii) the
volume energy due to branching is

ev=pm2i(5d)i/'[
~ (1+y) XN—+ s (1 4y—)xk ]

vnth

and from Ref. 11,

1

2(3v 3 —1)
(3c}

For large D—that is far large N—minimization with
respect to d and X yields

and

D 2/3 pl
/3

DF-1n—.

(4a)

(4b)

This in turn gives

e~(H =0)-m i(5 D)'/ (4c)

Equations (4a)—(4c) confirm that in the N ~ ao limit, one
has

E~-ev &&es-m i5 .2 (4d)

This situation is to be compared with the stripe case
where e~ -e, -m2i(5D}'".

E~(H =0)
eg(H =0)= I.„l.y

where (i) the wall energy of the underlying stripe structure
1S

III. DISTORTIONS OF THE
BRANCHED STRUCTURE IN A FIELD

0/2

I

d/2

ii—
~ 4t 3

Py
Af

Applying a magnetic field H in the z direction creates
an asymmetry between up and down domains. Denoting
by d i (dz) the width of an up (down) domain in the bulk,
we characterize the asymmetry, in an N-ly ramified struc-
ture) by

d) —d2

FIG. 2. Privorotskii model. Three generations of branching
are shown in the upper half of a domain of up spins. The
second generation (l2) grows when 8'&c ——3(d/2), the third

generation (l3) when 8'~ c ——W&~/3, the fourth generation (l&)
when 8'„-~-——8'„~ /3, etc.

with d =di+dz. For large N, the sequence of distortions
generated as H is increased, in inferred from the results of
the variatianal approach, used for small N. In that
small-N limit, one observes three regimes.
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(a) For small H, b,(z increases linearly with H; as
well as the other parameters characterizing the branched
structure retain their H =0 value.

(b) Beyond a threshold field Ho, the system undergoes a
first-order phase transition to a state with one less genera-
tion of spikes.

(c) For large enough H, the branched structure gives
way to a stripe structure.

taining the same number p of generations (p-blocks) are
equal in magnitude, and (iii) the displacement of the two
central blocks are zero, for symmetry reasons.

These properties reduce the number of parameters to
N —1 (not counting b,g~) and we denote these parameters
by ai, a2, . . . , a~ i. [The shift of a p-block is w'ritten as
az(dig~). ] In terms of the [a&I, the coefficient a„of
Eq. (6b) can be calculated as

Regimes (a) and (b) are clearly seen to result from the
t'tion between the screening effect mentioned car-

r 5 =0lier and the Zeeman effect. The former favors
whereas the latter favors b,gz »0. The compromise is a
hgz &0 and a rearrangement of the positions of the
domains, to achieve the lowest possible eq. Similarly,
beyond Ho, the system goes from an N-ly to an (N —1)-ly
branched structure, which still allows a fairly effective
screening. This also lowers the Zeeman energy, inasmuch
as hgz i &b,g~ (as we show below). Since the impor-
tance of the screening effect increases as N grows, we
shall assume that regime (a) exists in the large-N limit,
and work out some of its characteristics within PM, as
well as its range of validity. These results will be used in
Sec. IV, where we study dynamical effects. In regime (a),
one may write the energy of PM as

e~(H) =@~(0)+des HDm i hg—~, (6a)
where

CO Q
he = m d g —X~ +2rrDm, (bg~)'. (6b)e's= +mi

In Eq. (6b), d is the zero field value of the bulk periodici-
ty and a depends explicitly upon hgz and upon (3 —)

N
n

fparameters describing the displacements of the centers o
all the spikes with respect to their H =0 configuration.
Since these parameters appear only in b,es, they have to
be chosen so as to minimize des. A partly analytical (for
small N) and partly numerical approach (for large N)
shows that (i) blocks of spins such as those shown in Fig.
3 move cohesively, (ii) the displacements of blocks con-

p1 2 cosx~

X cos (1+b,g~)
2

sin(nn. /6) +'
cosx~

(7)

where xz ——nn/2 3 andN

b =2 i'+'sin a bg~ cos ( I+a~5(z)7Tlf m.n
P 2 P 2

)& sin[(V '+ 1)x~]c~ (8a}

with

N —2

c = Px cos(2 3'xz) for p =1,2, . . . , N —2,P
i=p

(8b)

and

a = for p=1,2, . . . , N —1P 2P —J
(9a)

(8c)N —1

Guidelines for deriving Eqs. (7) and (8) are presented in
the Appendix. Using Eqs. (7) and (8), we have numerical-
ly minimized des for a given biz (that is for a given H),
for N & 9 branching generations. We find that

! )e(2 ) Ie(3

(& ) 1l (1) (1) ! (1) ! (1) )
I (1} (1)

!
I
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FIG. 3. Shift of the branched pattern in the presence of a
magnetic field H. Half a domain is sho~n with X =4 genera-
tions. The boundary walls (dashed lines) are shifted by—(ddt). The central 4-block does not move for symmetry2

reasons, the two 3-blocks are shifted (in opposite directions} by
(a3dhg'4), the four 2-blocks by (a2dhg4), and the eight l-block
by {aidhgq) {not shown in the figure).

ao
a,= ~, for N&2. (9b)

4[2m —K (d/D)]
HD.

