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For an electron-phonon superconductor the question of a possible maximum value for the size of
the ratio 260/k~T, is addressed. Here 60 is the gap edge and T, the critical temperature. %'e were

able to obtain well-converged solutions of the Eliashberg equations for a 5-function electron-phonon

spectral density centered at QE with Q~ as low as 0.75 meV, in which case 2ho/k~T, is still rising
and equal to -9. In the limit 0~~0, we can prove analytically that both 50 and T, scale like
(AE)' so that their ratio remains finite. A rough estimate gives a value of about 7 for the ratio in

this limit. In the course of the discussion a new upper bound on 50 is established and tested.

I. INTRODUCTION

In this paper we address the following question. For an
electron-phonon superconductor, to which the Eliashberg
gap equations apply, how big can the ratio of the gap 50
to the critical temperature get? To answer this question
we will use an appropriate generalization of a general ap-
proach already used in the literature to discuss limits on

T, . This problem was studied by Leavens and Carbotte'
within the framework of the McMillan i equation. These
authors point out the importance of the parameter A in
high T, superconductivity. Here A is the area under the
electron-phonon spectral density a F(co). It is shown that
under certain circumstances 1, grows linearly with A. A
more sophisticated formulation of the problem using full
Eliashberg theory was given by Leavens. It is shown
that, for any fixed value of A, the optimum shape for the
spectral density is a 5 function at a certain well-defined
frequency coE. The proof is based on the properties of the
functional derivative of T, with a F(ro) calculated by
Bergmann and Rainer. The functional derivative denot-
ed by 5T, /5a F(coo) gives the response of T, to an infini-
tesimal increase in spectral weight at phonon energy coo.
It is found to be positive definite for all coo, going to zero
in both the coo~0 and coo~00 limits with a broad max-
imum in between at about coo=-7k&T, . For a given
a F(co), of area A, it is argued that T, will be maximum
when the entire area under a F(co) is transferred to the
maximum in its own functional derivative, in which case
T, =C()u')A where C(p') is a constant which depends
only on the Coulomb pseudopotential p'.

In a recent paper Mitrovic, I.eavens, and Carbotte have
calculated the functional derivative of the ratio 2b,olkli T,
for several superconductors. For all cases considered

5[26,o/kiiT, ]/5[a F(co))

to those described in the case of the critical temperature
would lead us to expect that 260/kii T, is maximized for a
5 function spectrum placed at the maximum of its own
functional derivative (an assumption —not proven)

5[260/k&T, ]/5[a F(co)] .

In Sec. II we introduce the gap equations and show
that, for a 5-function spectrum A5(co —co@), the gap and
critical temperature scale with A. This feature can be ex-
ploited to discover a new upper bound on Ao. In Sec. III
we deal with results for 2b,o/k&T, . It will be found that
our numerical techniques do not converge well when Qz
becomes very small. For this reason we consider analyti-
cally the BE~0 limit in which case we are able to prove
that both T, and b,o scale like (AQz)' so that the ratio
26O/k&T, remains finite and is a universal number in-
dependent of material parameters. A rough analytic esti-
mate for this universal constant is given in Sec. IV. In
Sec. V conclusions are drawn.

II. OPTIMUM SPECTRUM FOR THE GAP EDGE

The imaginary frequency axis Eliashberg equations
are"

5(i co„)Z (i co„)

=~k, T g [X(n —m) —p'(~. )e(~.—
I
~

I )]

b(iso )
X

[co +b, (i' )]'

co„Z(ia)„)=co„+mksT g A, (n —m)

is found to be positive definite, tending to zero as
~~O, oo with a very sharp maximum around co*—= —,50.
Assuming this form to hold in all cases, arguments similar

x
[co +b, (iso )]'~
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2Qa F(Q)
Q +(CO„—0I )

(3)

with b, and Z the Matsubara gap and renormalization
function evaluated on the imaginary frequency axis at the
discrete points,

iai„=inkg T, (2n —1), n =0,+1,—.

