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In this paper a strong-coupling theory of the upper critical magnetic field (H,,) is developed
within the framework of the Werthamer-Helfand-Hohenberg theory. We include Pauli paramagnet-
ic limiting and momentum scattering of the conduction electrons at randomly distributed impurity
sites. The developed theory is tested against experimental data available for niobium and ViSi. Itis
shown that for isotropic cases the presented theory gives excellent agreement with experiment over
the complete temperature range. It is remarkable that it was not necessary in both cases to include
spin-orbit scattering. It can be concluded that in most cases spin-orbit scattering was only used to
compensate for strong-coupling effects in the older Bardeen-Cooper-Schrieffer—related theories.

I. INTRODUCTION

The first theoretical descriptions of the upper critical
magnetic field (H.,) were based on the Ginzburg-
Landau-Abrikosov-Gor’kov! ~* (GLAG) theory and were
applicable to practically all superconductors. On the oth-
er hand, these theories were restricted to temperatures T
close to the critical temperature T, of the specific super-
conductor. Maki* and de Gennes® later independently cal-
culated the full temperature dependence for H,, in the
dirty (small-mean-free-path) limit. It was then the main
contribution of Werthamer and co-workers®=® (WHH
theory) to develop a set of equations which described the
critical field at the second-order transition, where the su-
perconductor gap function A(r) is vanishing. The result-
ing description was valid for the whole temperature range
and included momentum scattering at impurity sites, Pau-
li spin paramagnetism, and electron spin-orbit scattering.

All these theoretical descriptions were based on the
Bardeen-Cooper-Schrieffer (BCS) theory of superconduc-
tivity, and the application of these theories to specific ex-
perimental data very often revealed that the experimental
data were almost perfectly reproduced at high tempera-
tures, while in the low-temperature range the theory usu-
ally predicted smaller values for H., than were experi-
mentally observed. Werthamer and McMillan® included
the full electron-phonon interaction, in the way suggested
by Eliashberg,'® in order to overcome the apparent failure
of the BCS-based theory in the low-temperature region of
the H,, results for the transition-material niobium. They
developed equations on the real axis and concluded from
their results for niobium that strong-coupling effects seem
not to be important, at least not in explaining the physical
behavior of niobium. They claimed that anisotropy seems
to be the explanation of the observed deviation of the ex-
perimental data from the theoretical predictions.

Later, further strong-coupling formulations were
presented by Eilenberger and Ambegaokar,11 Usadel,!?
Rainer and Bergman,'® and Rainer et al.!* All these for-
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mulations were based on the “dirty limit,” where the re-
sulting equations become especially simple. Recently,
Schossmann and Schachinger'> extended this strong-
coupling theory to the case of superconductors with non-
constant electronic density of states at the Fermi surface
in an attempt to give a better explanation of the situation
which may be relevant to 415 superconductors.

Orlando et al.'® realized, in their thorough analysis of
the experimental results of the upper critical field in the
A15 compounds V;Si and Nb;Sn, that is was necessary to
include the normal-state renormalization of the electronic
frequencies in the form @, =w,(1+A) in order to achieve
a satisfying theoretical description of the experimental
data. (A is the mass-enhancement factor due to electron-
phonon interaction.) They observed that Pauli paramag-
netic limiting was essential to explain the behavior of
V;Si, and they had to include substantial spin-orbit
scattering in order to get a satisfying theoretical descrip-
tion of the low-temperature data.

In the meanwhile it became obvious that strong cou-
pling not only results in quantitative deviations from BCS
predictions, but also in qualitative ones, whenever magnet-
ic effects in superconductors are investigated.'’~" Tt
therefore seemed to be justified to make a second attempt
to include the full electron-phonon interaction with the
WHH theory of H,,. In his thesis Schossmann® derived
the necessary equations on the imaginary axis and these
equations were used by Schachinger et al.?'"?? in their
simplest form to calculate H,, for the Chevrel compound
Cu,Mo¢Sg. It was possible to prove that the strong-
coupling calculation of the WHH theory resulted in much
better agreement with experiment, especially in the region
at low temperatures.

