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%e explore the errors in the free energy and in operator expectation values when the quantum

operator e e =gt te
' " is approximated by g& )f, where ls.r=p/I and f is an approximant

to e ' ' . %'e determine analytically the dependence of the resulting errors on hv for h~ small, on

P for P 1arge, and on the size of the system in the 1imit of a large system. We focus on Trotter ap-

proximations, as well as on the expansion of e (~"8 in powers of (hv)H. Our results are particular-

ly relevant to Monte Carlo studies of quantum systems, and can be used effectively to eliminate the
error due to Trotter-like approximations and to provide a guide for choosing a particular type of ap-

proximation.

I. INTRODUCTION

The Trotter formula, ' first proven rigorously by
Suzuki, can be written as the identity

e-t'"= lim g g e
' " " (1.1)

~ 1=1 m=1

For finite b,r, these approximations have been used to
calculate approximate expectation values of operators for
various quantum Hamiltonians, as well as, in some cases,
free energies. For the partition function, we have

Z, „=Tr(e-t'")

and

where

ittr =P/I. ,

M
H= gH. ,

and

(1.2)

L

Z,pp„„——Tr ff f'"'
1=&

L

so that for the free energy

1
Fexact = ln(Zexact )

(1.9)

(1.10)

M

g e
"'".= e "~)+O((a-r)') (1.4)

and

1
~approx n( approx )

Systematic higher-order approximants to e (a' have
been proposed by Suzuki and by De Raedt and De
Raedt to improve the convergence of the approximate,
finite L formula as a function of b,r. These generalized
Trotter formulas may be written in the form

Le-t'"= lim gf("), (1.5)

where
& + & approx

=
T ~IIf(")

For an operator d', we have

Tr(trte ~ )(Ph
~ exact

( pit)

and

(1.12)

(1.13)

f(ll) e
—(ttr)8+0((lt )Il +i ) (1.6) g f(rt)

and the dependence of f'"' on b,r is taken to be implicit.
In this paper, the right superscript n of f'"' will be de-
fined as the order of the approximant. Also, the denota-
tion "Trotter approximation" or "Trotter formula" will
include the above generalizations of the original formula
in the remainder of the paper.

Another possible approximant to e ' ' is an expan-
sion in powers of (b,r)H. ' Such a Trotter-like expansion
may also be written in the form of Eq. (1.6), with

n
ffrt)= g I' (g&)H]k

k=o «')

%e mill also define

~F=Fexact ~approx (1.14)

(1.15)

%e now note that approximations to certain quantities
may be calculated either by using Eq. (1.13) or by taking
derivatives of ln(Zapprox). For examPle, one may calculate
an approximate energy either by substituting the Hamil-
tonian H for 8' in Eq. (1.13) or by taking the negative of
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the first derivative of ln(Z, »„„)with respect to p. To
denote this distinction, we wi»ll let unprimed quantities be
those computed using Eq. (1.13) and primed quantities be
those computed from derivatives of ln(Z, pp„„). Thus, for
example, we have

& H'&approx= [in(Zapprox)] (1.16)

a'
Capprox =P

g [ln(Zapprox)l i
Bp

while, for comparison,
r

(1.17)

& +&approx=

I.
Tr H gf(a)

I=1

g f(n)
(1.18)

Capprox=P [&I &approx (&H &approx) ] (1.19)

Also, in analogy to Eqs. (1.14) and (1.15), we will define

~Q'=Qexact Qapprox i (1.20)

where Q,'»„„is any quantity calculated by taking deriva-

Our calcula»tions and general results will be equally
valid whether b,r is held constant or whether L is held
constant [see Eqs. (1.1) and (1.2)] when derivatives of ln

(Z,pp„„) are taken to compute a Q,'pp„„. Thus, unless ex-
plicitly stated otherwise, either of the two conditions may
be assumed in the remainder of the paper.

In certain cases, either for a test Hamiltonian or for an
L= 1 Trotter approximation, the traces of Eqs. (1.9) and
(1.13) have been computed exactly;~ " in others, the trace
is approximated by using a quantum Monte Carlo tech-
nique. ' '3 Trotter-like approximations have proven par-
ticularly useful in conjunction with such techniques, as
many of them require such an approximation before they
can be implemented.

Use of these Trotter-like approximations will thus add
a systematic error to certain of the quantum Monte Carlo
methods, in addition to the statistical sampling error. In
an effort mainly to improve the efficiency of these
methods, we explore here the convergence of the free ener-

gy and of operator expectation values, when a Trotter-like
approximation is used, as a function of h~, p, and the size
of the system. Although certain results can be extended,
we confine ourselves to the study of finite lattice systems,
letting N denote the number of lattice sites of the system
under consideration in the remainder of the paper. To our
knowledge, this general problem has not been systemati-
cally addressed in the literature.

