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We report a theoretical study of the influence of an ordered periodic pattern of defects on an in-
commensurate modulation. We consider a one-dimensional model valid when the defect potential is
much smaller than the potential of the underlying lattice, in which the discommensurations of the
modulation (solitons) are handled as material objects. This model belongs to the class of Frenkel-
Kontorowa problems. Between the normal-incommensurate transition and the transition of lock-in
on the lattice, the soliton system undergoes a succession of transitions between two types of incom-
mensurate phases either locked or unlocked on the defect wave. The average spacing between neigh-
boring solitons as a function of the temperature is represented by a devil’s staircase. The structure,
the stability, and the Fourier spectrum of the unlocked phases are analyzed. In these phases, the
soliton distribution is not uniform but modulated. As a consequence, the Fourier spectrum of the
modulation splits into several components. Computed spectra account for the splitting of the in-
commensurate satellites observed in the scattering spectra of Ba;NaNbsO;s or of Rb,ZnBr,.

I. INTRODUCTION

A specific memory effect has been observed in several
incommensurate systems,!~> SC (NH,),, Ba,NaNbsO;s,
Rb,ZnCl,, etc., after they have been kept for some time (a
few minutes to several days) at a fixed temperature T
within the incommensurate phase. This effect is believed
to be induced by mobile extrinsic defects (vacancies, im-
purities, etc.) interacting with the incommensurate modu-
lation. During the annealing at T, the defects become
ordered in the field of the modulation; their spatial distri-
bution acquires a periodic component at the wave vector
of the modulation, i.e., a “defect density wave” (DDW)."?
When the sample temperature is varied after the annealing
for a time which is short with respect to the defect order-
ing time, the DDW remains frozen and its existence is ex-
pected to influence the subsequent properties of the ma-
terial (transition temperatures, dielectric susceptibility,
birefringence, satellite characteristics, etc.).

In this paper, we investigate theoretically the influence
of such a frozen DDW on the incommensurate modula-
tion itself by considering a one-dimensional model in
which the modulation is submitted to two lock-in poten-
tials with different periodicities. One is the usual underly-
ing potential due to the crystal lattice and the other is as-
sumed to represent the influence of the DDW.

The study of the thermodynamic behavior of a continu-
ous system with two competing periodicities has already
been investigated by E. Fradkin et al.* and also by S. Au-
bry.’> These authors considered the free energy
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whose minimization with respect to the new variable

d(x)=@(x)—q;x , (2)
leads to the double sine-Gordon equation
2
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This equation can be related to the spatial variations of
the phase angle of an incommensurate modulation in the
field of two lock-in potentials when the amplitude of the
modulation is assumed to be homogeneous (phase-
modulation-only approximation). ¥; and ¥, represent the
amplitudes of the lattice potential and of the DDW poten-
tial, and

90=492—q (4)

the DDW wave vector, refers to the lock-in wave vector
q; of the pure crystal.

On the basis of general theoretical arguments, Aubry
has shown that this continuous model is equivalent to the
discrete Frenkel-Kontorowa problem (FKP).>% As a
consequence, the thermodynamically stable solutions nei-
ther correspond to the coexistence of several phases nor to
chaotic states but to periodic phases. The variations of
the modulation period as a function of the coefficients V;
or ¥, are represented by a devil’s staircase; the system un-
dergoes a succession of transitions between phases whose
wave vector is either commensurate or incommensurate
with the DDW one. The existence of these periodic stable
phases has been confirmed by the numerical work of
Fradkin et al.* Using mapping technics, they found that
the Fourier spectrum of the modulation is constituted by
a finite (or a countable) number of & functions at wave
vectors either commensurate or incommensurate with g,.
Typical spectra were plotted by these authors. In some of
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them, the Fourier components appear to be regularly
spaced but possible relations between their wave vectors
are not explicit. Besides, neither the structure of the
modulation in real space nor the characteristics of the
transitions between periodic phases are explicitly
described in their work.

Here, we clarify these points by using an analytical ap-
proach to the problem in the case where the DDW poten-
tial has an amplitude much smaller than that of the lat-
tice:

Vd << VI . (5)

From an experimental point of view, this condition is
realized when the properties of the DDW-marked system
are not too different from those of the pure crystal. This
is the case in SC(NH,),,! Rb,ZnCl,,* and perhaps also in
BazNaNb5015.2‘7

The paper is organized as follows. In Sec. II, we
describe our model and show its equivalent with the FKP.
We investigate the spatial structure of the modulation in
the stable phases of the system in Sec. III and we calculate
its Fourier spectrum in Sec. IV. Our results are then com-
pared with available experimental data in Sec. V; the case
of Rb,ZnBr, is specially investigated.