In this paper we want to develop the strong-coupling
theory of the upper critical magnetic field including Pauli
paramagnetic limiting and electron-momentum scattering
at randomly distributed impurities. The outline of the pa-
per is as follows: In Sec. II we present the main theoreti-
cal points necessary to derive strong-coupling equations
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for H_, on the imaginary axis. As we follow very closely
the WHH theory, we concentrate on the problem of how
to include the full electron-phonon interaction. In Sec. III
we compare theoretical predictions of our formulas with
experimental data recently found for niobium and the
V;Si data reported by Foner and McNiff.* Finally, in
Sec. IV, conclusions are drawn.

II. THEORY

The full thermodynamic electron Green’s function is
determined by perturbation series:

G=G0+G0‘2 (Z‘GO)", (1)

n=1

where x-y is a convolution integral if Eq. (1) is evaluated
in local space and a simple product if (1) is evaluated in
Fourier space. G is the electron Green’s function of the
unperturbed system and X is the full electron self-energy.
In the case of a superconductor, Gy, G, and 2 are 4X 4
matrices, in agreement with Nambus’s formalism.2* Thus
we can split G into two matrices, one of which is diagonal
and represents the normal-state properties of the system
under consideration. The second matrix is purely off di-
agonal and describes the superconducting state:

G, 0 0 0 0 0 0 &

0 G, 0 0 0 0 & 0
G=10 0 G, o|T|o @ 0 o

0 0 0 Gy| |®& 0 0 o
=G4+ Gy - (2)

The total self-energy may be decomposed in the same
way:

3=3;4+2Zus. (3)
We apply (2) and (3) to (1) and find, for the normal state,
G":Gd=G0+G0'E (Zd-Go)" , 4)
n=1
and, for the off-diagonal part of the Green’s function,
Gor=Gp Zofr'Gy - (5)

It is now essential to calculate the normal-state Green’s
function in its local-space representation. The starting
]
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point is the equation of motion of a system in a magnetic
field H (u is the chemical potential):

2
0 1

E;—Zm

X._EA(X) __#_ﬁ—a-H G,olx,x';7,7")
i c m

=8(x—x")8(r—7"), (6)

which can be solved applying the rules developed by Wer-
thamer et al.® (WHH). According to their calculations,
the influence of the vector potential A(x) results in a
phase factor by which the Green’s function for H=0 is
multiplied:

G, (x,x';7,7)=G,(x,x;7,7") | g =0

X exp . (7)

ie rx
- [, dsAws)

It was shown by WHH that this rule can even be ap-
plied to a Green’s function G, calculated from Eq. (6)
with A(x) set equal to zero. In this case Eq. (6) can be
transformed into Fourier space and we find

G,,O(ek,ia),, )_1 =i(0"70‘0'0—67'3‘0'0—(8/m )HT3‘0'3 ’ (8)

with ®, the Matsubara frequencies #T(2n +1),
n=0,t1,%2,..., € the electronic states of the unper-
turbed system, and 7;-0; (i,j=0,1,2,3) the direct product
of two Pauli matrices. (The index O indicates a 2 X2 unit
matrix.) The magnetic field H was assumed to be parallel
to the z axis. Equation (4) is easily solved using the an-
satz

G(E,i&),, )_1 =i5,,7'0'0'0——67'3‘0'0-—X7'0'0'3—b7'3'0'3 ’ 9

and by introducing the standard expression for the
electron-phonon interaction,

Ze.ph(e,iw,,)=T2Mmm)f_ de'G(€jiv,—ivy,) ,

m

(10)
with

Q

Mon)=2 [~ dQ A QP F(Q), (1
w

n

and a(Q)? F(Q) is the electron-phonon interaction spec-
tral density. The electron-impurity interaction for ran-
domly distributed impurity sites is according to Abriko-
sov and Gor’kov?® described by the self energy contribu-
tion:

3 (k,io,)= [ d’q V(@Q)G(k—q, io, V(—q) ~imt , sgn(d,)mo:00, 1, =1/(277,,) (12)

where we introduced the transport relaxation time 7:

1 a0’ 2
=2 N(0) [ S | Vke,0) |7,

Tir

(13)

with the Fermi momentum kp, the impurity concentration n;, the density of states at the Fermi surface N(0), and the
angle 0 between the incoming and outgoing electron momentum.