In these equations T is the temperature, kz is
Boltzmann's constant, co, a cutoff on the Coulomb repul-
sion needed to get a convergent sum over rn, p'(0I, ) the
Coulomb pseudopotential appropriate to the cutoff co„
and A,(m n—) is given by

where a F(Q) is the electron-phonon spectral density.
We will want to consider the special case of a 5-

function spectruin for a F(Q) of the form

a F(Q)=35(Q —Qx)

with A the weight of the spectral density, i.e., the area
under it and QE some definite phonon energy. For this
special case Eqs. (1) and (2) simplify. After dividing both
sides of each equation by A and introducing Z—=b, /A,
T=T/A, and 0I„=—co„/A so that co„=m T(2n —1), we ar-
rive at the pair of equations

and

2Qg „Z(i0I )
Z(i0I„)Z(ice„)=deka T g, , —IM*(0I, )8(0I, —

~

0I~
~

A)
2Q g+(0I„—0i„) [0I +b, (i0I )]'~

(5)

2Qg m
0i~Z ( I cO~ ) =CO ~ +Tfkg T

„Qg+(0I„—0I ) [0I +b (i' )]'~
(6)

We will follow Leavens and ignore the explicit depen-
dence on A occurring in the Coulomb cutoff in Eq. (5).
This is reasonable because IM' is not an important parame-
ter and its dependence on 0I, is small for a large cutoff.
With this approximation, it is clear from the form of Eqs.
(5) and (6) that b, and Z can depend only on the reduced
parameters T and QE in addition to Iu', of course. This
means that for a given Qz and IM' the critical temperature
T, derived from the linearized version of Eqs. (5) and (6)
is a function (f} of only these two parameters, i.e.,

Tc
T, = =f(QE,p, ')

A

a result previously obtained by Leavens. If (5) and (6) are
considered at low (or zero) temperature we can further
conclude that the gap edge b,0 can only be a function (g)
of 0@ andIM' so that

hp~0—= =g«E i ')
A

(8)

which is a new result.
To determine the function g we need to solve Eqs. (5)

and (6) at some low temperature and use a technique of
Pade approximants to obtain the analytic continuation of
the gap to the real frequency axis [Z(0I)]. The gap edge
follows from E0=Reh(co=6, 0). Alternatively, one can
return to (1) and (2) and solve them for spectrum (4) with
a definite value of 2 and QE. Since the choice of 3 is
immaterial we will use throughout this paper the value
10.652 meV, appropriate for Nb3Sn.

We have solved (1}and (2) at low temperatures for three
values of tu', namely 0, 0.1, and 0.227 [the value appropri-
ate for Nb3Sn (Ref. 8)] as a function of QE. In all cases
40 is found to exhibit a maximum at some definite fre-
quency QE which depends on p' and to drop slowly on ei-
ther side of QE. This behavior is shown in Fig. 1 where

Q is plotted (in the region of its maximum value) against
Qz [Fig. 1(a)] and also against A,E ——2A/QE —=2/Qz [Fig.
1(b)]. The shape of the function g(Qa, p, ') obtained was
really expected from the previous work of Mitrovic,
Leavens, and Carbotte who calculated the functional
derivative of 60 with respect to a F(0I ) for several materi-
als. In all cases they find that 6b,0/5a F(co) goes to zero
at high and at low frequencies displaying a broad max-
imum somewhere in between. Although the position of
the maximum varies somewhat from material to material,
the rule of thumb developed in Ref. 8 is that it occurs
around 4k+ T, . For tu' =0.227 the peak in Fig. 1 is found
to occur at approximately 5.5 meV for which case
k&T, =1.39 meV. This is in close agreement with the
rule developed for the case of the functional derivative.

To check on the validity of Eq. (8) we have made an ex-
tra calculation of b0 with QE ——3 meV, )LI,

"=0.2267 (un-
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FIG. 1. The gap edge 60 in meV for a 5-function spectrum
o; F{Q)=A6{Q—QE) with A =10.652 meV shown for three
values of p =0, 0.1, and 0.2267 as a function of QE in meV
and again as a function of A,E ——2A /QE {dimensionless). The ra-
tio Lo/A is independent of A and the position of the maximum
QE proportional to A. The region of highest density of points is
around the maximum.
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changed) and A =5.326 meV which is exactly half the
value previously used. For these parameters b,Q=2. 178
meV and b,Q/A =0.409 which is to be compared with

0.397 when A =10.672 meV was used with QE ——6 meV.
The agreeinent is excellent (about 3%) and represents a
numerical test of our scaling theorem.