II. THE PERTURBED SOLITON MODEL

The solutions of the sine-Gordon equation (3) in the
pure crystal case (V;=0) are well known:®® ¢(x) is a
periodic function whose wave vector continuously de-
creases to zero as V; increases. Near the lock-in transi-
tion, it describes a soliton (discommensuration) lattice.
The solitons can be considered as domain walls where the
phase undergoes a rapid 27 variation, which separate
quasi-commensurate regions where ¢(x) is nearly constant
and equal to a multiple of 27.

The basic point of our approach is to consider the so-
called solitons as objects subject to their mutual interac-
tions (as in the pure crystal case) and also subject to an
“external” potential representing the DDW potential.
Hence, we are led to a Frenkel-Kontorowa-type problem
where the atoms of the usual FKP are replaced by the sol-
itons.

For a crystal of length L, the free energy of N solitons
in the field of the DDW potential W (x) is,*’

N
F=3[—7+Ux;41—x)+ W(x)], (6)

i=1

where x; is the position of the ith soliton, —7 its energy
of creation, and U(l) the interaction energy of a pair of
solitons at a distance /. We assume that this interaction is
repulsive, convex, and decreases with /, so that

du d*Uu
' — — (4 —_—
ul)>0, U'()= i <0, U"(h= TE

>0. (7)

These conditions are verified by the interaction obtained
in the classical treatment of an incommensurate modula-
tion in a pure crystal; in the soliton regime, when the
domains-wall fluctuations are neglected, we have®
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5
T=122—2( V)12 (8)

and
U(l)=8(V,)mexp[—4l(V,)“2] . 9)

For the sake of simplicity, we only retain the first har-
monic of the DDW periodic potential:

W(x)= —wqcos(ggx) , (10)

with wqy >0, and we discard a possible spatial-independent
term in W (x) which only leads to a renormalization of 7.
Besides, we neglect the temperature dependences of all the
coefficients in the model except 7 since this parameter
vanishes at the lock-in transition of the pure crystal. Fur-
ther on, we shall consider that 7 represents the “tempera-
ture” of the system. 7=0 is the lock-in transition tem-
perature of the pure crystal.

In contrast to the works of Aubry5 and Fradkin et al.,*
our procedure destroys the symmetry between the two
lock-in potentials of Eq. (3). The number of characteristic
lengths of the system is reduced from 3 (the period of the
incommensurate modulation in absence of the two lock-in
potentials and the periods of these potentials) to 2 (the
spacing between neighboring solitons in the pure crystal
without any DDW and the period of the DDW). In fact,
our model can be considered as a perturbation of the pure
crystal case valid when the strength of the DDW potential
is much smaller than the lattice one:

Vi<V . (11)

To emphasize the analogy between our model and the
FKP, we put

x,~=il+u,~ s (12)

where [/ is the spacing between the solitons in the pure
crystal and we expand (x;,;—x;) around [ up to the
second order. [ is deduced from the minimization equa-
tion of F when wy=0:

r=U)-1U'(]) . (13)
Using this equation and the relation

Xy —xo=L, (14)
a straightforward calculation leads to

N ”
M(ui+1—u;)z—wocosqo(il-i-ui)] .

F=U'(l
D+ >

i=1
(15)

This expression looks like that of the Hamiltonian used
by Pokrovski and Talapov'® in their study of the FKP. A
slight difference exists in the expression of the term U’(/).
However, this term does not depend on the u; displace-
ments and it only acts as a chemical potential determining
the number of solitons in the system. Hence, the general
results of Aubry® on the FKP can be applied to our model
with the following consequences.

(i) The stable phases of our model are periodic.

(ii) Three kinds of stable phases can be distinguished:
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(1) The commensurate phase locked on the underlying lat-
tice. (2) The phases incommensurate with the lattice but
locked on the DDW. Their period .Z, as well as the aver-
age spacing (/) between neighboring solitons, is com-
mensurate with the DDW period

lo=2T (16)

d0
(3) The unlocked incommensurate phases for which .
and (/) are incommensurate with /.
(iii) The temperature dependence of (/) is represented
by a devil’s staircase. Its completeness depends on the
value of the coefficient

2
Wo

€= 2
U

ly

(17)

On cooling towards the lock-in transition, the spacing be-
tween solitons increases to infinity and so does €;. When
€; is larger than a critical value €., the staircase is com-
plete; the system only passes through phases locked on the
DDW as the temperature is varied. When € is smaller
than €., the staircase is incomplete and the system also ex-
hibits incommensurate unlocked phases.

