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Hyperscaling, dimensional reduction, and the random-field Ising model
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We show that the hyperscaling law is modified whenever the relevant fixed point of the
renormalization-group transformation is at zero temperature (infinite coupling). Instead of
2 —a =1v, the hyperscaling law now reads 2 —o; =d'v where d' is the anomalous dimension which
is equal to 1—

~ y ~

and y is the exponent for the leading irrelevant operator that flows to zero tem-
perature. We discuss the random-field Ising model in detail. We also perform a numerical
domain-wall renormalization-group analysis for the d =3 model. For a Gaussian random-field dis-
tribution, our results are consistent with a second-order transition at low temperatures, and

~ y ~

is
found to be 1.3—1.7. For a +h distribution, the transition appears to be first order at T =O.

The concept of dimensional reduction originates from
the study of the random-field spin model. Written expli-
citly, the model of interest is a Ginzburg-Landau model
with a random field, '

4 =J —(VP) +—P + P+h(x—)P(x) dx . (1)
2 2 4f

In a paper by Aharony, Imry, and Ma, ' it was shown that,
to all orders in perturbation theory, the exponents of the
1-dimensional random-field model are equivalent to those
of the d —2 dimensional pure model (no random field).
In particular, the hyperscaling relation is modified from
2 —tz=dv to 2 —a=(d —2)v. In other words, the effec-
tive dimension is d =d —2. Later, Parisi and Sourlas
showed that this reduction is due to a hidden supersym-
metry. However, later studies suggest other variations.
Schwartzs showed that d'=d —2+ri(d'), which was orig-
inally suggested by Aharony et al. Shapir suggested, for
the short-time behavior,

d —1/v' for a'&0,
(d+1/v')/2 for a'(0, (2)

where v'=v(d'), a'=ex(d'). His long-time results agree
with those of Schwartz. Some other studies of the model
can be found in Refs. 5—13 and experimental studies are
in Refs. 14—17.

In the studies of the random-field model, the term "di-
mensional reduction" means that the critical exponents of
the random-field model are equal to those of the pure
model at a lower spatial dimension. Suppose that there is
a dimensional reduction of y; then the d-dimensional
random-field model has the same critical exponents as the
(d —y)-dimensional pure model. We know that, for this
pure model, the hyperscaling law is 2 —a = (d —y)v.
Therefore, the same relation must hold for the random-
field model. This means that the hyperscaling law for the
random-field model is modified. Dimensional reduction
implies modification of the hyperscaling law. However,
modification of the hyperscaling law does not necessarily
imply dimensional reduction. In this paper, we discuss

A = g JS;SJ.+g(H+H;)S;,
&ij &

(3)

where J is the nearest-neighbor coupling, H is a uniform
magnetic field, and H; is a random magnetic field distri-
buted according to a Gaussian having zero mean and stan-
dard deviation H, . %e write

modification of the hyperscaling law in terms of the
renormalization-group (RG) formalism. We found that
the hyperscaling law is modified if the RG fixed point
that controls the critical behavior is at zero temperature
(infinite coupling). There is an anomalous dimension
d'=d —

~ y ~, where y is the exponent for the leading ir-
relevant operator that fiows to zero temperature. The
modified hyperscaling law now reads 2 —a=1'v. We be-
lieve that this happens in a random-field model; however,
our theory says nothing about dimensional reduction in
this model. We use the random-field Ising model (RFIM)
as an example for our discussion throughout. Then, we
present a numerical RG calculation for the three-
dimensional RFIM.

It was Fisher'o who first suggested that modification of
the hyperscaling law in RFIM is related to a zero-
temperature fixed point. He traced the idea back to Grin-
stein. However, the fixed point that Fisher referred to is
from e expansion of the continuous model [Eq. (1)]. This
fixed point is the same one found by Aharony et al. ' The
calculation started with a double expansion in u and h, .
Feynman-diagram techniques were used. Thermal fiuc-
tuations is not important because the most divergent
terms are represented by tree diagrams. In this sense, we
are looking at zero-temperature properties. Aharony
et al. ' found a fixed point at u =0, uh, =0(e), and r =0.
u is an irrelevant operator, with exponent y= —2 to all
order in e. The calculation showed a dimensional reduc-
tion by the amount

~ y ~. The anomalous dimension is
1'=1—

~ y ~

. Our approach differs from the above. It is
not known whether the two approaches contain the same
physics.

