Reply to "Comment on 'Critical relaxation of the one-dimensional Blume-Emery-Griffiths model' "

Yaakov Achiam*

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

(Received 20 June 1985)

A previous value of the dynamic exponent z, which characterizes the critical relaxation of the one-dimensional Blume-Emery-Griffiths model, was found by Weir and Kosterlitz to be incorrect. The correct value, z=2, is found with use of a renormalization-group transformation in a different parameter space. In this parameter space, which is coupled to the three components of the S=1 spin, the master equation is invariant under an exact renormalization-group transformation.

Weir and Kosterlitz found an error in Equation (3.10) of my paper. That equation describes the transformation of the σ variable at the tricritical point. They concluded that the parameter space in which the renormalization group transformation was performed is not a complete one. Hence, they speculated that z_c should be 2, as in the Potts model, and that Equation (4.3) should be omitted. I would like to point out that indeed $z_c = 2$, that the parameter space is a complete one, and that this result is an exact one and can be obtained from the calculations in the paper.¹

We pointed out in the paper¹ that although (μ, σ) has four possible values, only three of them correspond to the physical model. The (μ, σ) space is reduced to the physical one by using a projection operator, $(\mu, \frac{1}{2}(1+\mu)\sigma) \equiv (\mu, \overline{\sigma})$. Equation (2.5) (Ref. 1) is already written in the projected space. A short calculation reveals that σ and $\mu\sigma$ have the same scaling behavior. Thus, the rest of the calculation is applied to the (μ, σ) as well as to the projected $(\mu, \overline{\sigma})$ space. The only difference is at point *C*. Starting with $\Phi = 1 + h\sigma$ one obtains after the renormalization group transformation $\Phi' = 1 + h'(1 + \mu)\sigma$. That shows that σ is not an eigenvector of the renormalization group transformation. However, in the projected space, $\overline{\Phi} = 1 + h\overline{\sigma}$ is transformed into $\overline{\Phi}' = 1 + \lambda h(1 + \mu)\overline{\sigma}$, where $\lambda = \frac{1}{2}$. This exact result is consistent with the general behavior of systems with $T_c = 0$, in which the magnetization scales as the dimensionality.² Equation (3.18) describes the scaling of the right-hand side in both spaces. It shows that $h\sigma$ as well as $h\overline{\sigma}$ have the same scale factor, $\frac{1}{2}$ [the third line of (3.18)], which leads to $(\omega_{\overline{\sigma}})^c = \frac{1}{2}$ [the value 1 in Equation (3.19) is a misprint]. These values of λ^c and ω^c which correspond to the eigenvector $\overline{\sigma}$ lead to $z^c=2$.

This result is an exact one. It agrees with the ϵ expansion. It exhibits the same slowing down as other onedimensional Ising models. Similar to the dynamic behavior near the critical points of the Blume-Emery-Griffiths model, the tricritical point has another faster time scale for the other degree of freedom.

- *Present address: Nuclear Research Centre-Negev, P.O. Box 9001, 84190 Beer-Sheva, Israel.
- ¹Y. Achiam, Phys. Rev. B 31, 260 (1985).

²B. Nienhuis and M. Nauenberg, Phys. Rev. Lett. **35**, 477 (1975); A. N. Berker and M. E. Fisher, Phys. Rev. B **26**, 2507 (1982).