In Secs. II, III, and IV, we consider the dependence of
the error on h~ for be small, on p for p large, and on N
for N large, respectively. This is followed by a section on
numerical results and a discussion section. Our main re-
sults may be summarized as follows.

Suppose that a first-order Trotter approximation of the

form of Eq. (1.1) is used. Then, if all of the H are Her-
mitian, with N and p constant, the correction term linear
in h~ for the free energy and for the expectation values of
Hermitian operators vanishes; i.e., for a Hermitian break-
up, the error due to using a first-order Trotter approxima-
tion has a (h~) dependence rather than the b,v depen-
dence that might be expected. In contradiction to what
has generally been assumed in the literature, this depen-
dence is, in general, not improved by using a second-order
approximant f' ' [see Eq. (1.6)]. Next, for any Trotter ap-
proximation, we find for b,~ and N constant that ~ and
h&d'& approach constants as P~oo. Lastly, again for
any Trotter approximation, we find for constant hr and p
that the errors in the free energy per site and in the expec-
tation values of local operators are independent of N if
the lattice is sufficiently large and all interactions are of
finite range. This means that, for a certain desired accu-
racy, b,~ may be chosen independently of lattice size. We
note that all of the above results can be shown to hold for
primed as well as unprimed quantities.

SupIx)se, alternatively, that an approximate expansion
of e a' in powers of (bv)H is used. For sufficiently
small hr, and N constant, we show that the error in the
approximate expectation value of an (unprimed) operator
vanishes as P~oo, so that one approaches the exact
ground-state value. However, to retain a given accuracy
in the expectation values of local operators at finite p, b,r
must be chosen smaller as N increases. Thus, this approx-
imation is in general less useful for exploring the proper-
ties of larger systems.

f=e ''"+4', (b~-)'+ C,(b~)'+0((h~)')
—(hr)[H —(dr)C') —(hr)2%2]

where
4'p ——C2 ——,

'
I 4'),H I,

so that

(2.1)

(2.2)

(2.3)

(Sr)[H (hr)&) —(ar—) @2] O— ((~ )i)
1=1 l=1

P[H (hr)C( (ar) V—2]— —

Defining

erH@ &
rH—

(2.4)

(2.5)

(2.6)

(~) erHQ ~
—TH (2.7)

and using the ordering label technique of Feynman, ' we
find

II. hv' DEPENDENCE

In this section we will consider the case only of f'",
where the lowest-order correction to e (a'H is of order
(b,r) . The generalization to the case of f'"' is straightfor-
ward. We will also drop the right superscri t (1) in this
and all following equations whenever e ' ' is approxi-
mated by f'". Then, retaining correction terms through
secoild order,
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—gH —{h~)', —(a~)'4, ]
e

=e ~ I+(Ar) f 1 r@)(r)+(b r) f dr&2(7. )+ f dr f dr@1(~)Ct(r) +O((br) ) . (2.8)

The procedure may be extended to any order in d ~.
We now define

PN i(p) = f drC'i(r) (2.9)

and omit in all subsequent equations the right subscript
"exact" if a quantity is calculated with no approximation.
Then, using Eqs. (1.9), (1.11), (1.13), and (2.8),

which is anti-Hermitian, as desired, since all of the H
are Hermitian.

If a non-Hermitian break-up is used, K1 can still be
made anti-Hermitian. ' Let H; be the Hermitian piece of
the Hamiltonian in Eq. (1.3) which is to be further broken
down into the non-Hermitian pieces H~" ' and H ', for ex-
ample. Making the substitution

Z,pp„„——Z[1+(hr)&Ni(p) &+O((hr) )], (2.10)
—(Sr)H,. —{W~/2)H,(') —(S~)H,(')

e '=e e

~approx =~ &~ (P)&+O((& )'), (2.1 1)
—(a~/2)a(')

Xe ' +O((&r)')

instead of the substitution

(2.19)

and

& ~&+(~.}&~,(p}~&

I+(~ )&~,(P)&

= & ~ &+(~.)[&u, (p)~ &

—&& (P)&&&&]+O((~ )')

Further defining
P

&2(p) = f dr@2(r)
P r

+ f dr f dr'4(( )Ãr((r'},

we find, if &&i(P)& vanishes

Z„„.„=Z[1+(& )'&~ (P) &+O((&r)')]

(2.12)

(2.13}

(2.14)

(2.15}

(S.r)H; — (ar)H~ ~ ~ ——(ar)H~2~
( (2.20}

—( At/2 )H
1 (kg)HP (kT/2 )H I=Tr e 'e 'e

' /=1
(2.22)

in Eq. (1.4) will guarantee that 4i is anti-Hermitian.
This procedure also holds if there is more than one H;
which must be broken up into non-Hermitian pieces.