%'e start with the RFIM model on a lattice. The Harn-
iltonian for this model is
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Ag ——H, /J (H, /J—), ,

AH H/J .—— (6)

Here, Aa is the temperaturelike scaling parameter, while

Att is the fieldlike scaling parameter, because the critical
region is H/J «1 instead of H « 1. Linearizing amund
the fixed point, we define the fallowing exponents,

Aa b'/tt——,
AH b""/H-—,
J'=b JJ .

(8)

The prime on Az, AH, and J denotes the corresponding
renormalized parameter and b is the scale factor. y, and

ys are like the usual temperature and magnetic field ex-
ponents. yj is the exponent for J. We could have used y„,
the exponent for H„but y, is equal to yj, since H„/J is a
constant at the fixed point. yj &0 means that the flow is
towards the weak-coupling regime, so that the zero-
temperature fixed point controls the critical properties at
zero temperature only. yz &0 means that the flow is to-
wards the strong-coupling regime, so that the zero-
temperature fixed point controls the critical properties at
sufficiently low temperatures.

Next, we extract the critical behavior at this zero-
temperature fixed paint. At zero magnetic field H, the
fiow away from the fixed point is controlled by y, . Thus
we can identify the behavior of the correlation length g,

(10}

P (H; ) = exp( H—i /2H, } .
(2~)'"H,

The couphng space of this model is ( J,H, H, ). Now, con-
sider some sort of RG that restricts the coupling space to
the above three couplings. Examples of such an RG are
the phenomenological RG of Nightingale, ' or the
domain-wall RG of McMillan. ' The actual physics does
not depend on the particular RG, but using this type of
RG makes our discussion easier. Let T be the tempera-
ture. By a zero-temperature fixed point, we mean a fixed
point at T/J =0, T/H, =0, and T/H =0. We alsa need
to specify the relative ratios of J, H„, and H, since the
properties af the system at zero temperature depend only
on these ratios. The fixed point of interest is at
H, /J =(H„/J), and H/J =0. The relevant scaling pa-
rameters are

J„ is not a relevant scaling parameter; ho~ever, it is the
only energy scale in the system, so it must be taken out in
front for dimensional consistency. Thus,

(13)

"8 ).

t =(T T, )/T,—,

h =H/T, ,

(16)

where T, is the critical temperature. If the critical
behavior is controlled by the zero-temperature fixed point,
then, because of the smoothness of the RG fiow near the
critical point, t and h will be mapped linearly into Aa and
AH, respectively. Thus the singular part of the free ener-

gy at nonzera temperature is

f, (t,h)=t J F(h/t "). (18)

Comparing this with the standard form, we find the
hyperscaling law,

2 —a=(d —y )v.J

For the RFIM, y;=2 corresponds to the result of
Aharony et al. ' and y. =2—r} corresponds to the result of
Schwartz. In order for the d =3 RFIM to have d =2J

Hr/J

(14)

Using the standard way af extracting the singular part
of the free energy, we find

fg(Att, kit)=Att ' F(Att/Att") .

We consider only y& &0, so that this fixed point controls
at least the low-temperature critical behavior (see Fig. 1}.
Suppose we keep the coupling J and the random field H„
fixed. We vary the temperature T and the magnetic field
H. The scaling parameters would then be

f(J,Aa, gH}= g b R(J„,Aa, hatt ) .
n=0

(12}

where v= 1/y, . Next, we find the singular part of the free
energy. In the context2c of the RG formalism,

f(J,Att, Att)=b f(Ji,Att, ,/tt, )

+R (J,Aa, AH ),
where R (J,Aa, Att } is the additive cantribution to the free
energy which arises in the process of renormalization. J„
is the coupling renormalized n times. %'e can keep on re™
normalizing, so