Solving Eq. (4), we find
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Oy =0, +7T 2 k(w,,——m,,,)sgn(w,,,)Jr ! sgn(@,) , (14a)

m=—co Ttr

€e=¢€, X=0, b=(e/m)H . (14b)

X is equal to zero because the electronic density of states is assumed to be symmetrical with respect to the Fermi surface.
We are now in a position to calculate the local-space representation of the components G4 of the full normal-state
Green’s function:

KF ~ (2
—_— — —_— A 15
sgn(m,,) v | x—Xx' ! f d (s) , (15a)

G (X x' l(() )=-——————-ex
L2220 27vp | x—X' |

i |kpr
p F+ opm

with vp the Fermi velocity calculated from the isotropic Fermi-gas picture and
G3 4(X,X Wy ——[612 X, X’ tw,,)] s (15b)

where the upper sign in Eq. (15a) belongs to G;. The off-diagonal part of the Green’s function G is determined by Eqgs.
(2) and (5):

0 0 0 @ 0 0 0 G1-2,,-G3

0 0 &, O 0 0 Gy°252°G? 0

0 & 0 0 |™~ 0 Gt-3,3G, 0 0 ’ (16)
® 0 0 O G3-3,4G, 0 0 0

where X, ;4 denote the off-diagonal elements of the 4 X 4 total self-energy matrix. It was already pointed out by Wertha-
mer and McMillan® that the interactions significant for superconductivity are of very short range in local space. It is
therefore a good approximation to assume the self-energy contribution of the form

2(x, X iw,)=2(X,iw,)8(x—x') . (17)

From the general structure of the self-energy and because of the result (15), it becomes obvious that 2,3 ;=(Z,; ,)* and
®; 4=(P,,)*. Therefore we can concentrate on the evaluation of the two matrix elements @ ,:

D, 5(x,iw,)= f d%y G, 2(X,Y,i0,)201 2 ¥,i@, )Gy 1 (¥, X i0,)*

ke
2mvE

UF

d3 . . , ieH ~ ie [y
f———-};—FEOI,Z(y,zw,.)exp — wniTSgn(w,.) [x—y.—2? fx ds A(s)

| x—
(18)
Using the explicit form of the local-space representation of the self-energy matrix element 2, , and introducing the

Coulomb pseudopotential u* in the standard form,?® we arrive at the followmg equations:

D) (x, tw,,)-——-—— 2 Mo, —wp)—p*10,,P, 2(y,zwm)+ 01 2P H(x,i0,) , (19)

( )

where we introduced the integral operator

2
kr d’ ieH
- I —2— 20
012 2mvp f |x_y|2exp m SE0(@n) %=yl f ds Als) 20
The terms in Eq. (19) are of the form

3 3
S de};|2‘exp —B|x— yl—-2—f ds A(s) |f(y)= [ LiTre"P ~Blr| -1 |V~ k‘“r) fx), @b

_ r

l

as was shown by Helfand and Werthamer.” Equation (19) X1,200,)f1,2(x)=0,f1,5(x) , (23)

clearly allows separation of variables: where the X, ,(@,) are the eigenvalues of the operators

D, o(x,iwy)=A sliwy)f12(X) , (22) O,,,. The result (21) allows one to transform the integral
’ ' N _ equations (19) into differential equations of infinite order,
where the f ,(x) are the solutions of equations from which we can determine the eigenvalues X »(@, ).
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As we are only interested in the upper critical field of the
system, we have to keep only the smallest eigenvalues:

ST LR
X tan~! q\/a )
| @, | TieH sgn(&@,)/m
(24)
with
a=eH_ ,(T)v} . (25)

We finally arrive at two equations for the frequency part
of the off-diagonal Green’s function:

)=7T Y, [Mag —0m)—p* W1 (0B} 2ioy)

@

Kl,z(iw,,

<

+7t X1 (@Bp)A ) Sliwy) (26)

with w, the cutoff frequency usually chosen to be an in-
teger multiple of the Debye frequency. Obviously
Xyliw,)=[X,(iw,)]* and Eqgs. (26) allow two p0551b1e
choices for the gap function, (i) A,=A # or (i) A,=—A%,
and we make use of one of the two equatlons (26) to cal-
culate the complex function A,(iw,). We define

Aliw,)=Aliw,)=7lio,)+iblio,), (27a)
X((@,)=X(@,)=X (&,)+iX(@,) . (27b)
The solution is
Z,(iw,,)=1rT2[Mw,, —@p,)—p*]
X [X, (&, )A Pi@m,)—X; (0m)Aliwp,)]
+at (X (BB, (iw,) —X (@) (iw,)]
(28)
Z,—(iw,,)=17T2[Mco,, — ) —p*]
X [X, (&, )A (iom)+X(@p)A, (iwom)]
+7t L [X (@) A (0, +X(@)A, (iw,)]
(29)

which, together with Eq. (14a), completely define the elec-
tron Green’s function of the superconducting alloy. The
parameter a, for which the system of equations (14a), (28),
and (29) has nontrivial solutions for A, and A,, defines the
upper critical magnetic field accordmg to Eq. (25).

