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Strong-coupling corrections to Bardeen-Cooper-Schrieffer ratios
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We have calculated simple approximate expressions for the normalized specific-heat difference

between superconducting (S) and normal (Ã) states at and below T, and for the ratio y T,'/H, (0),
using a square-well model for the gap. %'hile our approach is very different, the formulas obtained

have the same general form as those that have already appeared in the literature. Each contains two

parameters, which we determine through a phenomenological fi.t to exact numerical results from

Eliashberg theory. The strong-coupling variable is T, /col„, where col„ is the Allen-Dynes expression

for the average phonon energy.

I. INTRODUCTION

The BCS theory' of superconductivity provides univer-

sal predictions for a number of ratios such as 2b,plk& T„
yT, /H, (0), AC(&, )/yT„etc He.re bp is the zero-

temperature energy gap, T, the critical temperature, y the
Sommerfeld constant, H, (0) the critical magnetic field at
zero temperature, and b,C(T, ) the specific-heat jump at

T, . When confronted with experimental results, the BCS
predictions are found to be qualitatively correct, but quan-

titatively inaccurate. Eliashberg theory, 3 which includes
retardation effects the electron-phonon interaction and

deals with realistic kernels involving the material parame-
ters of a given superconductor, has been found to be very
accurate 4' Bec.ause of the complexity of the underlying

equations, however, only numerical results can be ob-

tained.
In a previous paper Mitrovic et al." considered the ra-

tio of the gap to critical temperature (2bplk+T, ). First,
they calculated 2bplkji T, for a large number of supercon-
ductors from accurate numerical solutions based on
known electron-phonon spectral densities a2(Q)F(Q) pre-
viously determined by inversion of tunneling data. As a
second step, they considered the Eliashberg equations
written on the real frequency axis and generalized the
original work of Leavens and Carbotte'2 to obtain an ana-

lytic formula for 2b,plka T, with a strong-coupling
correction. The approximations used to accomplish this,
while reasonable, are not controlled and not necessarily
completely consistent. To account for this, phenomeno-
logical parameters are introduced along the way and only
the general form obtained is assumed to be significant.
The general form is the same as that previously obtained

by Geilikman and Kresin, ' who used very different
methods and approximations. The resulting formulas of
Mitrovic et al. , once the two phenom. enological parame-
ters are chosen, are found to give a good semiquantitative
fit to all the exact numerical values for 2hplk~T, . In
most cases considered, the fiuctuations from the general
form are surprisingly small.

In this paper we wish to extend the work of Mitrovic
et al." to other BCS ratios. We start with the Eliashberg
equations written on the imaginary axis, and use approxi-

mations appropriate to the Matsubara representation
specifically designed to generate analytic expressions (for
the various ratios of interest) of the same general form as
obtained by Geihkrnan and Kresin, ' Geilikman, Kresin,
and Masharov, ' and Kresin and Parkhomenko. ' The
undetermined constants that are introduced in the course
of simplifying the algebra are fixed by consideration of
exact numerical data based on the known a (Q)F(Q) for
several materials. This procedure is done for each BCS
ratio. While it will become clear that within our approxi-
mation scheme the unknown constants for different ratios
are not independent, we treat them as such, since our ini-
tial approximation may be less accurate for one particular
ratio than for another. As in Ref. 11, we only attempt, in
our fit, to reproduce the general trend. While this can be
done in a satisfactory way for each of the thermodynamic
ratios considered, we find that the fluctuations from ma-
terial to material are larger than previously found for
25p/kii T, . Still, in most cases, they are sufficiently small
to make the resulting approximate formulas quite useful
in analyzing experimental data. Of course, if more pre-
cision is desired it is necessary to solve numerically the
full Eliashberg equations without approximation and to
know the spectral density a (Q)F(Q) accurately.

In Sec. II we consider first the specific-heat jump at
and near T, . In Sec. III an alternate derivation of the
strong-coupling corrections to the gap edge, starting with
the Eliashberg equations on the imaginary axis, is given.
This, in turn, leads to the correction for yT, /H, (0).
Brief conclusions are contained in Sec. IV.