For the special case of an M=2 [see Eq. (1.4)] Trotter
break-up, an analogous result for the vanishing of the
lowest-order b,r term is already known for Z,pp„„(Refs. 5

and 6) and, hence, Fapp«x and Qapp«x, though not for
&

8' &,pp„„. In that case,

L
(2.21)

/=1

'
&u, (p)&+O((~.)') .

If, in addition, &&i(p)d'& vanishes, we obtain

(2.16)

using the cyclic property of the trace. Then, since
—(/ar/2)H

&
(hr)H2 (hr/2 )H—&-

e e e

one has that

(2.23)

—
& &,(p) & & d'&]+O((51-)') .

(2.17)

%e now assume all relevant operators are simultaneous-
ly real representable. This is not unduly restrictive in
practice, as most Monte Carlo algorithms require real rep-
resentation. We will show that if 4'i is anti-Hermitian
and if 8' is Hermitian, then the correction terms linear in
hr vanish for Z,»„„and &8'&,pp„„.

' If the correction
term linear in h~ vanishes for Z,pp o we note that it will
also then vanish for F,p„„„and any Q,'pp„„[see Eqs.
(1.16)—(1.20)].

This result for Vi anti-Hermitian may be applied in
particular to a first-order Trotter approximation of the
form of Eq. (1.1}with a Hermitian break-up. In that case,

M

~,=-,' g g [H, ,a ], (2.18)
m =1 k (m

Z,pp
„——Z[1+0((br) )] . (2.24)

& 0&app«x=

(Sr)H ( (2xr)H—2—L
Tr H e 'e

/=1

—{hv)H I
—(hr)H~L

Tr e e
/=1

(z.zs)

(ar/2 )K
~

{Sr)H2— (ar/2)H—&-Ti Hi e le 2e

/=1

—( hT/2 )H I
—( hr)H~ —( hw/2 )H

1Tr e 'e 'e
!=1

Again using the cyclic property of the trace, we can ex-
tend this M=2 result to the expectation value of any
operator which is a sum of operators each of which com-
mutes with either H1 or 02. For example, considering
the Hamiltonian 0,
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(«—i2)H2 (—«)H) —(«/2)H2
Tr H2

/=1

or the second-order Hermitian approximant '

(2) —(hg/2)H )
—(h~)H2 —(b v'/2)H )fH =e le 2e (2.37)

—(hr/2)H2 —(hr)H j
—(hr/2)02

Tr e 'e 'e
1=1

L

(2.26)

(2.27)

However, the cyclic property of the trace by itself cannot
be used to show that the correction terms linear in hr
vanish for (d'),pp„„ in general, or that they vanish for

Zapprox if M & 2.
To show this vanishing of the first-order correction

term when 4'i is anti-Hermitian, we begin by considering
the Hermitian conjugate

[
—pH~ (p)]t d —(p—1}HQ —'1'H

P
dr e rH~te— t P r)H— — (2.29)

0

(P r)H@—t ——rHTe
13

]e

(2.28)

(2.30)

through a change in variables. We thus find that the
product e ~ &i(P) has the same Hermiticity as 4„i.e.,
if Ãi is Hermitian, then e ~ &i(P) is Hermitian, and if
Ã i is anti-Hermitian, then e ~ 9'i(P) is anti-Hermitian.
The trace of an anti-Hermitian operator with real repre-
sentation vanishes. Therefore, if 4'i is anti-Hermitian,

Tr(e ~ &i(P))
Tr(e ~H)

(2.31)

and, from Eqs. (2.10) and (2.11), the corrections linear in
&r vanish for Zapprox and, thus Fapprox and Qapprox

Suppose, in addition, that 8' is a Hermitian operator.
Then, since (S' i(P) 8' ) is the trace of the real-
representable product of a Hermitian and an anti-
Hermitian operator, one has

e
—(«)H+ g (2) (g )3+O((g )4) (2.38)

will not improve the convergence of (6' '),pp„„with
respect to b,r, as both Ã'i z and V'i H have nonvanishing
Hermitian parts, in general. Both approximants can be
straightforwardly extended to M& 2, with this result then
remaining the same for both Z,pp„„and ( 8"H'), pp„„.

