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We propose a general treatment for solving ferrimagnetic chains, made up of two spin sublattices
(s,S), by assuming a Z-Z exchange coupling between nearest neighbors. Exact expressions of the
susceptibility will be derived for s = % spins alternating either with classical moments or with arbi-

trary S quantum spins. In the first case, the dimensionality of the space available to classical spins
will be taken into account for describing the magnetic behavior. New specific effects will be dis-
cussed when the sublattice magnetizations nearly or exactly compensate one another. In particular,
the occurrence of a compensation temperature, corresponding to exact cancellation of the opposite
magnetizations, as in three-dimensional ferrimagnets, will be revealed. This manifestation will be
shown to depend drastically on the spin multiplicities and on the ratio between magnetic moments

2GS/g.

I. INTRODUCTION

Extensive reports on one-dimensional spin systems arise
on the one hand from the large collection of quasi-one-
dimensional materials synthesized in the last few years,
and on the other hand from their ability to be solved ex-
actly in many nontrivial cases. Thus, thermodynamic
functions of interest (specific heat, correlation functions,
magnetization, zero-field susceptibility, etc.) have been de-
rived for regular chains when the exchange interaction in-
volves spin components parallel or normal to a given axis
(Z-Z or X-Y models).!=* Also, large spin systems have
been studied using approximate techniques; for instance,
high-temperature series expansions or the finite-string
method.>~® Although appearing at first glance to be of
purely academic interest, the classical limit (infinite spin)
with isotropic interactions may give some insight into the
behavior of systems which would otherwise be intract-
able.*10

Stimulated by the recent synthesis of new bimetallic
quasi-one-dimensional complexes, MM' (EDTA)-6H,0
(EDTA is ethylenediamine tetra-acetic acid), the structure
of which may be schematized as infinite zig-zag chains of
alternating metals M-M'-M-M'...,'! we have focused
for a time on the general behavior of ferrimagnetic chains
(S1,8;)y described by Heisenberg or Z-Z exchange cou-
pling.‘z_”

Among various results, those concerning the compensa-
tion problem seem to be the most original ones. Consider-
ing, for instance, the fully isotropic quantum chain
(Heisenberg coupling, no local anisotropy), it has been
shown that the magnetic moments g,.S; and g,S, carried
by the two kinds of sites must be unequal for the chain to
exhibit a quasiantiferromagnetic behavior. In the case of
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two alternating (S; =+, S,=1) spins, the ratio g,/g,
must take a value very close to + instead of the expected
value of 2 (Ref. 12). This clearly results from the Heisen-
berg nature of the coupling and must be related to the so-
called zero-motion spin reduction which is relatively more
efficient for smaller spin quantum numbers. However,
this must render us cautious when trying to relate the
behavior of the ferrimagnetic chain to that of convention-
al three-dimensional ferrimagnets.

The present paper deals with ferrimagnetic chains
showing Z-Z exchange coupling, especially from the
viewpoint of the compensation problem that is the condi-
tion for quasi-antiferromagnetic behavior in the low-
temperature limit. In Sec. II we shall establish that
within the conditions which allow for using a transfer-
matrix method,!® it is possible in a number of cases to
reduce to 2 X2 the size of the matrices of interest, thus al-
lowing an easy determination of the largest eigenvalue in
terms of matrix elements. In Sec. III A, we shall consider
a ferrimagnetic chain with a quantum spin % alternating
with a classical one of amplitude S, and a nearest-
neighbor Z-Z interaction. Three different situations will
be examined: (i) where the classical spins are submitted to
an infinite anisotropy which forces them to align along
the z direction, (ii) where the classical spins are subject to
an infinite anisotropy which favors the x-z plane (contain-
ing the coupling axis), and (iii) where the classical spins
are free to rotate in the full space (the finite anisotropy
problem will be considered in a forthcoming paper).
These situations will be characterized by the dimensionali-
ty d=1, 2, or 3 of the space available to the classical
spins. In each case, we shall give expressions for the
zero-field susceptibilities X' along the principal direc-
tions. They will be used for discussing the very-low-
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temperature behavior and the conditions for the diver-
gence of the X\¥T product at absolute zero (Secs. III B
and IIIC). Also, the one-dimensional behavior of the so-
called compensation point, which is observed in a variety
of three-dimensional ferrimagnets, will be described (Sec.
III D). Section IV will be devoted to the study of another
kind of ferrimagnetic chain. The classical vectors of am-
plitude S will be replaced by quantum spins with spin
quantum number S. They will be subject to no local an-
isotropy, and will be coupled to the neighboring + quan-
tum spins by the same Z-Z interaction as in the preceding
section. General expressions for the zero-field susceptibil-
ity along the coupling axis will be given. Furthermore, it
will be shown that the 3- and infinite-S cases coincide
with the d =1 and d =3 problems of Sec. III, thus pro-
viding us with two distinct paths between these extreme
systems characterized by quite different behaviors.