II. STRONG-COUPLING CORRECTION
TO AC(T)jy T,

%e begin with the Eliashberg equations, written on the
imaginary frequency axis (kii =—iii:—1),
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where h(ice„) are the gaps and Z, (ice„) are the renormali-
zation factors, defined at the Matsubara frequencies

2a (Q)F(Q)
0 0 (8b)

ice„=imT(2n —1), n =0, +1,+2, . . . .

The electron-phonon spectral density a (Q)F(Q) appears
through the relation

f" 2QQ (Q)F(Q)
Q2+[2n T(n —m)]'

and p, '(to, ) is the Coulomb pseudopotential with cutoff
co, . Starting with the corresponding real frequency equa-
tions, Leavens and Carbotte' have derived an approxi-
mate T, equation. The same T, equation can be derived
from Eqs. (1) and (2) using the step-function approxima-
tion

(5b)

Here F00 represents the maximum phonon frequency in the
system. The advantage of the imaginary axis equations
lies in the fact that they tend to reduce to simple expres-
sions more systematically under an approximation such as
(5). For T near T„we can expand Eqs. (1) and (2) and
evaluate the left-hand sides for small n (n =1) and for
n ~ oo. %e restrict our spectra to those in which the im-
portant phonon frequencies are much higher than T, and
muck less than coo. The Coulomb cutoff co, is taken to be
much larger than any other energy in the problem. This
allows an expansion in the strong-coupling parameter
T/Q. The resulting solution for b,o( T) is given by

1=F(T)=&0(T)G(T)+&0(T)J(T), (6)

where

g(N) is the Riemann zeta function. Note that terms of or-
der Q/t00 have been neglected.

To calculate the specific-heat jump, we use the
Bardeen-Stephen formula for the free energy, ' '

X Z, (m) Z~(m—)

X
[a) +b, (m)]'

TF'(T) bK ( T) =Go( T)
1+A. 4

c(T) a( T)+——,(1 la)

3 Go(T} bL (T)=—Jo(T)+—
2 1+k a(T)

2
(1 lb)

The subscripts 0 indicate that strong-coupling corrections
are not present. Another moment of a (Q)F(Q) giving
strong-coupling corrections is defined as

f dQ
2a (Q)F(Q)

1
2 1.13Q

(12)

To find the specific-heat difference near T, we use the
solution of Eqs. (6) in (10) and obtain t —=T/T,

We use Z~(m)=1+A, and ignore the m dependence in
the logarithm in Zs(m) so that the sum can be performed
analytically. The result is

1 1+1
N(0) 2 g p,

' [60(T)K (T)+ -", 60(T)L ( T)], (10)

where

F(T)= ln-p,
+ l. 13600

1+A, ktt T
b c(T) =f+(1—t)g,
yT.

where

(13)
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and

f= 1.43 1+a )

2
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+ I3a(T)+[—,'g(3) —1]b I,2 1+A, )

93 A, —p' g(5)
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C lng=3.77 1+a, ln
l~ 62 Tc
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L

Following Mitrovic et al. ,
" the moments defined above

can be written

A. and A, are defined in Ref. 16. Strong-coupling correc-
tions are expressed in terms of two moments of the spec-
tral density function,

1 &3~in
a(T, )=a& 2 ln

8 c

6 =a2
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1.13oii„ l. 13'»
c(T,)=a3, ln ln

8 c 3 8 c
(15c)

cri, a2, ai, and ps are constants to be determined later
through a phenomenological fit to the exact numerical re-
sults. a„a2, bt, b2 are simple functions of these con-
stants. The average phonon frequency appearing in Eq.
(15) is the Allen-Dynes' frequency ccii„. Furthermore, us-
ing the T, equation of Leavens and Carbotte, ' we have

p
+ 1, 13N)~

ln
1+)i, ks T,

Hence, the form of Eqs. (14) is obtained, where an inverse
ln term has been dropped because its coefficient is es-
timated to be small. Note that no attempt is made to in-
clude strong-coupling corrections arising from y. The ex-
act results for f (the specific-heat jump) versus T, /co(„are
plotted in Fig. 1. Most of the electron-phonon spectral
densities a (Q)F(Q) used come from the tabulation of
Rowell, McMillan, and Dynes. In each case the exact
thermodynamics is obtained by full numerical solution of
the Eliashberg equations (1) and (2) and the free-energy

formula (9). Details are found in the literature. ' The
values of co(„are mainly taken from the tabulation of Al-
len and Dynes. ' The results for the 3 1S compounds are
taken from Mitrovic, Schachinger, and Carbotte, and
references cited therein. In determining the exact numeri-
cal results for the coefficient g in Eq. (13) (given in Fig.
2), we have used computed values of

the critical magnetic-field-deviation function. Near T,
me expand

(17)