This analysis shows that our model presents the same
general properties (i) to (iii) as the continuous biperiodic
model [Eq. (1)] studied by Aubry® and by Fradkin et al.*
As we shall see, now one can take advantage of its greater
simplicity to investigate with more detail the properties of
the stable phases introduced above.

III. PROPERTIES OF THE MODEL

First, we shall discuss the structure and the stability of
two kinds of phases composing the devil’s staircase: the
phases for which the average distance between solitons is
equal to or near a multiple of /;. The other phases will be
briefly investigated at the end of this section.

A. Structure of the modulation

1. pl, locked phases

It is obvious that the phases locked on the DDW with
(1) just equal to ply (p integer) are composed of regularly
spaced solitons located in the minima of the DDW poten-
tial wells (x; =iply). Hereafter, we shall refer to them as
ply phases. Their free energy is easily derived from Eq.
(6):

—1—wo+U,

F(pl())-: ’
plo

(18)
with

U, =Ulply) . (19)

2. Surrounding incommensurate phases

To determine the structure of the unlocked phases sur-
rounding the pl, phases in the devil’s staircase, we start

from the free energy (6) and we use the transformation of
variables:

0.
xi=iplo+107;; . (20)

Using an expansion of U(x;,,—x;) around pl, up to the
second order, we obtain

N i
F=3 _T+UP+U,;3%<9,~+,—9,-)

i=1

I 2
+%U; 2—;);‘ (9,-+1—9,-)2—w0c089,~ , 21
with
v =22,
& (22)
P dx? lo) -

If the spatial variations of 6; are smooth (see the end of
Sec. III B), we can use the continuous approximation

9,=0(1) y

(23)
6,‘+1—9i=6'(i),
which leads to
F=N(—71—wo+ U, —plyU;)+LU,
2
u’ |1 N 7)2
P 0 (9) .
— | 1—cosf
L |2, fo 2 +¢€,(1—cosb) |di , (24)
where
2
w
€ =—n |27 (25)
uy Iy

The minimization of F with respect to 6(i) leads now to
a simple sine-Gordon equation,

2
fiz—'f =€,sinf . (26)

Its solutions describe a lattice of discommensurations
whose period . is generally incommensurate with /.
Between the discommensurations, 6(x) is nearly constant
and equal to a multiple of 27; the related solitons are lo-
cated in the minima of the DDW potential wells, distant
by ply, as in the locked pl, phase. At each discommen-
suration 6(x) undergoes a rapid +27 variation which cor-
responds to a +/ shift of the soliton positions from a
DDW potential well to the next well. Hereafter, we shall
call supersolitons those intrinsic defects of the ordinary
soliton pattern. A positive (negative) shift + Iy (—/,) cor-
responds to an advanced (retarded) supersoliton for which
the average distance between two neighboring solitons is
larger (smaller) than p/,. An example of the soliton pat-
tern and of the related spatial variations of the phase of
the modulation ¢(x) is schematized in Fig. 1.

The number P of supersolitons per length L of the
crystal is defined by
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FIG. 1. (a) Example of the soliton distribution in an incom-
mensurate phase with an average soliton spacing ~pl,. The
sinusoid represents the DDW potential. (b) Spatial variations of
the phase of the modulation related to the soliton pattern. The
dashed curve is an approximation of ¢(x) used to calculate the
Fourier spectrum of the modulation (see Sec. IV).

Oy —6=27P . 7

P is positive for advanced supersolitons and negative for
retarded ones.

Taking into account the relations between the various
lengths of the problem

L=w#1y=N{l)=|P| .2, (28)

where .#" is the number of wells of the DDW potential per
length L of the crystal, one finds that P is related to the
number of solitons N through the relation

P+ Np=A", (29)

and that the period .Z, of the incommensurate phase is
given by

L= 15 —p(D) Y . (30)

Hence, the unlocked phase with an average distance
(1) >ply (1) <ply) between neighboring solitons is ob-
tained from the pl, phase by the introduction in the soli-
ton pattern of

Plo.
I

advanced (retarded) supersolitons and the simultaneous
vanishing (creation) of | P | /p ordinary solitons.