II. GENERAL CONSIDERATIONS

Let us consider a finite-length ferrimagnetic chain
(S0,51,81,52 * ** Sy _1,58,Sy) With spin quantum num-
bers S,s,S ..., respectively. Assuming nearest-neighbor
exchange coupling only, we can write the Hamiltonian for
the whole chain:

N
i=0

with
H;=H!"(S;_,,8;)+H¥(s;)+ H3s;,8;)+ H*(S;) . ()

The contributions H{? and H/* are single-spin energy
terms, involving local anisotropy as well as magnetostatic
coupling. The terms H{" and H/» deal with the ex-
change part of the energy. The condition for the
transfer-matrix method to operate in the present problem
is that all the commutators [H;,H;] vanish. This reduces
to the conditions

[H(s;,8:)+H{*(S,),H{ Y\ (S;,8; 41)]=0 . &)

One can set a variety of situations for which these con-
ditions are verified. The main two ones are (i) where the
exchange coupling and the single-ion Hamiltonian H*
involve the same unique component of the vector operator
S; (say, S7, with Z-Z exchange coupling, Z-uniaxial an-
isotropy, and the external magnetic field B applied along
2), and (ii) where the spin quantum number S is large
enough for [S7,S7] to be negligible compared to S7S}
(classical spin approximation). When the condition (3) is
fulfilled the partition function Zy for the 2N +1 spin
chain may be written

N
I1 exp(—BH;)

i=0

Zy=Tr , B=1/kT . 4)

Let us now introduce a function U(S;) as an operator
whose eigenvalues u,u,,...,u,,... are nondegenerate
and exhibit a symmetrical distribution characterized by
the even function p(u). It is then possible to replace any
summation over a complete basis describing the states of
S; by an integration:
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3= [dupw)--- . 5

§;

Now, the trace (4) may be computed by first summing
over the quantum states of the spins s;. This leads to the
quantities

¢i(u; _,u;)=3 (o;|exp(—BH;) | 0;) . (6)

1

Suppose now that this function may be expressed as a
bilinear expression in terms of even and odd functions of
its arguments:

$ilwi_pu)=3 3 K'wi_)Litw), D

g=*1n,=%1

where the values + 1 and —1 of the superscripts mean
even and odd, respectively. It is then straightforward to
show that the effective partition function for a pair insert-
ed in the infinite chain is merely the largest (essentially
positive) eigenvalue of the matrix

Fai Fn_,
@)= gt o1, ®)
where
Fee= [ dupu)Lf (K i(u) . 9

Since the eigenvalue problem for 2X2 matrices is
solved exactly, the decomposition (7) allows us to obtain
analytical expressions for the partition function and the
correlated thermodynamic properties. The general formu-
lation may now be applied to the derivation of magnetic
properties of various ferrimagnetic chains with Z-Z
nearest-neighbor exchange coupling.

III. QUANTUM-CLASSICAL (%-S )y CHAIN
WITH Z-Z INTERACTION

A. Spin Hamiltonian

In this section, the spins s; stand for + quantum spin
operators. As for the spins S;, we shall consider them as
classical vectors with amplitude S. Furthermore, we as-
sume a Z-Z nearest-neighbor coupling with exchange
constant J. Thus,

H{V=—JSf_isf, H{¥=—JsiS}. (10)

Clearly, the most interesting behavior is expected for an
antiferromagnetic coupling between nearest neighbors, as
is currently observed in three-dimensional ferrimagnets.
Thus, the exchange parameter J will henceforth be re-
stricted to strictly negative values. Moreover, the classical
spins will be subject to various conditions. Namely, we
shall consider three cases: (i) where they are constrained
to lie along the z axis (exchange coupling axis) (ii) where
they are restricted to lie within the x-y plane, and (iii)
where they are free to orient themselves along any direc-
tion of their space. These situations will be designated by
the dimension d =1, 2, or 3 of the available space. Let us
now designate by B the amplitude of the magnetic field
applied to the chain, and by g and G the Landé factors
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for the s; and S; spins, respectively. We shall use the fol-
lowing notation:

a=—PBJS, b=PguzB/2,
u;=S?/S, r=2GS/g ,

(11)

where up is the Bohr magneton and r represents the ratio
of the magnetic moments carried by the two kinds of
spins. The operator U(S;) has been chosen to be S7/S.
In the present case its eigenvalues are distributed among
the interval (—1, + 1) with a distribution function reflect-
ing the dimensionality of the available space. Specifically,
d=1:

plu)=5[8(u +1)+8(u—1], (12)
d=2:
_1 g 2y-172
p(u)—ﬂ_(l u*) , (13)
d=3:
plu)=7 . (14)