The maximum observed in Fig. 1 for each value of p'
considered represents the maximum value for the ratio of
the gap to A that can be achieved for any shape of
a F(Q) since the peak is assumed to occur when the pho-

non energy in the 5 function (4) is placed at the maximum

of its own functional derivative 5bo/5[a F(Q)]. If we

determine the value of QE at maximum and denote it by

0E we conclude that

since QE is a well-defined dimensionless number. In
Table I we show the results obtained for b(p'). We see
that b(p') is reduced as p,

' increases which is as expect-
ed. For any other spectrum with the same p' we expect

&QAb (p') =b, Q. (10)

In a recent paper Mitrovic, Zarate, and Carbotte have
calculated b,o and the ratio 2b,olk&T, for a large number
of materials for which azF(Q) is known through inver-
sion of tunneling data. These results can be used here to
test the inequality (10). This is shown in Fig. 2 where we

show the line b (p') versus p' and also place on the same
figure the ratio EQ/A for the superconductors considered
in Ref. 8 as well as for a few others, La, 'Q V,"and various
models for Nb3Sn, Nb5A1, Nb&Ge, and V5Ga. ' The solid
dots, unidentified individually, are for PbT1Bi alloys and
the crosses for InT1 alloys. Note that the inequality (10)
on the gap is well satisfied. The system falling closest to
the b(p') versus p' curve is the alloy PbQ65BiQ35 for
which p, '=0.0996 and bo/A =0.43. This is to be com-
pared with the value of b(p' =1) given in Table I which
is 0.46 and represents the maximum possible value. The
difference with Pbo 658io» is only 10%. This shows that
some real materials can very nearly exhibit the maximum
possible gap value for their particular spectral weight
A= aFQ

To end this section we consider the value of Q z at op-
timum, i.e., where b,Q peaks for a given value of p' in Fig.
1. Denoting this quantity by c (p'), we have
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0.4— Nb~ (I)
0

Nb3AI (2) &~ ~ ~
0 ~

0 HO ~ I 0 I4b3sn0 0 (
+61 0) Ln 0

Nb 8 V Go(2) gycols 0gb ~zn ~5
X

0.2- ~01n d( X Nb

Sn T Tl X

X

Nb3Sn

(s
Sb3al &b36e

(3)

I

O. l

0Al
I

0.l5
1

0.2 025

FIG. 2. The optimum line {———) giving b(p~) as a func-
tion of Coulomb pseudogotential. For any superconductor at
all, bo/A [with A = aF(co)dcoj must fall on or below the

0
dashed curve which represents an upper bound on this ratio.
This is well satisfied by all the points shown. The unidentified
solid dots are for PbT18i alloys while the crosses are for InTl al-

loys. In placing the points on the figure we have neglected the
variations in Coulomb cutoff from case to case. This is not ex-

pected to be a large effect and could be corrected for.

III. THE RATIO 2hp/kg ~c
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Equations (5) and (6) can also be solved at the critical
temperature T, in which case they can be linearized.
When this is done and combined with the results of the
previous section we can obtain the ratio 2b,olk&T, for our
5-function model. In Fig. 3 we present results for the case
of p'=0. 2267 with A =10.65 meV. In Fig. 3(a) the re-
sults are plotted vs Qz while in (3b) we use

QE ——c(p') or QE c(p')A——

with the value of c entered in Table I. We note that c
varies considerably with p', decreasing with increasing
Coulomb pseudopotential.

2 — kgTC (~V)

)
-o'

l i I l

0 5 lO l5 20
QE(meV)

ke TC (meV)
o

I o

25 30 0 5 lO l5 20 25 30

0.56
0.87

0.46
0.63

0.40
0.52

TABLE I. The variation of b(p ) and e{@ ) with Coulomb
pseudopotential. The quantities b(p*) and c(p ) give, respec-
tively, the value of 6p/A and 0@/A at maximum (see Fig. i).

p' =0.2267

FIG. 3. For the case p =0.2267, 3 = I0.652 meV we show
the variation of the gap hp, the critical temperature, and the ra-
tio 2hp/k~1", as a function of QE {a)and of A,E ——2A /QE (b). A
6-function spectrum a F(A)=36(O —AE) was used. Note that
both 5p and k~7; show clear maxima in the 0 region con-
sidered. This is not so for 2hp/k~T, which is still rising at the
lowest frequency considered, namely Az ——0.75 meV. %'hen

plotted against XE rather than QE the same data show more of a
tendency to level off.
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where we have noted that the term m&n does not enter
the sum on the right-hand side of this last equation be-
cause for n =m the quantity in large parentheses is zero.
For m&n and in the limit QE~O, the expression for
A,(m —n) reduces to