To derive its free energy, we substitute 6p(x) [the solu-
tion of Eq. (26) containing P supersolitons] into (24). Fol-
lowing the soliton formalism of Bak and Emery,” we ob-
tain

P=xy"|1-— (31

Fpp=F(plo)+P(&pp+Upyp) , (32)
where
2
T+wo— U, l
aoP,p=‘—*"0—_p—!—IOUI;+83gn(P) ?0; (e,)' 72Uy
(33)
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and
o (€.)172
Up,,=32——(woU,) %exp | — —E—— = |sgn(P),
Pp 2ﬂ_(wo ) “exp Pl I sgn(P)
(34)
with
sgn(P)=+1 if P>0
and (35)
—1 if P<O.

% pp is a repulsive interaction between two neighboring
supersolitons spaced by =L /| P | and whose width is
loe; 172, while & p, can be interpreted as the energy neces-
sary to create an advanced or a retarded supersoliton. The
first term in the right-hand side of Eq. (33) corresponds to
the disappearance of a 1/p ordinary soliton which occurs
for each creation of one supersoliton [see Eq. (29)], the
last terms correspond to a remodeling of the soliton pat-
tern around the created supersoliton.

B. Description of the devil’s staircase

Let us discuss now the stability of the locked pl, phase
against (a) the surrounding unlocked phases, (b) the locked
(p+1)l, phases, and (c) the phase locked on the underly-
ing lattice.

(a) By analogy with the classical treatment® (within the
continuous approximation) of the lock-in transition be-
tween an incommensurate phase and a locked phase, the
minimization of Fp, with respect to P leads to a continu-
ous transition between the locked pl, phase (which corre-
sponds to P=0) and the surrounding incommensurate
phases. The transition temperatures are determined by
the cancellation of & p ,; the pl, phase is stable against the
creation of advanced supersolitons when

I
727, —wo—8p5 ~(woUp)' "2, (36a)

and against the creation of retarded supersolitons when

r <1y —wo+ 89 (wo U112
STp—Wo+8p5—(Wo ), (36b)

where
7p=Up, —ploUy (37

is the temperature related to the pl, phase in the pure
crystal [see Eq. (13)].

(b) The comparison of the free energies of the (p —1)l,,
plo, and (p +1)l, locked phases given by Eq. (18) shows
that (i) the transitions between these phases are discon-
tinuous and (ii) the ply phase is stable when

Tp—Wo+p(U, —U, 1+ U,) <7

<Tp—wo+p(U,_1—U,+1,Uy) . (38a)
When p >> 1, these inequalities can be approximated by
pl3 I3
Tp—wo———z—oUl;'g-rg'rp—wo+£2£Ul‘,‘ . (38b)
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(c) The free energy of the phase locked on the underly-
ing lattice is zero since there are no solitons in this phase.
As U, decreases to zero when p goes to infinity, Eq. (18)
shows that this phase is stable against the creation of ordi-
nary solitons when 7< —w,. Hence, in our model, the
temperature of the lock-in transition between the modu-
lated phase and the phase locked on the lattice is shifted
from O for a pure crystal to

= —w, (39)

for the DDW marked crystal.

The above analysis leads to an approximate determina-
tion of the devil’s staircase which describes the tempera-
ture dependence of (/) ~!. The staircase is an increasing
curve starting from 7; = —w,, composed of plateaus re-
lated to the pl, phases locked on the DDW and of
smoothly varying curves joining the plateaus related to the
phases incommensurate with the DDW (see Fig. 2).

The comparison of Eqs. (36) and (38) shows that two
regimes can be distinguished. The lower part of the stair-
case, obtained for

—WOSTSTPO ’

with p, defined by
4
T
epoz —1—6— ’ (40)

is only composed of plateaus (complete staircase); the sys-
tem undergoes discontinuous transitions between the suc-
cessive ply phases (with p >p); their stability range is
given by

(A7) =p(Up 41+ U, -1 —2U,) =pl3U,' . (41a)

By contrast, the upper part of the staircase, when
T2 Tpgs is incomplete: the system undergoes continuous

transitions between the pl, phases and the surrounding
unlocked phases described above. The stability range of

<|>A
1
12 INCOMPLETE DEVIL's
- f STAIRCASE
Vp——_ . COMPLETE DEVIL's
1/pe1™ /i STAIRCASE
[
0

TEMPERATURE : T

FIG. 2. Temperature dependence of the average soliton spac-
ing in a pure crystal (dashed curve) and in a crystal marked by a
DDW (solid curve). In the latter case, commensurate phases
with a p /ql, period (g > 1) are not considered.
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the pl, phase is now given by

I
(AT)P=16p-2—:r—(on;)‘/2 : (41b)

In both cases, (A7), becomes exponentially smaller and
smaller as p increases if we assume for U(x) the classical
law (9).