&(x —a) is the so-called Dirac distribution centered at a.

The detailed calculation of the partition function now
depends on the direction of the magnetic field B. We
shall consider successively the cases where B is applied
along 2, and normal to 2. The corresponding susceptibili-
ties for vanishing B will be noted X'?' in the first case and
X@ or X\ in the second one. The superscript (d) refers
to the dimensionality of the space available to the classical
spin vectors.

B. Applied magnetic field along 2
The influence of the external field is expressed by
H¥=—gupsiB, H¥=—GugSu,B . (15)

Inserting (10) and (15) into (6) and summing over
sf=++, we get

o;(u; _1,u;)=2exp(rbu;)cosh [b—%(u,_ﬁ—ui) (16)

Xy
3 b
r
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FIG. 1. Magnetic behavior of the quantum-classical (%-S v

chain for some significant values of r =2GS/g; the dimen-
sionality of the classical spin sublattice is assumed to be d =1.
The susceptibility is plotted in reduced units (see text).
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FIG. 2. Magnetic behavior of the quantum-classical (3-S)y

chain for d =2 and some significant values of r. The curve cor-
responding to the compensation value r =1 is shown by the
dashed line.

This expression clearly obeys the condition (7), and after a
little algebra, we obtain

Ft} =2(J coshb +J;sinhb) , (17)
F}| =2(J;3coshb + J,sinhb) , (18)
F*!, =2(J3coshb +J;sinhb) , (19)
F-!) =2(J,coshb +J;sinhb) , (20)
with
+1 2
Ji= f»l du p(u)cosh“(au)cosh(rbu) , 21
1
Jo= [ du plusinhX(au)cosh(rbu) , (22)

Jy= [ du plu)cosh(au)sinh(au)sinh(rbu) ,  (23)

with p depending on d [see (12) to (14)].

J1,J2,J3 may be given analytical expressions in terms
of modified Bessel functions of the first kind. Then, the
effective partition function and the derivatives of interest
may be determined. The main results are given in Table I
and illustrated by the curves of Figs. 1 to 3. These figures
actually show the thermal variation of the quantity X'4'T,
defined as the product X.¥T normalized to unity in the
high-temperature range [the normalizing factor is
kg/(gup)*(1+r2/d)] whatever r and d may be, thus al-
lowing an easy comparison of the various situations. It
appears immediately that the most interesting features are

o

o 0.5 ! 1.5 kgT/IS

FIG. 3. Magnetic behavior of the quantum-classical (%-S’)N
chain for d =3 and some significant values of r.
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TABLE 1. Expressions for the susceptibility of quantum-classical (%-S )y chains for various situa-
tions of local anisotropy on classical spins. The I’s are modified Bessel functions of the first kind with
argument a. We put 8=d/2—1 and A4 =(7/2)%a =3, with a = — BJS.

2
. 8is r (d —DAgls12+d (Aglsir )
Arbit d XP=p|=—=| |— —2rAgl Agl
rbitrary X'=B 2 d 1+ Agl; rAgls 1 +Auls
2
2
li —1y(d) 8z 1 r
;_IE)B X: 5 +7
2
d=1 x\'=p ﬁ;_a_ (r’cosha — 2r sinha + cosha)
2
gHs 1+Io+1,+21%
d=2 2= 2 —2rl+1,
A173 21410 rho
2
3 8lsp 2 3a(a*+2)sinha —6a(a +sinha)cosha 4 3(a*+ 1)sinh’a +a*(a*+3)
d=3 X'=B|=—7 | |r 3 -
2 3a°(a +sinha)

o acosha —sinha " sinha

a

a

to be expected for 7 values not too far from unity.