It is interesting to note that the imaginary part of the
gap function A; can be interpreted—according to Fenton
and Psaltakis?—as the gap function of triplet Cooper
pairs which are antisymmetric in time. Thus, Pauli limit-
ing leads to the interesting physical behavior of triplet
pairing even in conventional superconductors. If we use
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all the symmetries connected with the functions involved
in Eq. (29), we furthermore see that the part connected to
the Coulomb pseudopotential u* cancels in summing over
the m, with the result that the influence of the Coulomb
interaction influences the triplet pairs only via the gap
function A, of the standard singlet pairs.

If we neglect Pauli limiting, Eqgs. (14a), (28), and (29)
reduce to a form already reported by Schachinger

et al.*h 2

Moy —0m)—p* 18 (i0p)

Z,,(iw,,)=1rT§ e T— , (30)
Op =0y +7T >, M, —0p, )80y, ) + 7t | 5g0(Dy) ,
(31)
with
X(@,)=—= [ dg exp(—gPtan~"lg(a/ |5, )] .
a
(32)

It was also shown in this paper that Eqs. (30)—(32) reduce
to the “dirty-limit” equations (¢, to «) used by Rainer
and Bergman'? to calculate functional derivatives of H,,.
If we furthermore introduce the two-square-well model
for the A(w, —®,,), i.e., use the approximation®®

Mo, —wp)=M0)8(0, —v,)0(w, —v,,) , (33)

with O(x) the step function, Egs. (30)—(32) reduce to the
results of the WHH theory, with X ~!(&,) and t, renor-
malized by a factor of 1/[14+A(0)]. A(O) is the mass-
rehancement factor in the BCS limit of the strong-
coupling theory. Finally, if we introduce the renormal-
ized Fermi velocity vg=uvp[14A(0)], we arrive at the
WHH theory formulas as they were quoted by Decroux
and Fischer?” and as they were used by Orlando et al.'®

In closing we want to remark that in the “clean limit”
(t4 =0) the WHH theory in their 1+A(0) renormalized
version shows no A(0) dependency at all, because all the
1+A(0) terms cancel. This implies that, at least in the
clean limit, there should be no dependency on strong-
coupling parameters.

III. NUMERICAL RESULTS

A. Niobium

In a first step we investigate how strong-coupling ef-
fects the theoretical predictions for the transition-metal
niobium and we compare the results of our calculations to
experimental data. The material niobium is of special in-
terest because there are three different sets of a?F(Q)
spectra available®® and the system was recently investigat-
ed experimentally very thoroughly by Laa et al.3"3? in its
impurity dependence.

As H_, of niobium is of the order of 3—5 T, we can re-
strict our study to Eqgs. (30)—(32) because there is no need
to include Pauli paramagnetic limiting (PPL) to this cal-
culation. Furthermore, the different sets of a?F({) spec-
tra allow one to investigate how, if at all, the spectrum in-



fluences the predictions of the theory. Figure 1 presents
the spectra; spectrum I (dotted line) was calculated by
Butler et al.** from band-structure calculations, spectrum
II (dashed line) was measured by Arnold ez al.,>* and fi-
nally spectrum III (solid line) was reported by Robinson
and Rowell.>> We see that the spectra differ substantially
from each other. The mass-enhancement factor and the
Coulomb potential u* are for a T, =9.112 K and a cutoff
frequency of w,=6wp=171 meV (wp is the Debye fre-
quency): 1.11 and 0.33 for spectrum I, 1.0 and 0.175 for
spectrum II, and 0.983 and 0.113 for spectrum III. (The
Nb sample with a nitrogen content of 0.3 at. % and a T,
of 9.112 K was chosen because the impurity data of Laa
et al.’! indicated that this sample had an almost isotropic
electron-phonon interaction.)