However, this analysis is approximate for two reasons.
On the one hand, the continuous approximation (23), used
to determine the structure of the unlocked phases, is only
valid when the width of the supersoliton is much larger
than the period of the DDW, i.e., when

€ <<1. (42)

This condition is not verified in the lower part of the
incomplete staircase (whose lower bound is €pp= 4/16).

In this range, one has to consider discreteness effects
which increase the stability of the locked phases against
the unlocked ones.

On the other hand, up to now we only considered the
simplest locked phases whose period is a multiple of ,. It
is not easy to determine the free energy and the structure
of higher-order locked phases [with (I/)=(p/q)l, with
g > 1] and of the related unlocked phases. However, be-
cause of the correspondence between our model and the
FKP considered by Pokrovski and Talapov,'® we know
that their smoothed structures (i.e., the structures com-
posed with the barycenters of g successive solitons) are
similar to the structures of the simplest phases considered
here above with (/) =pl, or {I) ~pl,. Their free energies
are similar to the expressions (18) and (32) with renormal-
ized 7, U, and w, coefficients. Of course, the considera-
tion of these higher-order phases leads to a much more
complicated structure of the devil’s staircase which can-
not be easily derived using analytical methods.

IV. FOURIER SPECTRUM OF THE MODULATION

Let us investigate now the structure of the incommens-
urate modulation in reciprocal space.

A. Splitting of the soliton-pattern spectrum

First, we shall focus our attention on the spectrum of
the soliton distribution, with the solitons considered as ob-
jects of zero width, since this approach of the problem
leads to a qualitative understanding of the modulation
spectrum without any calculation.

In the locked pl, phases, the solitons are equally spaced
as in a usual incommensurate phase and the Fourier spec-
trum contains only one component (whose wave vector is
2w /ply) and its harmonics (n27/ply, n integer). By con-
trast, we showed in the preceding section that the spacing
between neighboring solitons is not constant but periodic
in the unlocked incommensurate phases. This is also veri-
fied in the high-order locked phases (containing g solitons
per p periods of the DDW), since in these phases the soli-
ton density is higher in the lower arches of the DDW po-
tential than in the upper ones. Hence, for both the latter
cases, the soliton spacing can be written

X,'+1—xi=(l)+f(i), (43)
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where f is a periodic function whose period .7, as well as
(I), is commensurate with respect to /y in the locked
(p/q)ly phase and incommensurate with [/, in the un-
locked phases.

This situation is qualitatively similar to the case of a
displacive incommensurate phase in which the atomic
spacing is modulated. As a consequence, the Fourier
spectrum of the soliton pattern displays several satellite
components around the main harmonic. Their wave vec-
tors are

Gm= 2 27 (44)

oty

for integer m.

However, both problems are different from a quantita-
tive point of view because of the magnitude of the modu-
lation amplitude. Actually, in a displacive incommensu-
rate phase, the atomic displacements are generally much
smaller than the cell parameters; the amplitudes of the in-
commensurate satellites exponentially decrease!! with m
so that the number of observable scattering orders is small
(generally m=+1). By contrast, the amplitude of the
spacing modulation f (i) is not necessarily much smaller
than the average soliton spacing (/). On cooling, it in-
creases in the unlocked phases since the width of the su-
persolitons (~ U,""/?) rapidly decreases with p. Hence the
number of relevant Fourier components of the soliton pat-
tern may be fairly large. In order to make this statement
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clearer, let us investigate now the amplitude of the com-
ponents of the modulation spectrum.

B. Fourier spectrum of the incommensurate modulation

We show in the Appendix that the amplitude scattered
by a displacive modulation in an elastic neutron or an x-
ray scattering experiment can be approximated by a linear
combination of the Fourier transformed (FT) of the
order-parameter components: pcos$ and psing. To cal-
culate these FT, we assume that the amplitude of the
modulation is homogeneous (phase-modulation-only ap-
proximation®) and we use a Fourier expansion of the
periodic phase ¢(x). Within a continuous approximation,
¢(x) is written as