FIG. 1. Phase diagram of the d =3 random-field Ising
model. H, is the strength of the random field. J is the nearest-
neighbor coupling. T is the temperature. Arrows show the re-
normahzation flow as found by using the domain-wall renor-
malization group.
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pure Ising exponents, as suggested by some experiments, '

it would be necessary to have y, = 1, y, = 1, and

y~ ——1.875. In our analysis, y& is an independent variable.
Our above discussion on modification of the hyperscal-

ing law concentrates on the RFIM. The same argument
holds for any other fixed point at zero temperature. Ex-
amples are the random-bond spin model' ' ' (a spin-glass
model). The fact that the zero-temperature fixed point
controls the critical behavior at finite temperature comes
about because randomness is more effective than thermal
fiuctuations in destroying the long-range order.

In the following, we present numerical work on the
RFIM. We have done a domain-wall renormalization-
group (DWRG) calculation for this model. The DWRG
developed by McMillan has been a very useful method in
the study of spin-glass models. When applied to the
RFIM described by Eq. (3), the DWRG transformation
equations at zero temperature are

WL, (J,H„)=WI (J',H,'), H =0

W,i (J,H, ) = W I (J',H„'), H =0

dFI. (J,H„,H)=dFL(J', H„',H'), H/J((1

(20)

(21)

(22)

where Wi and W,L are the mean and standard deviation
of the domain-wall free energy of the RFIM on a lattice
of size L. At T =0, the domain-wall free energy is the
ground-state energy with antiperiodic boundary condi-
tions minus the ground-state energy with periodic
boundary conditions. dFL in Eq. (22) is the mean of the
absolute change in free energy when a small constant
magnetic field is switched on. At T =0, dFr is calculat-
ed from the ground-state magnetization M by

works if the number of quenches is large enough. This
can be checked by looking at the mean of the lowest ener-

gy (averaged over many random-field configurations) as a
function of the number of quenches. Using this method,
we find the ground state of the model with different
boundary conditions.

In the actual calculation, we used a simple-cubic lattice
of size L =2, 3, 4, and 5. The numbers of configurations
are 40000, 10000, 8000, and 3000, respectively. Figure 2
shows the plot of W, /W against H„/J with H =0. Ac-
cording to the RG equations (20) and (21), the intersection
point is the fixed point. The error bars shown are one
standard deviation. In analyzing the data, we must
remember that there are errors due to the small lattices
used. The greatest weight should be given to the result
from the largest lattice, which is a 5 X5&(5 lattice. How-

ever, we do not have as good statistics for the large lattice
as for the small ones. We deduce from the graph that the
fixed point is at (H, /J), =2.2—2.5. Next, we determine
the various exponents. In doing so, the most significant
error comes from the uncertainty of the fixed point. We
find yJ ——1.3—1.7, y, =0.75—1.05, and yj+yi, ——2.90
—2.99. If we assume (H, /J), =2.2, the best-fitted values

are yj ——1.7, y, =O.80, and yI,
——1.29. These give a =0.38,

P=0.01, y=1.60, i)=0.72, and v=1.25. If we assume

(H, /J), =2.5, the best-fitted values are yj =1.4,
y, =0.95, and ys ——1.55. These give a=0.32, P=0.05,
y=1.58, i'd=0. 50, and v=1.05. These values are some-

what different from those seen in experiments. ' ' Ex-
periments give a =0.0, v=1.0, and no consistent value for
the magnetic exponent. Note that the magnetic field ex-

dFr (J,H„H) =L M (J,H„O)H . (23)

The RG transformation equations (20)—(22) determine the
renormalized couplings J', H,', and H' implicitly. This
renormalization procedure is equivalent to a finite-size
scaling analysis of the domain-wall free-energy distribu-
tion and the magnetization.

In order to carry out the RG transformation, we need
the ground-state energies of the model with both periodic
and antiperiodic boundary conditions, and also the
ground-state magnetization. The phase transition occurs
at H =0, so the fixed point is at H/J =0. We first used
Eqs. (20) and (21) to find the fixed-point value of H„/J
and the exponents yj and y, ; then, we used Eq. (22) to
find the magnetic exponent ys.