At very high temperature, the magnetic moments
behave nearly independently and the product X9T is
merely the sum of the Curie constants on both kinds of
sites. As the temperature is lowered the nearest-neighbor
correlation increases. Due to the antiferromagnetic nature
of the coupling this results in an effective reduction of the
magnetic moment to be attributed to a pair of neighboring
spins. Meanwhile, the correlation length & increases. For
r values significantly far from unity, the moment reduc-
tion is relatively weak, the increase of £ dominates, and
X9T increases uniformly as T is lowered. If r is closer to
unity, the relative moment reduction is more drastic and
at first dominates; we thus observe a decrease of X\¥'T
which passes through a minimum and diverges in the
very-low-temperature limit except, eventually, when r
strictly equals unity. As can be seen for the r =1 curves
of Figs. 1 to 3, the very-low-temperature behavior of the
susceptibility depends strongly on the dimensionality of
the space available to the classical spins when dealing
with compensated sublattices. This can be understood by
the analysis of the correlation length. Let us define the
mean amplitude .# of the magnetic moment one can at-
tribute to a pair of sites (magnetic cell). So far as we are
concerned with the magnetic susceptibility, we can ap-
proximate the chain as an assembly of independent
quasirigid blocks, each one with length £ thus carrying a
magnetic moment .#&/a (a being the magnetic cell pa-
rameter). The magnetic susceptibility related to a unit cell
appears then to be given by

XD =Aptn?, (24)

where A is a temperature-independent factor. For r dif-
ferent from unity, clearly .# reaches a finite value at ab-
solute zero and X #'T diverges like £&. For r =1, we must
look more carefully at the exact behavior of £ and .#. It

is easily shown (see Appendix A) that £ diverges accord-
ing to

£~ 2exp(—BIS) . (25)

As for the magnetic moment being attributed to the mag-
netic cell, we have for r =1

M=gug(|sf—Si/28 |), (26)

where | - -+ | refers to the absolute value and { - - - ) to
the thermodynamical mean value. For d =2 and d =3,
the energy-level spectrum for the classical spins is con-
tinuous, whereas it is discrete for the quantum ones. Near
absolute zero we are allowed to neglect the fluctuations of
sf compared to those of S7, and we may write

M=5gup{1—-2s7S?/S) . 27

# thus appears to be proportional to that part of the ex-
change energy E; which vanishes at absolute zero, and is
easily deduced from the zero-field partition function

Aalsyy

Ml — ot
1+ A4l

(28)

(for the meanings of 8, Ay, and 1, see Table I), which is
simply proportional to T near absolute zero. Finally, we
obtain

XD ~p—d=32exp(—BIS) (d=2,3), (29)

in complete agreement with the exact expressions of Table
I. For d =1, the classical spins exhibit a discrete-level
spectrum, and .# now vanishes exponentially:

M ~exp(BJS) . (30)

Due to this much more drastic decrease, the X."'T product
appears now to vanish at absolute zero,
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XV T ~exp(BJS) . 31

This discussion clearly indicates that the low-temperature
behavior of the susceptibility X\ results from a sharp
competition between long-range correlations, tending to
increase the number of magnetic cells which move almost
as a whole, and short-range correlations, which tend to
reduce the magnetic moment on each cell. Owing to the
detailed circumstances one observes various behaviors as
described in the present section. Further examples will be
given in the next one.

C. Applied magnetic field normal to 2

We now consider the susceptibilities X'# and vad) corre-
sponding to a vanishing field applied along % or §. Since
the related spin components are not coupled by the ex-
change Hamiltonian, these susceptibilities can be ex-
pressed as

XD =X+ w=x9) 2

where X L‘f,} and X i,dc) characterize the response to an exter-
nal field applied along ¥ of a unique quantum or classical
(r =1) spin, inserted into the chain. The derivation of
these expressions is given in Appendices B and C, with
some extra details in Appendix D. The results are gath-
ered in Table II and illustrated by the normalized curves
of Fig. 4. Some features exhibited by these curves may
need some short comments. As expected, the classical
contribution (dashed line) vanishes for d =1, while for
d =2 and d =3, it decreases linearly at very low tempera-
tures from the initial value X'J =1. This results from
the linear decrease which initially affects the mean-square
Z component of the classical moments (and their moduli)
as a consequence of the continuous character of the distri-
bution p(v). This effect is twice as effective for d =3 as
for d =2; as a direct consequence, the exchange field on
the quantum spins decreases linearly. Since, in this tem-
perature range, these align almost perfectly along the local

X8

° 0.5 1 keT/UNIS

FIG. 4. Thermal variations of the normal susceptibilities
(field applied along R} or ) of the quantum (solid lines) and
classical (dashed lines) sublattices for d =1, 2, and 3. We em-
phasize that X{!\J vanishes at all temperatures.

field, this decrease is the leading effect and the quantum
contribution to the susceptibility increases (twice as fast
for d =3 as for d =2). No such effect is to be expected
for d=1. The upward departure from the initial
behavior occurs at higher temperature because the quan-
tum spins, in their turn, no longer align along the local
field. The maxima and the decrease observed at inter-
mediate and high temperatures are trivial features.