2rmx

L

2mmx

L

(x)=—x+ 2 a,,sin +b,,cos

(l )
(45)

in the more general case where it does not possess any
particular symmetry. The first term in the right-hand
side is related to the average spatial variations of ¢(x) and
the summation describes the anharmonicity of the incom-
mensurate modulation. With the help of the identity
+
explizcos®)= 3, i"J,(z

n=—oc0

Jexp(in@) , (46)

a straightforward calculation leads to

peosp(x)=L 3 ()T Iy (@) T (@) d (b)) T (by)
2 (mam’) 1 n my m,
) 1 my+ - +mp+ - +mi+ +m,+
X expi2mx —<T>~ : ! 7 : z +c.c.’ (47a)
and
psin¢(x)—_—£i_ 2 {( )m1+ +m, + ”J,,.l(al)’"‘Imn(a")“"’m;(bl)'"Jm’(b")”'
(m,m’) n
. m+...+m +.‘.m'+... ! “ e
X expi2mx (;) + : ‘ 7 ! it —c.c.|, (47b)

where J,,(x) is the mth-order Bessel function and z(m m’) is @ summation over all the integer values of the m, and m,

coefficients.

Equations (47a), (47b), and (A4) confirm the result of Sec. V A. The first-order scattering spectrum of the modulation
has a ““comb” structure: its components wave vectors g,, are given by Eq. (44), while their intensities are proportional to

Jm =B2(qm)

where B(q) is a structure factor defined in the Appendix
and where the summation must be done on all the m, and
m, integer values, such that

S nimu+m,)=m . (49)

n=1

SO (@) T (@)

) (48)

Let us discuss now the following properties of the spec-
trum.

(1) It is symmetrical with respect to the origin of the
wave vectors, since it is determined by the FT of a real
quantity. Moreover, for each half spectrum the com-
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ponent wave vectors are symmetrically located on both
sides of the main harmonic.

27

iqc—i'“) . (50)
However, when intensities are considered, the half spectra
are not symmetrical. Actually, the various terms compos-
ing the summation of Eq. (48) do not possess the same
symmetry properties with regard to a reverse of sign of
the m; and m; coefficients since these coefficients do not
play analog roles in Eq. (48) (the exponent of the complex
symbol i does not depend on the m;). Hence, the .#,, and
S _,, intensities are different.'?

(i) The spectrum of the incommensurate phases with
(1) =1, always contains a component whose wave vector
is equal to the DDW wave vector. Actually, using Egs.
(30) and (44) with p =1, one obtains

g1 org_ =T =g, . (51)
Iy

(iii) The number of relevant components in the scatter-
ing spectrum depends on the magnitude of the Fourier
coefficients a, and b,. Since J,,(x) increases with x (for
0<x <2 and m >0), the stronger the anharmonicity of
the phase ¢(x); the wider the spectrum of the modulation.

(iv) Because of the finite resolution of scattering experi-
ments or of the intrinsic linewidth of the components, the
spectrum of the modulation will not necessarily appear as
a comb structure. When the resultant linewidth is larger
than .#~!, the comb interval, one will only observe the
envelope of the spectrum. According to the relative inten-
sities of the components, the envelope may display one or
several peaks.

To be more specific on these two last points, we have to
consider the explicit form of the phase of modulation.

C. Examples of spectra

Let us consider, for example, the unlocked phases with
(1) =1, represented Fig. 1. For the sake of simplicity, we
shall make two assumptions on the structure of the soli-
tons and of the supersolitons. First, we assume that ¢(x)
varies linearly around each soliton, as is the case for a
sinusoidal modulation.® This approximation is not good
near the lock-in transition when the discommensurations
are steep. However, from an experimental point of view,
this case does not often occur since the intensity measure-
ments of the satellites generally show that the anharmoni-
city of the modulation is weak. Second, we assume that
the soliton spacing is equal to /, in the areas of the crystal
where the solitons are quasilocked on the DDW and /; in
the supersolitons areas.

Within both approximations, the spatial variations of
the phase of the modulation are represented by a zig-zag
line [dashed line of Fig. 1(b)]. When the origin of the
coordinates is located at the center of a supersoliton, ¢(x)
is an odd function defined by

(52a)
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in the supersoliton area [ —(A/2) <x <(A/2)], and

Mxﬁ:iﬂ+2v%- (52b)

0
in the quasilocked area [(A/2) <x <. —(A/2)], where
L1y

A,:
L=l

(53)

is the width of the supersoliton and the + and — signs
in (52b) are, respectively, related to a delayed or an ad-
vanced supersoliton.

The Fourier coefficients of ¢(x) [see Eq. (30)] defined
in Eq. (45) are

Ll
(N=—,
f—f-lo
2 1 sin(mmA/.L)
=+ — 4
m J_rm I——L mmA/.L (54)
Z
by =0 .