We also note'at this point that if a first-order non-
Hermitian break-up is used, the correction terms linear in
b,r for Z,pp„„and ( d') app„„may vanish due to symmetry
properties besides Hermi»ticity. This will depend, in gen-
eral, upon the particular Hamiltonian and operators under
consideration.

III. DEPENDENCE ON P

P(E2 Ei ) »—1, (3.1)

where Ei and E2 are the ground state and first excited
state energies of the system, respectively. Since general
results are the same if degeneracies exist, we will assume
for notational purposes that all eigenstates of H are non-
degenerate. We also note that in taking the large-P limit,
P will actually be allowed only certain discrete values in
our formulation, since I. =P/br is assumed to be always
integral.

Holding the N dependence implicit in the remainder of
this section, we will first show that, with a sufficiently
small constant br,

and

lim ~=function(b, r)
p~ co

(3.2)

We now discuss the P dependence, for a given hr and
N, of dd' and h(d'). We are interested in the limit of
sufficiently large P so that the system approaches its
ground state; i.e.,

(2.32)

so that the correction to ( 6')app„„ linear in hr also van-
ishes.

If 8' is not Hermitian (for example, if d' is a Green's
function), one can combine d' with its Hermitian conju-
gate to obtain

& p (+++ ) &approx= & & &approx

(2.33)

lim b (8') =function(hr)
p~ co

for a Trotter approximation. For an expansion of e
in powers of (hr)H, we will show that

lim ~=function(hr)
p~ co

and, for sufficiently small b,r,

lim h(d') =0.
p~ oo

(3.3)

(3.4)

(3.5)

For an M=2 first-order Hermitian break-up, one notes
that using either the second-order Suzuki approximant

(2) —(Q'f )0I
—( Af')H2 —[(LET) /2]tH 1,02 ]fs ——e e e

=e ' ' +Ã' '(br)'+O((&r) )

(2.35)

(2.36)

with the correction term linear in hv again vanishing.
Here, P' ' is the Hermitian part of 6, defined by

p(H) &

( p+ pt) (2.34)

The functions of b,i in Eqs. (3.2)—(3.4) all vanish as
b,~~0, and we will note without explicit demonstration
that the general behavior of 6( 6') follows the behavior
of ~ in both of the above cases.

%e begin by treating Trotter approximations, assuming
initially that all relevant operators are represented by real
matrices in an arbitrary representation. In this represen-
tation, we consider the eigenvalues and eigenvectors of
f'"', denoting the eigenvalues of f'"' by A,I"'. We remind
the reader that f'"' is an approximation to e ' ' . As
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before for the operator H, we assume that the eigenvec-
tors of f'"' are nondegenerate, as results are the same in
the case of degeneracies.

Now, f'"' will be real representable; however, it will

not, in general, be Hermitian. Thus, the eigenvalues A,,
'"'

will not necessarily be real, though complex eigenvalues
must come in complex conjugate pairs. %'e denote the
eigenvalue of f'"' with greatest magnitude as A.,'"),„, and
we assume that there is only one such eigenvalue. We fur-
ther assume that AI") is real and positive. In some situa-
tions, both of these assumptions will hold automatically.
However, if the eigenvalues of f'"' with greatest magni-
tude are complex, the imaginary parts can always be made
negligibly small by choosing sufficiently small hv, and the
double degeneracy will not change our results.

Since f'"' is not Hermitian, right and left eigenvectors
belonging to the same eigenvalue are not necessarily the
same. However, eigenvectors can be normalized so that, if

I

lim F,pp«„= lim ——1n(TrI (M ')[(f'"')~ '](M) j )approx
p

(3.6)

= 11IQ
p~ ce

(3.7)

(3.8)

where J)ls is the number of independent states of the sys-
tem characterized by H. Similarly,

M is the matrix of right eigenvectors, then M ' is the
matrix of left eigenvectors. Thus, we find that

(3.9)

s
( g(n) )

p/ar

i=1= lim
p „Xs~ (g(n))glar

(3.10)

i max, i max ~ (3.11}

b,E~function( h~) (3.12)

5(8') ~function(be ) (3.13)

for a Trotter approximation. The h~ dependence of the
errors is due to the implicit b,~ dependence of f'"' and
hence, A,I") and the right and left eigenstates correspond-
ing to it.

We now note, since

where the matrix elements d';J here are those of 8 taken
in the left- and right-hand representation in which f'"' is
diagonal. Since f'"' and d' are simultaneously real
representable, lim~ „(d')app«x will always be real, as ex-
pected.