D. Compensation point

We come now to the question whether a “compensation
point” may be expected in some one-dimensional ferri-
magnets. In the three-dimensional case the exact cancella-
tion, at ©,, of the opposite sublattice magnetizations
occurs because of their quite different thermal variations.
For instance, in some rare-earth garnets, the transition-
metal ions occupy the sublattice 4 and the rare-earth ones
the sublattice B, with a strong (positive) n,, molecular
field coefficient, whereas n g is weaker and negative and
ngp may be neglected. As the garnet is cooled down, the

TABLE II. Expressions for the normal susceptibility of quantum-classical (%-S )~ chains for various
situations of local anisotropy on classical spins. 8, I,, and A, are defined in Table I.

X=X +rx (v=x,y)

v
2J4(b=0)—~+ a; +%
d) _ g | BH8 a° |p_o _
Xve=B ) 7.6 =0) (v =x,y)
2

Xidp=Xp =B | £E2- | (1176 =0)

N i atl | 1 (n+8-7) Rg,n
‘2 dn=02n+l Vi nln+8n +28) ' 2¥7(2n)

4 n
R_ipa=n+1, Ro,=m, R1/2,n=m,§0(21+1)—]
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transition-metal ions first order ferromagnetically, weakly
polarizing the rare-earth sublattice. As the temperature
decreases again, the rare-earth magnetization increases up
to saturation in the opposite direction to the transition-
metal sublattice. Exact compensation occurs at an inter-
mediate temperature if the B sublattice carries a larger
moment than does the 4 one.

With the present picture of a ferrimagnetic chain, no
long-range order has to be expected. Moreover, one can-
not easily imagine an intrasublattice (next-nearest-
neighbor) exchange coupling that would significantly
dominate the intersublattice (nearest-neighbor) one. How-
ever, the curves of Fig. 5, drawn for d =3 and r values
slightlj larger than unity, reveal an unexpected behavior
for X.¥'T. On heating from absolute zero, instead of regu-
larly decreasing down to the ordinary minimum, the prod-
uct X‘,”T exhibits, at an intermediate temperature, an ex-
tra minimum which is surprisingly close to zero. A simi-
lar behavior is observed under the same conditions for
d =2. The reason for that behavior is that, because of the
continuous character, already mentioned, of their energy-
level spectrum, the magnetic moments carried by the clas-
sical spins align less efficiently than the quantum ones
along the exchange field. Since for r larger than unity
they reach a larger value, there is an exact cancellation
temperature at which .# vanishes. The different thermal
behavior which can result from the difference between
n 44 and ngp in the garnets is, in the present case, a conse-
quence of the difference between H?>' and H{*, the
single-site parts of the Hamiltonian, that involve the na-
ture of the spins and the local anisotropy. The suscepti-
bility cannot exactly vanish at the minimum, because at
finite temperature there is always some amount of fluc-
tuation on the components s7 and S7. The conditions for
such a behavior to be observed are, thus, (i) that the com-
peting magnetic moments cancel one another (i, r>1)
and (i) that this cancellation occurs at a temperature at
which the spin component fluctuations are negligible and
the correlation length & very large. This necessitates that
r be slightly larger than unity. It is worth noticing that
these conditions, which seem to be necessary for the oc-
currence of a compensation point in the one-dimensional
ferrimagnet, should extend to the two- and three-

o] 0.1 0.2 0.‘3 0.4 kgT/UIS

FIG. 5. Magnetic behavior of the quantum-classical (%-S)N

chain for d =3 and r slightly larger than unity, showing com-
pensation phenomena.

dimensional systems. From a practical point of view such
a behavior might be expected whenever a unique cation
occupies two sites exhibiting different orbital contribu-
tions to the magnetic moments and strongly different
alignment tendencies along the local exchange field.