Hence, the wave vectors and the relative intensities of the
components of the spectra related to the unlocked phases
with (/) =~ [, are approximately given by

1 1 m
= —t— —_—, 55
qm =21 7 —~ (55a)
2
I oy 2 J,,,l(al) -J,,,n(a,,)- -+ |, (55b)
mym,
with
i nm,=m , (55¢)

n=1

where the g dependence of the structure factor has been
discarded.

The wave vector of the mth component only depends
on the value of the incommensurate period, while its in-
tensity is only determined by the ratio A/.#. Hence the
spectra related to the same A/.Z ratio are homothetical
with respect to the component located at I5!; to deter-
mine the influence of both parameters on the spectra
shape, one can fix the A value and one observes the .#
dependence.

Typical spectra computed for A=4/, and for various
-Z values are plotted in Fig. 3(a). Their envelope exhibits
two peaks. The first one is located at 27 /I,, the DDW
wave vector. When (/) increases from I, it broadens and
its intensity decreases, while a second peak develops on its
left side which progressively shifts towards the small
wave-vector area. Between the two peaks the envelope ex-
hibits a very weak minimum related to the central com-
ponent at 27 /(l). Spectra with (/)/l,>1.25 have not
been computed since our assumptions on the structure of
the modulation [Egs. (52)] become less valid as a measure
as the soliton spacing increases; in Farticular, commensu-
rate locked phases such as +/y,5/, phases cannot be
described with the help of the supersoliton concept.
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FIG. 3. (a) Calculated Fourier spectra of the modulation ob-
tained for A=4/, and for various values of the average soliton
spacing. They are in good qualitative agreement with the exper-
imental spectra shown on right. (b) Neutron scattering spectra
of Rb,ZnBr, (from Ref. 21).

V. DISCUSSION

Let us discuss now from an experimental point of view
two significant results of the preceding sections.

(i) The existence of plateaus in the temperature depen-
dence of the modulation wave vector.

(ii) The multipeaked shape of the envelope of the modu-
lation spectrum.

In regard to the first point, a lock-in of the modulation
on a DDW has indeed been observed directly or indirectly
in several materials displaying the DDW-induced-memory
effect. Actually, y-ray and x-ray scattering experiments
performed on quartz'® and on Ba,NaNbsO;s,!* after an
annealing inside their incommensurate phase, showed that
the modulation wave vector remains locked on the value
realized at the annealing temperature when the sample
temperature is varied. Typical orders of magnitude of the
temperature width of the plateaus related to the /y locked
phase are 0.2 K for quartz and 20 K for Ba,NaNb;Os.
In thiourea and in 4,BX, compounds, no direct observa-
tions of the lock-in of the modulation on the DDW are
available up to now. However, birefringence' and dielec-
tric susceptibility’’> measurements have been interpreted
by assuming the existence of such lock-ins.

By contrast, the plateaus related to high-order (p/q)l,
locked phases do not seem to have been observed up to
now. Two types of explanations can be given. First, we
saw that the stability range of the pl; locked phases rapid-
ly vanishes when p increases; the width of the plateaus
may become smaller than the temperature resolution of
the experiment. Second, throughout this paper, we were
interested in the thermodynamic ground state of the
model (the absolute minimum of the free energy), while
the experimental studies' 3 of the DDW-induced memory
effect exhibit a thermal hysteresis of a specific type
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demonstrating the metastable character of the investigated
systems. Hence, experimental results correspond to some-
what disordered materials and one may expect to observe
broadened incommensurate satellites which hide the step-
wise temperature dependence of the modulation wave vec-
tor. Hence, the situation with respect to the observation
of a devil’s staircase in DDW marked crystals is similar to
the one in pure incommensurate crystals for which, up to
now, there has been little experimental evidence of pla-
teaus related to a high-order lock-in on the underlying lat-
tice 15—17

Let us discuss now the second result, i.e., the mul-
tipeaked shape of the envelope of the modulation spec-
trum. A splitting of an incommensurate satellite into
several components has been observed in various materi-
als, namely, [N(CH,),],XCl, with X=Zn (Refs. 17 and
18), Fe (Ref. 19) or Co (Ref. 20), Rb,ZnBr, (Ref. 21), and
Ba,NaNbsO;s (Ref. 14). Up to now, no confirmed ex-
planation of this phenomenon has been given. We suggest
that for the two last compounds in which a DDW-
induced memory effect has been reported, such an ap-
parent splitting corresponds in fact to the observation of
the envelope of the Fourier spectrum calculated here
above.