Thus, as we approach the ground state,
MM ——XM —XM,pp„„~Pfunction(b z) . (3.17)

In other words, b,C and MM may diverge as we approach
the ground state.

The divergence in the approximate heat capacity, how-
ever, will not occur if the approxitnate heat capacity is
computed from the slope of (H),»„„versus kIIT =1/P,
assuming here that b,r is held constant. Denoting the
heat capacity so computed by C,"~~„„,one has then that

11III Capprox IIIII P ( (H )approx )
p~ a) p-+ 00

(3.18)

assuming M commutes with H, we expect, unless the
eigenstate of f'"' corresponding to A, ,'"',„ is also an eigen-
state of M, that as p~ ~

Capprox =P [&~ &approx ( &H &approx} l (3.14) (3.19}

that, unless the eigenstate of f'"' corresponding to A,,'m)a„ is
also an eigenstate of H, we expect as p~ oo

so that

b C =C —C,pp„„~P function(b, r } . (3.15)
lim hC" = lim ( C —C,"pp„„)=0 .
p~ ce p~ co

(3.20)

Similarly, since

(3.16)

The divergence also will not occur if C,'&&„„is used in-
stead of C,&&~„. In analogy to the limit for C,"&z„„,one
has that
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lim hC'=0 .
P~ e)

(3.21}

However, if one regraphs bC' versus P for constant bw,

the data from Figs. 12 and 15 of Ref. 17 indicate that,
even in this case, a large peak in AC' may occur at low

but finite temperatures for a given b,~.
Suppose alternatively that we now expand e ' ' in

powers of (b,r)H. In this case, from Eq. (1.7),

(3.22)

11m Fapproxp~ co

and

where the E s are the eigenvalues of H and the eigenstate
of f'"' corresponding to A,I") is the same as the eigenstate
of H corresponding to E;. We note that, here, the &)(,(„"s
will always be real. As before, we define A,Ia),„ to be the
eigenvalue of f'"' with greatest magnitude, and we assume
that there is only one such eigenvalue and that it is posi-
tive. Then, we obtain in analogy to Eqs. (3.6)—(3.11)

(3.23)

(4.3)

We decompose this operator into the sum of two opera-
tors

p(i)+ p(2) (4.4)

where

(4.5)

are expectation values of local operators; total energy, to-
tal spin, etc. , are expectation values of order-N operators.

We hold b,r and P fixed. We will show then that, if a
Trotter approximation is used, the error in the free energy

per site and in the expectation values of local operators is
independent of lattice size in the large-N limit. We will

next observe that if an expansion of e ' ' in powers of
(hr)H is used, bv must be chosen smaller for larger lat-
tices. Thus, we find that a Trotter approximation is better
suited to exploring larger systems than an expansion of
e ' ' in powers of (4~}H.

We begin by considering an order-N operator d' defined

on a block of 2N sites, so that

'm
& + &approx

=+i max, i max &P~ co
(3.24)

where the matrix elements d';J are now taken in a repre-
sentation in which H is diagonal.

Thus, the ground-state value of &6'),pp„„will be the
value of &

d') in whatever energy eigenstate corresponds
to A, (;m)a„. For b,r sufficiently small, this will be the true
ground state; alternatively, one can always add a suffi-
ciently large negative constant to H so that the true
ground state is again selected.

IV. DEPENDENCE ON SIZE

2N
p(2) y g

i =X+1
(4.6)

We then look at the commutator [d''", 6( '].
For sufficiently large N, the number of terms contribut-

ing to this commutator will be proportional to the inter-
face "area" of the two blocks of size N, and we see that
[8"),d( '] is of order N' "~, where D is the dimen-
sionality of the blocks. Thus, as N~ 0(), we can effective-
ly write

We reemphasize now that we are dealing with a finite
lattice, where operators are defined only at lattice sites.
We defme a local operator 9P; as

9F;= gajbij, (4.1)

where the aj's are constants, b;~ is a sum of operators
which are only defined at sites i and j, and [j] is a finite
set independent of lattice size. We define an order-N
operator 6 as

(4.2)

where N is the number of lattice sites. We assume period-
ic boundary conditions for simplicity, though our results
can be shown to be independent of the specific boundary
conditions chosen. %e also assume that we are not near a
phase transition, though, again, results can be made more
general. Lastly, we assume that the Hamiltonian H is an
order-N operator; i.e., all interactions are of finite range.
Then, average energy per site, correlation functions, etc. ,

[p()) g(2)]
S (4.7)

This means that commutators of order-N operators from
different blocks may be neglected in comparison with the
order-N block operators themselves for large N and is, of
course, simply in the spirit of neglecting boundary effects
in the thermodynamic limit.