IV. FERRIMAGNETIC (%,S )y QUANTUM
CHAIN WITH Z-Z INTERACTION

We consider a ferrimagnetic chain (S,s,,S,, . . .s5,Sx)
as described in Sec. II but, contrary to Sec. III, we assume
now that S; refers to a quantum spin operator defined by
S. Because of this modification, it is no longer possible to
get exact expressions for the susceptibilities in vanishing
fields applied normally to the coupling z axis. Thus, we
shall only be concerned with the so-called parallel suscep-
tibility which we shall designate by X.%), where the super-
script refers to the quantum number of S; spins. The area
examined in the present section is twice that of the previ-
ous ones. The infinite-S limit exactly coincides with the
d =3 case previously encountered. Furthermore, at least
from the parallel susceptibility point of view, the S =+
problem is strictly equivalent to the d =1 case. Thus, one
expects a drastic change in the low-temperature behavior
of the product XISIT as S decreases from infinity down to
+. And since it cannot occur in a continuous way, one
has to point out the turning conditions.

Clearly, the considerations of Sec. II and Appendix A
do prevalil, since only s7 and S} operators are involved in
the chain Hamiltonian. Moreover, all the relations (10) to
(23) remain formally valid except for the distribution
function p(u) which takes the general form

S
plw)=2S+1)"" 3 8u—0a/S). 33)

o=-S

The calculations are straightforward and we easily get

XS1=p(y, +r’Y,), (34)
where
Yi= ouh ey

2

X 1+§ cosh(Pa/Z)—%coth(Qaﬂ) , (35)
Y,={1+4[Qsinh(Pa/2)]/[Psinh(Qa /2)]} "', (36)
and

P=1/2S, Q=(25+1)/2S . (37)

Clearly Y, vanishes at absolute zero for any nonvanishing
S. A necessary condition for X!5! not to diverge is thus
that Y, vanishes too, that merely implies » =1, which is
nothing but the ordinary condition for the magnetic-
moment equality. Now the question arises whether this
conditions is a sufficient one. A detailed examination of
expression (35) shows that X!5) behaves according to the
law

XSl ~Bexp[ —BJ(S —2)] (38)
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FIG. 6. Magnetic behavior of the ferrimagnetic chain

(+—3)y for some significant values of r.

in the low-temperature range. As a result, the product
XLSIT diverges for S greater than 2, in agreement with the
d =3-type behavior expected for large S. Conversely, this
product vanishes for S smaller than 2, in agreement with
the d =1 behavior, while for the turning value S =2 it ex-
hibits a finite limit. The curves of Figs. 6, 7, and 8 illus-
trate these behaviors for S =%, 2, and % We have re-
ported the thermal variation of the quantity X!S1T defined
as the product X!SIT normalized to unity in the high-
temperature range; the normalizing factor is in this case

kg/(gug)[1+r3S(S+1)/3].

As in Sec. III B one can discuss the » =1 case in terms
of correlation length £ and magnetic moment per magnet-
ic cell, which are easily shown to vary like exp(—BJS)
and exp(+pJ) in the very-low-temperature limit, thus
leading, after (24), to expression (38).

Furthermore, the curves of Fig. 9 drawn for S =3 and
r slightly larger than unity clearly show the existence of a
compensation point. This is a consequence of the avail-
able energy-level density which is larger for spin 5 than
for spin . When T decreases, the former saturates more
slowly than the latter, thus leading to the possibility of ex-
act cancelling if the moment they carry is the largest one.

V. CONCLUSION

In the present paper we have set a general formulation
for solving in an easy way the statistical problem of a

7o 0.5 1 1.5 kgT/11

FIG. 7. Magnetic behavior of the ferrimagnetic chain
(+—2)y for some significant values of r.

o] 0.5 1 1.5 keT/1J1

FIG. 8.
(+—3)y for some significant values of r.

Magnetic behavior of the ferrimagnetic chain

large class of one-dimensional ferrimagnets. The transfer
matrices are built up a priori in their diagonal form,
which makes it easier to study a large variety of problems.
Besides those which are investigated in this paper we be-
lieve that, for instance, the question of random cou-
pling!®!'7 should be an interesting field of application for
this method. We have derived exact expressions for the
principal magnetic susceptibilities for a Z-Z coupled
chain showing classical spin vectors alternating with
s =7 quantum ones. The case where the classical spins
are replaced by quantum operators with arbitrary spin
quantum number S has also been treated from the parallel
susceptibility point of view. The very-low-temperature
behavior of the principal susceptibilities has been dis-
cussed in some detail. In particular, it has been shown
that new specific effects have to be expected whenever the
sublattice magnetizations nearly or exactly compensate
one another. However, their detailed manifestations
should strongly depend on the nature of the spins and on
the local anisotropies. We believe that such predictions
should induce experimental works on nearly compensated
one-dimensional ferrimagnets, elaborated for instance by
introducing the same magnetic cation into two signifi-
cantly different host sites arranged to constitute an alter-
nating chain.