In the large-X limit, we have

(The value of the numerical constant ao depends upon the
parity of N. ) Using (9) we can write (6a) as

e~(H) =e~(0)+m i (2nD K~d )(hg~—) m) HDb gN—,

(10)

where K& is a finite positive constant. We therefore have

1 0
2[2m K~(d/D)] mi—

which shows that b,gz decreases when D increases in
other words, one has bg~ & b,gz i}. We now proceed to
determine the range of fields for which regime (a) can ex-
ist. Using (10) and (11),we have
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e)v(0)-m)(D5 )'/ -e -&v .

In order for d and the other relevant parameters to retain

their H =0 value, one must have

eN 0 » H D
4[2m I('—~(d /D) ]

that is
' 1/3I

m) D

V, V Y, V

jt x-

IV. DYNAMICS: RESPONSE TO A FIELD STEP

In this section, we consider the low-temperature
response of a very ramified structure to a small field step
around H=0: h(t)=h for t&Oand h(t)=Ofor tgO If.
the temperature is low enough, the preceding results
should apply; to avoid unntx:essary complications, we take

' 1/3

mi D

Due to the fact that the static response to a field is dictat-
ed by a balance between the screening and Zeeman effects,
we propose a simple scenario for the dynamics of the sys-
tem: the distortion propagates in time, from the bulk to
the surface, in discrete steps (Fig. 4}. The justification for
this scheme is twofold.

(1}The system decreases its energy through the Zeeman
term without increasing ez at the same time, until the fi-
nal step.

(2} The layer-by-layer response to a change in d(z) is
consistent with PM, which can be viewed as a piling up of
N singly branched structures. 's The progressive relaxa-
tion process preserves the different length scales (lk) in-

volved in the magnetostatic bulk energy, and is less costly
than a global rearrangement.

To describe the type of distortions we propose, we build
a hierarchically constrained model based on that of Pal-
mer et al. ' Within PM, M spins are distributed among
%+1 layers. A layer indexed by k (k=0, 1,2, . . . , N
contains Nk spins (/k' ——M. According to the "rep-
tation" scheme, the relaxation from layer k to layer k + 1

may only take place if the pk "active spins" in layer k
have relaxed: The process at level k is completed when the
spikes at level k have shifted by an amount equal to the
static displacements [Eq. (9)]. For a half period, we have

(g()(&g(a() (w3) (&))Hp)st~)

))

(1) t1j

L„dlk for k=1,2, . . . , N
1

b3
(14a)

and

1 D
Xo—— L d ——I

g3 3' (14b)

with I = k, lk, b is the lattice spacing and

M=(1/2b )L„dD. From Fig. 4 and using Eqs. (9) for the
various Ia& I involved in the displacement of the spikes at
level k, we have

FICx. 4. Illustration of the four stages of the reptation process
for N =4. Only part of an up domain is shown and the inner
spikes of the 3- and 2-blocks are not indicated. The "active
spins" at each step are sho~n as heavy-solid lines (a}. In layer 1

(l() relaxation implies a shift (a3d A)4) of the 3-block and a shift
( 2 di)(g'4) of the boundary wall. (b) Motion of layer 2 (lq). Note

that in the calculation of the p2 "active spins", one must consid-
er a2 and a3. I'c} Motion for layer 3 (I3}. One must consider a~,
a2, and a3 to compute p3. (d} Final stage.
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2
pk —— , L„1kdhb

2 16 &o
Pk-,L~lzdb, (z 1 +

33 2

We therefore have

IJ k -b,g~ &( 1
k

The relaxation of the magnetization can then be written
as"

5m (t) =gwpe
k

with

( 17)

&k
Nk

2lk

D ( 18a)

1 Ao+ i 4'kd~&N ~ k 23 & 22% —k —2

k —3

x 3 2" '+, , g 2'i(3' i '+ 1) . (15)
p = 1

For 1arge X, we get

netization relaxes toward equilibrium with a lnt law. This
behavior clearly originates from the very large number of
characteristic length scales obtained for large X; it should
be contrasted with the stripe case, where the existence of a
sing 1e scale entai 1s an exponential relaxation .