We employ the so-called Monte Carlo quench method
to find the ground state. This method was developed by
McMillan. Basically, we perform a Monte Carlo simu-
lation at finite temperature to generate a set of spin con-
figurations. Starting from each configuration, we per-
form a zero-temperature quench. That is, we check to see
if we can lower the energy by fiipping one spin at a time.
If the energy can be lowered, we flip that spin. This is re-
peated until we can no longer lower the energy. We call
this a metastable state. We get one metastable state per
quench. Different initial spin configurations may produce
the same metastable state. %'e approximate the ground
state as the lowest-energy metastable state. The method
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FIG. 2. Plot of fV, /Tt' against H, /J to find the critical point
at T =0. 8' and 8; are the mean and standard deviation of
the domain-mall free energy. Error bars represent one standard
deviation.
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FIG. 3. Ground-state magnetization of the RFIM with

Gaussian distribution against the random-field strength.

Squares represent L =20. Triangles represent L =10. Each

graph is for one particular random-field distribution. The lines

are drawn to guide the eye.

FIG. 4. Ground-state magnetization of the RFIM with +h
distribution against the random-field strength. Squares
represent L =20. Triangles represent L =10. Each graph is

for one particular random-field distribution. The lines are
drawn to guide the eye.

ponent, which is equal to yj +yi, in this case, is quite close
to the spatial dimension, which is three. According to
standard RG arguments, s this signals a discontinuity in
the order parameter, i.e., a first-order transition. Other
indicators come from il and p. According to an exact in-
equality of Schwartz and Soffer, at a second-order tran-
sition rl must be no less than 0.5. Our result is close to
this limit. Also, p must be positive for a second-order
transition. Our P is quite small. Thus our results certain-
ly do not rule out the possibility of a first-order transition;
however, if it is first order, it is probably weakly so.

For the Gaussian RFIM, there have been sugges-
tions' ' that the transition is actually first order. How-
ever, we know that both mean-field theory and the d =2
model have a second-order transition. (In d =2, there is
no stable ferromagnetic phase at nonzero random field,
but the correlation length diverges at zero random field. )
The simplest possibility would be that the transition is
second order for all d ~ 2. If it is a first-order transition
at d =3, this should show up as a discontinuity in the
slope of the ground-state energy and a discontinuity in the
ground-state magnetization. We have checked the
ground-state magnetization by using the maximum-flow
method to find the ground state. Using this method, the
largest size we can look at is 20&20&20. This method
finds the ground state exactly for periodic boundary con-
ditions, but does not work for the antiperiodic case. Re-
sults for the typical ground-state magnetization are shown
in Fig. 3. As the random field increases, the ground-state
magnetization drops to zero in a series of small jumps. It
seems likely that there is no sharp discontinuity in the
ground-state magnetization for an infinite system. (The
erratic jumps will be averaged out to give a continuous
magnetization curve. ) Our graph also shows that the
magnetization curves differ greatly between L =20 and

L = 10, indicating a large finite-size effect, which
prevents a definitive conclusion. Our guess is that there is
a second-order transition at zero temperature, although
the result is also consistent with a very weak first-order
transition. Because the RG flows towards this fixed
point, the second-order transition should persist at low
temperatures. The same calculation on the +h model (the
random field can only take the values +h or —h) is
shown in Fig. 4. Here, we do see a large jump in the
ground-state magnetization as we increase the random
field, suggesting a first-order transition at zero tempera-
ture. Incidentally, mean-field theory for the +h model
also shows a first-order transition. The above results sug-
gest that models with different random-field distributions
may have transitions of different order.

In conclusion, we have deduced that the hyperscaling
law is modified when the fixed point of the RG transfor-
mation is at infinite coupling. The flow of the parameters
that set the energy scale is relevant to the critical
behavior. Such modification can occur in systems with
randomness, and is related to the fact that randomness is
more important than thermal fluctuation in destroying
the long-range order. For the d =3 random-field Ising
model, our DWRG analysis suggests that the transition is
second order.

After this study was completed, we received a commun-
ication from Bray and Moore reporting a very similar
theory of the modification of the hyperscaling law for the
random-field Ising model.
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