Figure 2 presents the reduced upper critical magnetic
field h.,= |H.»/[(dH.,/dT) | r,T] | in the clean limit

(t, =0) as a function of the reduced temperature
t=T /T, for the three spectra under consideration. In the
region 0.4 <t < 1.0 the deviations of the three different re-
sults are within plotting accuracy, but at lower tempera-
tures the three curves start to deviate from each other (see
inset 1), with the largest difference at t =0. We see that
spectrum III with the largest weight in a’F(Q) in the re-
gion 0> () >8.0 meV also gives the largest 4.,(0). This
result is in agreement with the dirty-limit results for the
functional derivative 8h,,(0)/8a’F(Q) by Rainer and
Bergman (Fig. 10 of Ref. 13), from which we find that the
most important frequencies for h.,(0) are in the region
4> Q) >8 meV, with a maximum at about 6 meV. Thus it
is the specific shape of the spectrum in this region which
actually determines the low-temperature behavior rather
than the value of the mass-enhancement factor A, which is
often regarded as a measure of the low-frequency weight
in a?F(Q). [A similar result for A ,(¢) was already re-
ported in the theoretical study by Schachinger et al.?!"?
for the case of CuyMogSes.] The calculations clearly
prove that in contrast to the BCS-type WHH theory, a
strong-coupling theory shows a distinctive influence of
the shape of the electron-phonon—interaction spectral

2.00
1.60 .

o I
~ 1.20 »
3
'S
™
s 0.80

il >
0.0 4.0 8.0 12.0 16.0 20.0 24.0 28.0
w [(meV)

FIG. 1. a?F(Q) spectrum for niobium as it is reported by
Butler et al. (Ref. 33) (dotted line, “spectrum I”), by Arnold
et al. (Ref. 34) (dashed line, “spectrum II"’), and by Robinson
and Rowell (Ref. 35) (solid line, “‘spectrum III”).
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FIG. 2. Reduced critical field h.,=H,.,/[(dH.,/dT)T,] as a
function of the reduced temperature t=T/T,. The solid line
connects the results for spectrum II. Spectrum I is presented by
solid squares, spectrum II by solid circles, and spectrum III by
solid triangles.

function on the upper critical field. This point becomes
even more transparent in Fig. 3, where the parameter a(?)
which is proportional to H,,/v# is plotted versus the re-
duced temperature f. Spectrum III gives the largest
values for a(t) and spectrum I the smallest ones, with the
consequence that the Fermi velocity has to be larger in
case of spectrum III in order to give the same experimen-
tal H,, at a given temperature as for instance for spec-
trum I.

Unfortunately, in deriving *F(Q) data from tunneling

01

008 1

—1I

alt) !
006
004
002

002 04 06 08 10
f
FIG. 3. Eigenvalue a(z) in 10'?2 T/(m?/s?) as a function of the
reduced temperature for the three spectra of Fig. 1.
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experiments a quadratic fit is performed in the low-
frequency range, the range which is important for the size
of h.,(0). Thus, fitting theoretical h.,(t) data to the ex-
periment will not result in a clear answer to the question
of which of the three spectra is the “correct” one, but it
will give a tool with which to perform this quadratic fit
more accurately in future inversions of tunneling data.
Thus it is rather a question of personal taste that we fi-
nally fit the theory to the experimental H,,(T) data*? for
the polycrystalline Nb sample with 0.3 at. % nitrogen us-
ing spectrum III. The sample cannot be regarded as clean
and therefore we have to fit the transport relaxation-time
parameter ¢, and the Fermi velocity vr. As vp enters
Egs. (30)—(32) only via a and not explicitly, it is obvious
that the reduced critical field is only a function of ¢, and
can be calculated as |a(T)/[da(T)/dT |1, T.]|. There-

fore 7, is to be fitted to give one of the experimental
values and we chose the point 7=5.0 K with a
B.,=283.2+0.94 mT, which results in an A, of
0.42710.0014. The theory reproduces this result for a
t, =0.76 meV and this fit is already sufficient to repro-
duce the experimental h.,(t) over the whole temperature
range. (If this were not the case, the quantum-mechanical
model would have been incomplete.) vy plays only the
role of a factor of proportionality and can be fitted to any
one of the actual B,, values. We find vp=0.486x 10°
m/s, and Fig. 4 proves that the theory fits the experiment