We then apply this result to the calculation of approxi-
mate partition functions and operator expectation values.
To do so, we decompose a Hamiltonian H defined on a
lattice of size 2N into two Hamiltonians H"' and H' '

which correspond, within boundary effects, to two in-

dependent lattice blocks of size N In analogy t.o Eq.
(4.4), we have

(4.8)

We now use a first-order Trotter approximation [see Eq.
(1.4)]. Neglecting commutators of order- N operators
from the two blocks and making the approximation of
tracing over the two blocks independently, we obtain
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Zapprox =Tr
—(h,w)HM

n e Pll

l=l m=1
L

—(5 )(H +H )n e
m=1

(4.9)

(4.10)

L
= Tr

—(a~)H~'&
e

m=1
(4.11)

~(1) ~{2)
approxZ approx (4.12)

(
p(H(l)~H(2()) (4.13)

We note that this result is analogous to the case in which
no Trotter approximation is used, where

—(dEw)(H ) +H~ ) —(hr)H l
—{hr)H~

e =e e

[( g+)k +1+ ]X e
k=1

(4.22)

L
=Tf e

—(a~)(H('&+H('&)

1=1

n —(a~)H( &

e
1=1

—(a (H(2(

1=1

(4.14)

(4.15)

Since each &k in the Zassenhaus formula is an order-N
operator, being a commutator of order-N operators, we
see that these Suzuki approximants can all be written in a
form analogous to that of a first-order Trotter approxima-
tion,

Z(1)Z (2) (4.16)

M'

f(rl( n e +0 (Q~)ll +( (4.23)

Therefore, for a first-order Trotter approximation,

g(1) g {2)
~approx ~~ approx+~ approx

Similarly, one finds that

& + & approx & + & approx+ & + & approx

(4.17)

(4.18)

The H here, though not necessarily Hermitian, will all
be order ¹ The generalization of Eq. (4.20) to Mp 2 is
straightforward, and we find that similar results hold for
the Hermitian approximants of De Raedt and De Raedt. 5

Thus, if any Trotter approximation is used, F,p „„,
( 8 ),pp„„, and ( 8'),pp„„scale with the size of the lattice,
and, in the large-N limit, the error in the free energy per
site

& approx —& + & approx+ & + & approx (4.19)

( )
—(hv)H( —(hw)H~ —t(h )~+~&k)f"=e e e

k=1
(4.20)

1 2 g((g )n+() (4.21)

These are approximations to the infinite-product Zas-
senhaus formula, ' which we write as

Thus, the approximate free energy and the approximate
expectation values of order-N operators scale linearly with
lattice size when a first-order Trotter approximation is
used.

We now note that in a system of N sites, a local opera-
tor from one site i will commute with all but a finite
number of local operators from other sites, where that
number becomes independent of N for N large if we are
not near the system boundary. As we are concerned with
the large-N limit, we ignore boundary effects, as usual.
Thus, we see that the commutator of two order-N opera-
tors each defined in the same system of N sites is itself an
order-X operator in the large-X limit.

We can use this fact to extend the above size scaling re-
sult for a first-order Trotter approximation to the higher-
order M =2 approximants formulated by Suzukii

df = —(dF)l

N
(4.24)

and in the expectation values of local operators
T h

(4.25)

of

(4.26)

will be independent of the lattice size for a given P and
b,r This will be t. rue individually for each term in an ex-
pansion of the error in powers of Ar; it can be shown, for
example, to hold for the approximation through order
(((((r) given in Eq. (2.8). Thus, br may be chosen in-
dependently of lattice size for large lattices.

%e note that this result is in disagreement with a con-
clusion of Ref. 19, which was based numerically on one-
dimensional quantum spin chains which were apparently
not long enough to exhibit the limiting large-X behavior.
It answers the question posed in the more recent Ref. 13,
however, as to why the accuracy of results in systems
studied in that reference did not seem to deteriorate when
the same hr was used for lattices of larger size.
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& + &approx g & + &approx, k
k

(4.28)

«k&+(~ )&[& (u)]k~k&
(4.29)I+(«) & [&i(P)]k &

Since the approximation

[I+(~ )&~ (P)&] '=1—(~ )&& (P)&+g((~ )')

(4.27)

was used in Eq. (2.13) and since &)(P) scales like an
order-N operator, it might seem, nevertheless, that b,~
would have to be chosen inversely proportional to lattice
size on that basis. Ho~ever, by the previous argument,

H =( t) g—(c~+c;+(+c++)c;)+U g n;n;+( (5.1)

19, approximate spin correlation functions are calculated
and compared with exact values for finite chains of the
spin- —,

'
Heisenberg anti-ferromagnet. In Ref. 23, approxi-

mate energy densities and static structure functions are
computed for a finite spin- —,

' XXZ chain and are then

graphed versus [(b,~)/P], with P held constant. In both
cases, results are consistent with our predictions.