From thermodynamic relations one can determine g from
(17) in terms of a and p. The results for the coefficient g
for a few selected materials are plotted in Fig. 2. In both
Figs. 1 and 2 curves representing the formulas (14) have
been drawn. The coefficients chosen are cti ——53, bi ——3
and a2 ——117, b2 ——2.9. Our final results are
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FIG. l. Specific-heat —jump ratio f= ts.C ( T, }/y T, vs

T, /co] . The dots represent the accurate results from the full

numerical solutions of the Eliashberg equations. In increasing
order of hC( T, )/y T, they correspond to the following
systems: Al, Ta, V, Sn, Tl, In, Tlo98io I, Nb (Butler), Nb (Ar-
nold), Nb (Robinson}, VsSi, Nbo7sZrois, Pbo4T}os, NbsAI(2},
VsGa, Hg, NbsA1(3), NbsGe(2}, NbsGe(1}, Pbo&T4&, NbsSn,
NbsA1(1}, Pb, PbosTloiqi, Pbo98io» Pno. sBio.2 Pbo. ssBio. is~ and

Pbo 78io s. The dashed curve corresponds to hC( T, }/y T,
=1.43[1+53(T,/coi„) ln(coi„/3T, }]. [See Eq. {18a)in the text. ]

FIG. 2. Plot of g [see Eq. (13) in text] vs T, /coi„ for a select-
ed number of systems. The dots correspond to results extracted
from numerical solutions for D(t) vs t, using the Eliashberg
equations. The numerical values for g are obtained from D(t)
data. In decreasing order of g, the dots correspond to the fol-
lowings systems: Tl, In, Nb3Al(2), Nb3A1(3), Nb3A1(1), Nb3Sn,
Pbo98ioi, Pbo6sBio35 PbosBioz, and Pbo&Bios. The dashed
curve corresponds to g = —3.77[ I +117( T „/coli}(sn„ coi/
2.9T, )]. See Eq. {18b)in the text. The fit ls quite good, consid-

ering the constraints on the coefficients (see Sec. II).
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f=1.43 1+53 C tn
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III. STRONG-COUPLING CORRECTION
TO yT, /H, (,0)

To determine the correction to yT, /H, (0), we first
determine the correction to bo(0), the gap edge at zero
temperature, starting with the imaginary axis equations
(1) and (2). As T approaches zero, we use the well-known
replacement '

The coefficients in (18) were chosen phenomenologically;
they could perhaps be inproved upon slightly, but the im-
provement would be beyond the spirit of the approxima-
tions used to derive the form of Eqs. (18). We note in
passing that the choices made agree reasonably well with
estimates of the a; and b; based on the approximation
a;,P3-1.

6p ——2' pexp

2
3 ~px 1+—,[a(T, ) , bj——

A. —p
(20)

When combined with the T, equation from Eq. (6), we
find

2hp =3.53 1+a3
B c 1n

(21)

where a3 and b3 are functions of ai and a2. Upon fitting
Eq. (21) to numerical data, Mitrovic et al." found that
the curve

The approximation (5) becomes a step function on the
continuous frequency axis, with a step at co=rtlo. As be-

fore, we first consider ro small and ro~ QQ, and obtain the
strong-coupling corrections to the gap edge:
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FIG. 3. The ratio 260/k~T, vs T, /~I, . Most of the points

have been reproduced from Ref. 11. %e have also included re-

cent numerical solutions of A 15 compounds. In order of in-

creasing 250/k~T„ the dots correspond to the following sys-

tems: Al, V, Ta, Sn, Tl, T109Bio ~, In, V3Si, Nb (Butler), Nb (Ar-

nold), Nb (Robinson), PbQ 4TIQ4, NbQ 75ZrQ 35, V3Ga, N13A1(2),

N13Ge(2), PbQ 4TlQ, 4, N13A1(3), Pb, PbQ 3TIQ 3, Nb3Sn, Hg,
Nb3Ge(l), N13A1( 1), PbQ 983Q l, Pbb 4TIQ 383Q 3, PbQ 3BiQ rl&