&
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\\\
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0.0
o] o.1 0.3 0.4 KkaT/NIS
FIG. 9. Magnetic behavior of the ferrimagnetic chain

(—;———;—)N for values of r equal to or slightly larger than unity.

Curve a: r =1, curve b: r =1.0002, curve ¢: r =1.0005, curve

d: r=1.001, and curve e: r =1.002.



6250 J. CURELY, R. GEORGES, AND M. DRILLON 33

APPENDIX A

Because of the nature of the Hamiltonians H{" and
H/? for the ferrimagnetic chains studied in Secs. III and
IV, and whenever no external field is applied, ¢;(u; _,u;)
remains unchanged when one modifies simultaneously the
signs of u; _; and u;. Thus, ¢; reduces to

ai(ui—laui)z 2 Kf(“i—l)Lifs(“i) (A1)
e=*1
and (€;) to
_ FtY o4 0
(€)= 0 Fx—l » (A2)

When the chain exhibits a translational invariance, all the
matrices are similar, and the i indices may be dropped.
Now, we introduce the field V,, coupled to u,, only. The
extra term — ¥V, u,, adds to H, 9)(8,,) and, to first order in
BV, & becomes

$m(um—1»um )=¢(tp _1yUpm)

+BVm S K Sty )L Kutyy) (A3)
€
Hence, (€ +1) is changed from (%) to
_ 0 St
(B mi1)=(B)+BVp, ISR E (A4)
with
c¢= [ dupluluL {uwK ~<u) . (AS)

Let us now assume that similarly a field ¥V, (n >m) acts

upon u,,. We have, after (22),
Q=N " UG NEV ™ UL e NEI"IQy
(A6)
which for n, m, N, and N —n tending to infinity gives
Zy Vi, V) =(14pve"~™~1)Zx(0,0) , (A7
where
£ f+1 FZ|
p=BVn F'”’ v=RV, F'H’ ¢= Fi{ . (A8)
We thus obtain immediately the correlation
Ctipttn) =B | =
=Bt | ——ZyV,
umun B anaVn ZN( m,Vn) ym=Vn=0’ (Ag)
that is,
(F11)?
(Uptty Y= —— "™~ (A10)
SR a7 s
If we define the correlation length £ by
+
2 pz(unun+p>
F=t=== , (A11)
S (uptpyp)
pP=—

we obtain, in the low-temperature limit,

E=V2(1—@)7!. (A12)

APPENDIX B

We start again with a ferrimagnetic chain showing
translational symmetry and no external field. Now, we
introduce B acting on the v component (v =x,y) of S,,

only. This merely changes @p(Upm_y,uy,) from
Om(Up _1,Upm) tO

B (thm — 15t )= Bt 1, e Y1t (B1)
where

Y(u,,)= fdvp'(v,u,,, Jexp(—BGupSvB) . (B2)

In these expressions p'(v,u) is the distribution of the v
component of S, /S when S7 /S is fixed at u. For small
enough applied field, this reduces to

(i) =1+(BGuSB)w? (B3)

where v? is the mean value of v? with the distribution

p'(v,u,,). This vanishes for d =1; for d =2, this vanishes
too if B is along ¥, and is simply 1—u}, if B is along %.
For d =3, this is (1—u2)/2 whatever the direction of B
normal to 2. We thus have

(@

Wupy,)= 1—u2), (B4)

with k/¥=0,1,2 depending on the situation under con-
sideration. Since this is an even function of u,,, it only
affects Lf}, and L;fL,. As a result, the largest eigen-
value of (€, ;1) and finally the partition function as a
whole are merely multiplied by the factor

[ dup(wL THK * (wplu)

= (BS)
f du p(u)L 1 (u)K *'(u)
Thus, we get simply
1 |d%nX
X = — , Bé6
e Br? | aB* |;_, (BO)
that is,

J dupw) (1 —uL K 1)

X(d)zﬁkéd)(G S)Z
we He T du plu)L THK + i)

(B7)

These quantities have analytical expressions in terms of
Bessel functions, as given in Table II.