Dipolar ferromagnets (as well as metamagnets) can be
roughly divided in two categories: in the former, the or-
dering is mainly due to exchange interactions; dipolar in-
teractions are only relevant for the formation of domains.
These materials, such as BaFeiqOi9 are therefore expected
to have a large characteristic length 5 (5=0.2 pm}, and
are not expected to show more than one or two genera-
tions of branching for usual thicknesses (D ( 100 pm}.
On the contrary, in the latter category, dipolar interac-
tions also participate in the ordering process, and one may
expect 5 to decrease by 2 (or more) orders of magnitude;
these materials, such as LiTbF4, ' should then be more
appropriate to the study of very branched structures.

Lastly, let us stress that, to make our dynamical treat-
ment more quantitative, one should include other signifi-
cant processes such as wall undulations which allow a
reduction in e, or pinning of the domain walls by (non-
magnetic) impurities. ' For larger magnetic field steps,
one should also consider possible changes between the ini-
tial and final numbers of branched generations.

~&k
&k + 1

=2 ~k ( 1 Sb) ACKNOW@ I EDGMENTS

The relaxation times hark range from r;„='ro (the charac-
teristic time for a spin flip in the stripe phase) to

,„=~02 where P' =gk 0'p, k . For large N,
lao-e" &~ 1 since I'-d DL„b(N jb . Thus, for

times t such that ~;„&(t
„du5m (t)- e

rid»
r

N f—4' —ln
I 1nA, +max

where Ã =0.577 2 15 is Euler's constant. Equation ( 19)
shows that one expects a logarithmic approach to equili-
brium for highly branched systems.
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APPENDIX

I.et us consider, for the sake of simplicity the case
~ =3 (Fig. 2). In zero applied field (b,gi =0), one can
easily calculate the coefficient a„ofEq. (6b). Considering
the distribution of magnetic poles on the surface, we have

1 . n m . mna„(i+i ——0)=——sin +sin3
2 3 2 3

V. SUMMARY AND DISCUSSION

Within the self-similar Privorotskii model, we have
studied the static and dynamic response of a very ramified
structure, subjected to a magnetic field H. For small H,
we have inferred the existence of a regime where two
competing effects are of equal importance, namely the
Zeeman effect and the screening effect (reduction of the
surface magnetostatic energy due to branching). In that
regime, the distortion consists of a mere rearrangement of
the positions of the spikes: the shapes and sizes of the
spikes as wel 1 as the bulk periodicity d retain their H =0
value (for instance, d -5'~ D ~ ). The field range where
this regime holds is a decreasing function of D (i.e., of the
number N of branching generations). In a constrained
dynamic model, where this rearrangement propagates
from the bulk to the surface, we fmd that the overall mag-

n&. n&—sin 5 + . . —sin5 3
2 33 2 33

That is

1
a„(bg&——0)=—g ( —1 )"sin(2k —1 )xi

OI

a„(b,g3
——0)= ——

n 2 cosx 3
(A2)

with x i ——n n./2. 3 . In a nonzero applied field (b,$3+0),
one has to take into account the shifts (a id hg& ) and
(Q26(3 ) of the 1- and 2-blocks. Note that the central 3-
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block does not move for symmetry reasons. The various

terms in Eq. (Al) break into several groups: (i) those be-

longing to a 1-block [for instance we have
sin(linn'/2. 3 +nba&b, g&)], (ii) those belonging to a 2-

block [for instance we have sin(15nm/2 33+nn.a2b, g&)],

t

(iii} those belong to the 3-block [for instance we have

sin(7nm. /2. 3 )], and (iv) the boundary wall term is

sin(27nm/2 3 +nab(3). Writing a„(bg,}=a„(0)
+[a„(h(3)—a„(0)] and collecting the various a& and az
contributions yields

a„(6)3)=a„(0)+[sin(11x3+nrra&b(3) —sin(1 lx3) —sin(13x3+nma~b(3)

+sin(13x& )+sin(23x3+n na~bgs) —sin(23x3) —sin(25x3+ n17a]i+3)

+sin(25xs) —sin(29xs+nma~rgs)+sin(29xs )+sin(31x3+nma~hg3)

—sin(31xs ) —sin(41xs +n m at hgs ) +sin(41x 3 ) +sin(43x 3+n rra tk)3)

—sin(43xs)]+[sinn@( —,
' +hgs) —sin(nn/2)]

+ [»"(15xs+n n'az~gs) —»n(15x s ) —sin(17x3+ no a25$3)

+sin(19x3+noa2b f3)—sin(19x3) —sin(21x3+

no

aqua/3)+
sin(21x3)

—sin( 33x s +n sra2b gs ) +sin(33x 3 ) +sin( 35x 3 +n n a25(3 ) —sin( 35x 3 )

—sin(37xs+nna2bgs)+sin(37x3)+(39xs+nma2b(3) —sin(39x3)] . (A3)

Rearranging (A3} and using (A2}, we obtain Eqs. (7) and (8) for the case N =3. The extension to general N is straight-
forward.
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