Siinilarly, there is only one paper of which we are
aware with numerical data relevant to the P dependence
of b,C at constant b,~. In this paper, C,pp„„and C are
graphed versus P with h~ constant for the one-
dimensional spinless fermion Hamiltonian

(~.)& [~,(P)]k & «1 (4.30)

for a large enough block that boundary effects with other
blocks do not dominate. Similar results hold for higher-
order hr correction terms.

For comparison, we also consider the approximate ex-
pansion

nf'"' —g [—(b,r)H]
k=0 k' (4.31)

where the k's refer to sufficiently large blocks. Thus, in
order to use an approximation like that of Eq. (4.27), it is
only necessary that

with periodic boundary conditions, with a Monte Carlo
technique used to compute C,pp„„. We see no evidence of
the low-temperature divergence of hC. However, the
highest P for which data are taken is P=4, while the error
in C,pp„„ is at most of order (h~) =0.01. Thus, we con-
jecture that the lowest temperature taken may not be low
enough for b,C to be distinguishable in the figure shown.

To further test the predictions for P dependence, non-
Hermitian Trotter break-ups, expansions in powers of
(hr)H, and non-Hermitian operators, we used the spin- —,

'

quantum Hamiltonian first utilized by De Raedt and De
Raedt

In the large-N limit, we note that this expansion will not
decouple into a product of operators corresponding to dif-
ferent blocks in the same way that the Trotter approxima-
tions did. Since the expansion is in powers of (br)H and
since &I & scales linearly with N, we conjecture that b,v

should be chosen at least inversely proportional to lattice
size if one wishes to keep the error in a local operator con-
stant. In any case, it is clear that a smaller biz must be
chosen for larger lattices when this approximation is used.

V. NUMERICAL RESULTS

H = bI —a5,——h5, .

%e investigated the Hermitian break-up

b(ar) a(ar)5x h(ar)sr=e 'e *e

e (ar)H+ g((g—)2)

the non-Hermitian break-up

b(ar) [o(ar)/2}5+ [a(ar)l2}5 h(ar)5,=e 'e +e e

(6 )H+g((g —)2)

(5.2)

(5 3)

(5.4)

The predicted ( hr) error dependence of Fapp«x,
Q,'pp„„, and &II &,pp„„ for an M=2 Trotter break-up due
to t»he cyclic property of the trace has been supported nu-
merically for a variety of Hamiltonians. ' ' ' On the
basis of our results for an M~ 2 break-up, we do suggest
that, in order to more accurately extrapolate to the 6~=0
limit, the graphs of approximate &H & and C versus b,~/P
for P constant in Ref. 22 should be replaced by graphs of
approximate &H & and C versus [(h~)/13] . The Hamil-
tonian studied is the two-dimensional spin- —, XY Hamil-
tonian. Although the numerical difference is small in this
ease, we find that this new extrapolation brings the low-
temperature estimate for & H & into even closer agreement
with the ground-state prediction of Pearson which is cited
in that reference.

To our knowledge, only two papers have been published
with tabulated numerical results relevant to the (br)
dependence of 5& 8' '& when a first-order Trotter ap-
proximation is used with a Hermitian break-up and the
cyclic property of the trace is not applicable. ' ' In Ref.

and the first-order expansion in (b,r)H

f=I +(6~)(bI +a5„+h5, )

e
—(ar)H+g((t( )2) (5.5)

We computed exact and approximate partition functions
and free energies; exact and approximate expectation
values of the operators H, 5„5„,5+, and 5; and C and

Capprox.
All predictions concerning b,~ and P dependence were

verified for this Hamiltonian if a Trotter approximation
was used. In particular, we found that b,C diverged as P
for large P when hr was held constant for either of the
Trotter approximations.

For an expansion of e ' ' in powers of (hw)H, we
noted that, for all parameters tested, approximate opera-
tor expectation values approached their exact ground state
values for P large and b,~ sufficiently small. We did find,
however, that very low temperatures were often required
to observe the expected large-P dependence.