Actually, in Rb,ZnBr,;, M. lizumi and K. Gesi?! ob-
served a splitting of the modulation in the lower stability
range of the incommensurate phase (between —63 and
—87°C). This compound pertains to the 4,BX, family
in which the defects are assumed®?? to interact with the
modulation, giving rise to relaxation and memory effects.
lizumi does not mention any annealing of the sample
preceding the splitting observation, but in Rb,ZnBr, the
period of the modulation does not depend on the tempera-
ture in the upper range of the incommensurate phase be-
tween + 77 and —63°C. Hence, the cooling of a sample
in this temperature range is equivalent to an annealing at
a given temperature; the defects can order in the field of
the modulation with constant wavelength. We claim that
the origin of the satellite splitting observed below —63°C
lies in the effect discussed in this paper when the modula-
tion has to reconcile the wave-vector temperature depen-
dence and the interaction with the frozen DDW. The
neutron diffraction spectra measured by lizumi are plot-
ted in Fig. 3(b). They are in good qualitative and quanti-
tative agreement with the calculated spectra of Fig. 3(a)
between —69 and —79°C when (/) <1.25/,. Beyond this
value, the agreement becomes poorer since the assump-
tions (52a) and (52b) on the spatial variations of the
modulation phase are no longer valid. One has to look for
a more realistic description of the soliton pattern in the
incommensurate phases surrounding the +l, or 2,
locked phases.

Ba,NaNbsO,s constitutes an other example.>!'* After
an annealing in its incommensurate phase (during which
the DDW onsets), J. M. Kiat et al. have observed, on
cooling, first a freezing of the modulation wave vector (in-
terpreted as a locking on the DDW) followed by a split-
ting of the incommensurate modulation into two com-
ponents. The temperature dependence of the scattering
spectra (Fig. 2 of Ref. 14) is qualitatively similar to the
one of Fig. 3(a) of this paper.
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V1. CONCLUSION

In this paper, we have investigated the properties of an
incommensurate modulation subject to two competing po-
tentials with different periodicities: the potential of the
underlying lattice and the potential induced by a frozen
DDW. We used a perturbative model valid when the lat-
tice potential is much stronger than the DDW one. In our
model, the discommensurations of the modulation (soli-
tons) are considered as material objects subject to their
mutual interactions and to the DDW potential.

First, we have shown the equivalence of the model with
the Frenkel-Kontorowa problem. As a consequence, and
in agreement with the model of Aubry® and Fradkin*
et al. on systems with competing periodicities, the soliton
system undergoes, between the normal-incommensurate
transition and the lock-in transition on the lattice, a suc-
cession of transitions between two kinds of periodic
phases either locked or unlocked on the DDW; the tem-
perature dependence of the average soliton spacing is
represented by a devil’s staircase.

Second, the structure, the free energy, and the stability
of the unlocked phases with (/) =~pl, (p integer) have
been determined with the help of the supersoliton concept.
The supersoliton is an intrinsic defect of the soliton pat-
tern which is the analog of a discommensuration for the
atoms of the FKP.

Third, the Fourier spectrum of the modulation has been
computed. Since the soliton spacing is not constant but
modulated, the spectrum has a comb structure whose en-
velope can be adjusted to the type of multisatellite spectra
observed in Rb,ZnBr, (Ref. 20) and in Ba;NaNbsO,s (Ref.
14). We suggest that our model provides the underlying
explanation for these observations, unexplained until now.
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APPENDIX

In this appendix, we show that the amplitude scattered
by the atoms of a displacive incommensurate material in a
diffraction experiment can be approximated by a linear
combination of the order-parameter components when the
atomic displacements are small. Actually, the scattered
amplitude is written as

A(q) < Y byexpligx,, ,) (A1)

’l’p
where x, , and b, are, respectively, the coordinate and the
form factor of the pth atom in the nth cell of the modu-
lated phase. The main contribution to 4 (g) comes for the
atoms whose displacements are proportional to the order-
parameter components. For a two-dimensional order pa-
rameter,

(A2)

where a, is a proportionality constant, &, the relative
phase of the displacements of the pth atoms with respect
to the modulation, and x,‘,’+na the coordinate of the pth
atom of the nth cell in the unmodulated phase. When the
atomic displacements are small, i.e.,

Xnp—(Xp+na)=a,pcos(¢, —4,),

(A3)

and after elimination of the Bragg components, one
derives for the first-order scattered amplitude

gpa, <1,

A(q) < B(q), expligna )(cosy p cosd,, +sinppsing,) ,
(A4)
with
B(glexpiy= Y a,b,expligx])exp(id,) . (A5)
»

Equation (A4) is the expected result.
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