APPENDIX C

Let now the field B act on the v component of s,
(v=x,y). The function ¢,,(u,, _,,u,) is now changed
from @, (tp, _1,Up) tO

Gt _1,tpn)=Trlexp( —B(Hp —gupBsu )], (C1)

where the trace is over the states of s,,. Computing it on
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the basis of the eigenstates of s,, submitted to the effec-
tive (exchange plus external) field we get

$m(um——l1um )=¢(um—1’um)

B (gug)* sinh[a/2(uy _1+uy)]
2 |JI[S Upm 1+ Um '

(C2)

Clearly, this expression does not fit the standard form
(9). However, this is not a major difficulty since only one
site is actually affected. Developing the extra part of ¢,,
into a power series of (u,, _{+u,,), we get terms which all
fit the standard form and enter the general frameworks
described in Appendices A and B. Moreover, due to the
parity of the development the various terms are either
even, or odd, with respect to u,, _; and u,,, simultaneous-
ly. As a result, only the diagonal terms of (¥ ,,_,) are
changed, whereas the off-diagonal one remains equal to
zero. Since only the even contributions both affect the
largest eigenvalue and contribute to the integral of in-
terest,

-1

Ji= fdu dvp(u)p(v) cosh

a
2(u +v) 2

X cosh sinh

2(u +v)] (C3)

it is readily shown that the contribution of the extra part
of ¢ to the partition function results in the simple factor

Y=1+1Bgup)JJi? (C4)
(J is defined in the text). As a result, we get immediate-
ly,
2
X=Xyl =5 |52 | 17 (C5)

Unfortunately, J, may not be given a simple expression in
terms of S, J, T, and d. In Appendix D we derive practi-
cal series expansions for this quantity.

APPENDIX D

In order to evaluate the quantity J, we introduce the
function

K(u,v)= f_:lp(t)cosh[(u +v)t]+cosh[(u —v)t}dt .

(D1)
Then we have
2
1 a/2 a
Jo=+—=— 2, :
4+2af0 K|\Sw||a (D2)

The integral K (u,v) is easily calculated using the expres-
sions for p(u) given in Sec. II. We obtain

Ia(u +v)
(u +v)®

Is(u —v)
)5

K (u,v)=abA, , (D3)

(u —v

with 8 and A, given in Table I. Then J,; may be written

J4=~1—a5Ad(S1 +25,),

2 (D4)
where
a2 | I3[(@a/2)+v] I3[(a/2)—v]
S, = , (DS)
’ fo [a/2)+v]®  [(a/2)—v]®
a2 | Is[(a/2)+v)lg[(a/2)—v
o= [ ol ia[ 8] (D6)
[(@a/2)+v]°[(a/2)—v]
Using the series expansion'®
& (21 +28)x /2)2 " +®
n§0 (n+8)nl(n +286) b7
and the relation
y=m—"2Yp1p — 1), (D8)
we get immediately
n+5__'.)| 2n+1
=712 2 . (D9)
(2n +1)n!(n +8)(n +26)!

The integral S, may be evaluated using the series expan-
sion of the Bessel functions:

e, (x/2)0+2n
D rrar vy

I = . D10
o= 2 " o (D10
We get
© © 2—2(m+n+8)S
S,= , D11
2 "§0m2_'0 nli(n +8)!ml(m +8)' ( :
with
a2 2m 2n
1 a a
SanT fO 3+v E-—U
2n 2m
a a
+ > +v 5~V dv. (D12)

Now, from the properties of the beta function we can
deduce'®

Yk—1 gyl - gy k=D =1
Jy i ta—n =S (D13)
and
_ 1 2miam1_ (2m)IQ2n)
Spm =74 (m +2n + 1)1 (D14)

Finally, S, is expressed as

S,=m"12-1-2 2 —‘fiRsN, N=n+m,
~ 2N +1) %
(D15)
where Rj y is the result of the finite summation
Ry e N (n—3)NN—n—3) D16
2 (n 48N —n +8)!

Considering the  values of interest, we have
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R_ipn=n+1, (D17)
Rop=m, (D18)
Ripn= 4 é I+, (D19)
n+1 /5
Finally, for d =1, we have simply
J4=(8a)~![sinh(2a) + 2sinha 4 2acosha +2a],  (D20)

and in the other cases,

1
J4=L05Ad = a¥tl ), (n+8—7)
2a meo 2n +1 nl(n +8)!(n +28)!
4 Ron (D21)
287(2n) |’

with R; , given by (D18) and (D19).
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