2O,EA

(con —co~ )
(13)

In arriving at this last result we are assuming that
Qz&&T (the temperature of interest). Note, from the
form of Eq. (12), that 4(ico„) is an explicit function of T

A,z ——2A/Qz ——2/Qz. Also, shown for comparison are
our results for T, and for hp separately. The range of Qz
considered has now been greatly expanded and spans the
interval (30 to 0.75 meV). At the lower energy end
24plkzT, has reached a value of 9.5. This corresponds,
of course, to a very unphysical situation in that Qz ——0.75
meV means the the entire spectral weight would need to
occur around 8 K. This will never be the case in real ma-
terials. For this reason we did not think it essential to
proceed further with the numerical calculation. Our gen-
eral Eliashberg programs were showing signs of numerical
difficulties as the calculations cease to converge adequate-
ly. Instead of writing new programs to specially handle
this region, we decided to examine analytically the limit
Qz —+0. Before doing so, however, it is important to em-

phasize that we still have not reached a maximum for
24plkzT, although consideration of Fig. 3(b) indicates
that we may not be far off.

The functional derivatives of 24p/kzT, with a F(co)
calculated by Mitrovic et ctl. show a sharp peak about
Qz ——', kzT, . —For the specific case Qz ——0.75 the kzT,
value was 0.6 meV. This means that we expect the func-
tional derivative to peak around 0.8 meV. This is a fur-
ther indication that we should be near the peak.

We now turn to an analytic proof that for Qz-+0, the
ratio 24p/kz T, must reach a fmite value which we esti-
mate to be approximately 7 in Sec. IV. While this last
number is only a rough estimate it indicates again that the
curve in Fig. 3(a) for 24p/kz T, will need to peak in the
interval Qz ——(0.75 meV to 10 meV) and then fall to a
value below 9.5.

For convenience, only the case p, '=0 will be con-
sidered. A finite p' can be introduced and the theorem
will still remain approximately true since we need only
neglect the effect of small changes in the Coulomb cutoff
just as we have done in Sec. II. We will now show that
for Qz~0 the zero-temperature gap edge and the critical
temperature both scale like (AQz)'~. This means that
the ratio 24plkzT, will go towards a finite universal
number. Substitution of Eq. (1) into (2), so as to eliminate
the renormalization function Z, leads, after some rear-
rangement, to the single equation

4(ico„)=nkzT g A(m n)—
m {+n)

4(i co ) —(co /co„)4(& )co'
[(co +4 (ico )]'~

4(T',ico'„)=nkzT' g
m~n (con coIn }

4(T',ico' )— , 4(T', ico'„)
n

[co' +4(T', ico' ) ]'~

(14)

where co'„denotes the Matsurbara frequency T'm(2n —1).
It is clear that the solution of the last equation depends in
no way on coz and A and is therefore independent of any
particular system. Solving this equation for T'~0 and
performing an analytic continuation to the real co' axis by
setting ico„'~co' leads to a function 4(co') independent of
any material. It is related to 4(T,co}, the analytic con-
tinuation of 4(T,i co„),by

4[T'(AQz)', co'(AQz)]=(AQz)'i 4(T', co') . (15)

Taking the limit of very small T' we find the gap edge h, p
from the equation

hp ——Reh(0, hp) = (A Qz )' Reh 0,'
(Q,A)'"

(16)

hp ——Reh(0, hp) (17)

with hp=h, p/(AQz)' . But h.p, the solution of Eq. (17),
is a universal number which we denote by d, so that
hp=d(AQz)i~z

To get the critical temperature associated with Eq. (14)
the equation needs to be linearized. From its form, it is
clear that T,' will be another universal number indepen-
dent of all material parameters. Denote it by d' and
hence kzT, =d'(AQz)' . Therefore the ratio

250

AT,
(18}

is a universal finite number in the limit Qz —+0. This is
what we wished to demonstrate. It is of interest to make
a rough estimate of this limiting value of the gap to criti-
cal temperature ratio. We next turn to this problem.