To test the size scaling predictions of Sec. III for a
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Trotter approximation, we studied the one-dimensional
periodic spinless fermion Hamiltonian

N
H = —r g (cg c(+ i +c(++ ic; ), (5.6)

CS+1 ~1 (5.7)

UI. DISCUSSION

which is equivalent to the XY model through a Jordan-
Wigner transformation, in the grand canonical ensemble.
We used a checkerboard break-up and compared
b, (H ) per site, for a variety of (8's, for 6—16 sites in mul-
tiples of 2 sites. Predicted results were observed. We
have not investigated numerically the size scaling for an

expansion of e ' ' in powers of (hr)H.

larger systems.
If a Trotter approximation is used, one can sample a

system at fixed P for smaller and smaller values of b,r un-
til the known dependence on hr as b,r~D is observed. Of
course, larger b,r can be used in general if the error depen-
dence is (hr) rather than b,r. One can then extrapolate
with confidence to the br=0 limit, effectively removing
all error due to a Trotter approximation. The references
cited indicate that it is not in general necessary to reach
prohibitively small values of hr before the small-hr
behavior is observed. Thus, this procedure should be use-
ful when Monte Carlo techniques are combined with the
Trotter approximation, as the run time for such algo-
rithms is generally at least proportional to I. =P/(br).

The main difficulty in this procedure is in computing
the low-temperature heat capacity, as mentioned in Secs.
IV and V. For constant b,r, we showed that for P large

We have shown that if we use the simplest first-order
Trotter approximant

f=H ~ (6.1)

b, C(P)~P function(br)

so that

(6.7)

e (hr)H+0—((g )2) (62)
C(P),»„„~C(P)+Pfunction(br), (6.8)

where

M
H= gH~,

m=1
(6.3)

and all the H are Hermitian (a Hermitian break-up),
then the error in the free energy and in the expectation
values of Hermitian operators is proportional to (hr) in-
stead of the expected b,r We have . also shown how this
result can be achieved if a non-Hermitian break-up is
used. If 8' itself is not Hermitian, then —,(6+8' ) can be
substituted for d', giving an approxiinate expectation
value of d' which again has an error proportional to
(b,r) . More complicated Trotter approximants of the
orm

f(2) e (a~)H+0((g )—2) (6.4)

will in general not improve upon this (b,r) error depen-
dence.

We next showed that, if hr is held constant and P~ co,
then

b,F~function(b, r) (6.5)

b, (P) ~function(b, r) (6.6)

for a Trotter approximation, where the functions of Ar
vanish as 5~~0. This means that there should be no in-
trinsic difficulty in calculating low-temperature expecta-
tion values.

Finally, we showed that the error in a local operator is
independent of the lattice size for constant Ar and P if all
interactions are of finite range, so that A~ can be chosen
independently of the lattice size. This means that a
Trotter approximation is well suited for exploring proper-
ties of larger systems.

where C(P) becomes small as P becomes large. Thus, for
fixed hr, the correction to C(P) will begin to dominate
for a sufficiently large P, unless the terms giving rise to
the correction vanish identically.

We suggest that a similar difficulty may also arise in
computing susceptibilities. However, to our knowledge,
this has not yet been observed.

As mentioned above, errors due to h~ can be removed
with confidence by extrapolation. However, for large P, it
may be difficult in practice to isolate the small C(P) term
in Eq. (6.8). In particular, if Monte Carlo simulations are
used, C(P) may be buried in statistical noise. Accuracy
may be improved by plotting (H ),»„„versus k~'r= I/P
for hr constant and determining the approximate heat
capacity from the slope. Then, as was shown in Sec. III,
the approximate heat capacity vanishes as P~ ao. How-
ever, a small slope may be difficult to see amid the statist-
ical errors of the (H ),»„„data points.

Two other possibilities for alleviating the heat capacity
problem are, first, to use C,'»„„[see Eq. (1.17)], or,
s~ond, to use an expansion of e (a')H in power-s of
(b,r)H. In both of these cases, the approximate heat capa-
city again approaches zero as P~ oo when b,r is held con-
stant. However, if the (br)H expansion is used, one is
limited by the fact that one must choose br smaller for
larger lattices, as opposed to a Trotter approximation. In
addition, numerical results given in Figs. 12 and 15 of
Ref. 17 and in Table I of Ref. 6 suggest that, at least un-
less P is extremely large, neither method is to be expected
to always give significant improvement in the approxi-
mate heat capacity.

~en one approximates e ' ' by a power series in
(br)H, we have shown that, for br sufficiently small, the
errors in operator expectation values vanish as one ap-
proaches the ground state. However, the size sealing
drawbacks of the (br)H expansion approximation make it
in general less useful than a Trotter approximation.
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