P17Q 7B1Q 3 aud PbQ 45B3Q 35 Tile dashed curve corresponds to
26Q/ksT, =3.S3[1+12.S{T,/Qll„)31n{Q31„/2T, )]. See Ref. 11 for
a discussion of these results.
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FIG. 4. The ratio y T, /H, (0) vs T, /coi, . The dots represent
results from the full numerical solutions to the Eliashberg equa-
tions. In decreasing order of y T, /H, (0), they correspond to the
following systems: Al, Tl, Ta, V, Sn, In, TIQ983Q „Nb (Butler),
Nb (Arnold), Nb (Robinson), V3Si, PbQ 4T4 4, NbQ 75ZrQ 35, V3Ga,
Nb3A1{2), PbQ 4TlQ 4, Nb3Ge(2), PbQ 7InQ 3, Nb3AI(3), N13Sn, Hg,
Nb3Ge{ 1), PbQ 3TlQ3 3 Pb, Nb3AI{1), PbQ 983Q l, PbQ sB3Q 3,

PbQ7BiQ3, and PbQ45BiQ35 The dashed curve corresponds to
yT, /H, (0)=0.168(l —12.2(T, /Qll„/3T, )]. See Eq. (24) in text.
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y" =
2

——0.168 1 —a4
H,'(0)

TQ ~ln
ln

in b4 Tc
(23)

Again, a& and b4 are functions of cti, ai, ai, and P&, they
are chosen phenomenologically as a4 ——12.2 and b4 ——3.
The curve

=0 168 1 —12.2
H, (0)

Tc ln
ln

1n 3Tc
(24)

is plotted in Fig. 4, along with the numerical data. Equa-
tion (24) again fits the general trend quite well.

IV. CONCLUSIONS

Starting with the imaginary axis equations, several for-
mulas [for the specific-heat jump, for the coefficient of
the 1 —t term in the specific-heat —difference expansion
below T„ for 2ho/k&T„and for yT, /H, (0)] have been

derived, giving strong-coupling corrections to the BCS
predictions. We have taken a semiphenomenological ap-
proach and have fitted the correction coefficients to nu-

merical data rather than evaluate the integrals requiring
detailed information about a (Q)F(Q) for each material.
The corrections required are all of the form

'2
260 Tc 1n=3.53 1+12.5 ln
8 c C

reproduced the general trend of the data quite well. A
plot illustrating the numerical data as well as Eq. (22) is
given in Fig. 3 (3 15-compound data has been added to
the plot of Mitrovic et al. ' ).

To determine yT, /H, (0), we use Eq. (9) in the T =0
limit, with Zz(to)=1+k for

~

co
~

&too and agai»gnore
the to dependence in the logarithm. Using Eq. (21), we
obtain

ax In(1/bx),

where x = T, /coi„. While the methods used to obtain this
result are quite new, this type of correction has already
appeared in the literature for some time, namely in the
work by Geilikman and Kresin, ' Kresin and Parkhomen-
ko, ' and Geilikman et al. ' In this older work the ap-
propriate phonon frequency appearing in (25) is not asso-
ciated with coi„of Allen and Dynes and the undetermined
constants a and b are fixed in a very approximate way.
Here they are obtained by consideration of exact numeri-
cal data obtained from solutions of the full Eliashberg
equations for a number of materials with known
electron-phonon spectral density. The values of the pa-
rameters tt and b are given for the various cases in Eqs.
(18), (22), and (24). The figures corresponding to these
equations provide an idea of how well the formulas fit the
numerical data. It is apparent that the general trend of
the ratios is described very well by these approximate for-
mulas. The formulas cannot, however, account for any
deviations from the general behavior. In particular, func-
tional derivatives based on such simple formulas for these
ratios are qualitatively incorrect, as they depend on
small differences.

If, however, an overall accuracy of 10% is acceptable,
the formulas obtained should be useful in cases where the
electron-phonon spectral density is not too different in
shape from the typical shapes considered here. For oddly
shaped spectra and higher accuracy it is necessary to go to
numerical solutions of the complete Eliashberg equations.

A more detailed version of this paper describing many
of the steps required to obtain the final formulas is avail-
able from the Physics Auxiliary Publication Source.
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