IV. ROUGH ESTIMATE OF 2h, o/kg T, FOR QE ~0
%'e limit ourselves to the case p' =0 so as to keep the

algebra as simple as possible. The generalization to finite

and also of ico„which, of course, contains another factor
of temperature. To make these dependences exphcit we
will write h, ( T,i co„) instead of the shorter notation
4(ico„}. If both sides of Eq. (12) are divided by (Acoz)'
and T is changed to T' through the transformation
T/(AQz)' =T', we obtain a new equation which makes
no explicit reference to material parameters. Writing

4[T'(AQz)', ico„'(A Qz)' ]4(T',ico„')—=
(AQ, )'"

we obtain
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p' is straightforward but adds little to our discussion.
We go back to Eqs. (1} and (2} and take the zero-
temperature limit to get

Combining (25) with (26) leads to

43Qz, ~g AQz
( 2 ——,')= —2 2

~o ~p ~o
(28)

Z(co)b, (co)= —,
' f lltd

2Qz+(co —co )

b (co')

[(co') +& (co')]'
(19)

Note that the term mA /hp cancels out of each side of this
equation and that after rearrangement

hp ——(AQz)' [2(~2—1)]'/ =0.91(/IQz)'/

+ ~ 20EAZ(co)=1+ dco'
2Qz+ (co—co')

I

X
[(~')2+~2(co') ]'" (20)

In the previous section we established that for Qz~O, hp
and T, are both proportional to QAQz. This means that
5p will be much greater than the position of Qz so that
we expect b, (co) to be near b,p up to co=bp with phonon
structure occurring in a very small range -Qz just above
this value. This suggests a model for the gap

~p f«co(bp
&(co)= '

0 for co~6,p. (21)

First, we treat the renormalization function which is only
of interest for small co. In this case

+~ QEAZ(co~0)=1+f dco'
[Qz+(co') ]

2(co')'

[(~f)2+ /2( ~t)]1/2

Substitution of (21) into (22) leads to

(22)

Z(co~0) =1+2QzA 2I(Qz, hp)+
1

b,p+ Qz

with

~&2 1I (Qz b,p) = dco'
p ( i2+ g2)1/2 (Q2 + ~2)2

r

~p 1 4 Qz
1 ——~2

4 Q g2 (24)

so that

mA 4~&E
Z(co-0) = I+ —

2 (~2——,
'

) .
g2 (25)

Z(co-0) =2QzAJ(Qz 6p)

with

(26)

Next we consider the gap equation (19) and substitute into
it our ansatz (21) for the gap to get for co (hp

The solution for T, in the limit Qz~O has already been
obtained by Allen and Dynes [their Eq. (24)] and is

T, =0.18@2+3Qz,
which yields a value for 2b p/kz T, of approximately 7.

A final point should be made. In our formal proof that
T, and hp both scale like (AQz)'/' we immediately
dropped the Qz factor in the denominator of A.(n —ni)
while in this section we retain it. To understand why this
is necessary it is important to realize that in Eq. (12) the
n+rn term does not enter because the equation for Z has
been substituted into that for 5 and the term involving

~=2f "F'"'dQ
0

never enters. This is not so when both equations are treat-
ed separately. However, the term in I(Qzbp) in Eq. (24)
that depends on Qz leads to the term n/I /b, p in'Z which
was noted to cancel out of the final equation (28) against
the term dependent on Qz coming from J(Qz, h) [Eq.
(27)]. These were the only terms which entered as a result
of retaining the Qz factor in this section.

V. CONCLUSIONS

%e have established a new upper bound on the gap
value for any electron-phonon superconductor character-
ized by an electron-phonon spectral density a F(Q) and
Coulomb repulsion parameter p'. It is shown under cer-
tain assumptions that b,p (b (tu')A where A is the area
under a F(co)—a parameter first emphasized by Leavens
and Carbotte. Values for b(p') are given in Table I and
depend only on the structure of the Eliashberg equations
and not on any material parameter. The maximum value
for 2b,plkzT, was found to be greater than 9.5 which
occurs for the case of a very unrealistic spectrum, namely
a 5 function at Qz ——0.75 meV with A =10.652 meV and
p'=0. 2267. While it is expected to rise even further as
QE is reduced, arguments are given that we are near max-
imum and that for Qz~O the ratio will drop to about 7.
While this number is a rough estimate based on approxi-
mate analytic solutions of the Eliashberg equations for
QE~O, it was shown quite generally that both 50 and T,
scale hke QQzA in this region. This implies a finite lim-
it for this ratio.

J(Qz, hp) =
p (g2+ i2)1/2 Q2 +

1—2v2 Qz
2QE60 ~ 60
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