500
J
400
t, =0.76 meV
=~
N
AN
\
AN
300 N
\
\
—_ \
E \
= t,=0 \\
o \
T 200 \
= \
\
\
\
\
100
0
S Tk ©

FIG. 4. Results of a full strong-coupling calculation for the
niobium polycrystal with 0.3 at. % nitrogen. The solid line
represents the results for a ¢, =0.76 meV and for a Fermi velo-
city vr=0.468 X 10° m/s. The dashed line gives the result for
the “clean” limit. The solid circles represent the experimental
data by Laa (Ref. 32). (The experimental error is about 0.35%.)
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almost perfectly. (If we use one of the other spectra we
will find somewhat different values for 7, and vp, and
the agreement between theory and experiment is not quite
as good in the low-temperature region ¢ <0.35.) A close
examination of Fig. 4 reveals that there is a systematic de-
viation of the experiment from the theory close to T, and
at low temperatures. We believe that these deviations are
due to the remaining anisotropy in the sample, as one can
clearly see from the T,-versus-impurity curve shown in
Ref. 31 and from the results reported by Seidl et al.¢
This may also account for the rather small value of 7
necessary to get a proper fit. The Fermi velocity found is
in very good agreement with the average Fermi velocity
for niobium reported by Crabtree et al.’

In conclusion, we can state that even for the rather
weak-coupling material niobium, a strong-coupling
analysis of the experimental data is essential to achieve
agreement between theory and experiment over the whole
temperature range. It is not necessary to include PPL,
and spin-orbit scattering is of no importance at all.

B. The A15 compound V;Si

The experimental results reported by Foner and
McNiff?® for a V,Si single crystal with a T, of 16.4 K
and a residual resistivity py of 52 nQQm were already
analyzed by Orlando er al.'® using a strong-coupling re-
normalized WHH theory. They found that in order to ex-
plain the experimental data, PPL as well as substantial
spin-orbit scattering had to be included in order to repro-
duce the data in a satisfactory way.

In the meanwhile, a?F(Q) data were derived by
Kihlstrom®® from tunneling experiments, by McKnight
et al.*® from far-infrared-absorption experiments, and the
generalized phonon density of states G({)) was found by
inelastic-neutron-scattering experiments.** It was shown
by Mitrovi¢ and Carbotte*' that a*F(Q) data found by re-
scaling the G(Q2) data by a constant factor to give a A of 1
was sufficient to achieve a reasonable agreement between
the results of a strong-coupling calculation and thermo-
dynamics data found by experiment. It was also shown
by these authors that the far-infrared-absorption—derived
data lead to a less satisfying agreement with the thermo-
dynamics data of V;Si. Very recently, Kihistrom demon-
strated in his paper that the a’F(Q) of V,Si does not
show a “phonon softening” as the samples approach
stoichiometry, as was reported for other 415 compounds;
the weight is simply increased for all frequencies. Thus it
seems to be of interest to compare the results of a strong-
coupling H,, calculation using the rescaled G(Q) with
A=1.0 and the a’F(Q) data found by Kihlstrom for his
sample 3 (7T, =15.4 K, A=0.89) rescaled to give a A of
1.0. The resulting spectra are compared in Fig. 5 and one
immediately recognizes that the spectrum by Kihlstrom
(solid line, spectrum I) shows less weight at low frequen-
cies than the rescaled G({) distribution (dotted line, spec-
trum II).

We have to include PPL and therefore the complete set
of Egs. (14a), (28), and (29) has to be solved simultaneous-
ly. In a first step the results for the two spectra are com-
pared in the clean limit for T=0 K. (7,=16.4 K in both
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cases; w, =6wp =267 meV, giving a u* of 0.136 for spec-
trum I and of 0.152 for spectrum II.) For the reduced
upper critical field A.,(0) without PPL we find 0.7255 for
spectrum I and 0.7267 for spectrum II as a result of the
slight differences in the spectra at low frequencies. (A
WHH calculation would give, for A.,(0), 0.69.1%) If we
include PPL the reduced field A, is suppressed substan-
tially at low temperatures resulting in a h.,(0) of 0.665
for both spectra. Thus it is no longer of any importance
which of the two spectra is actually used because a small
gain in h,, is immediately suppressed by a more effective
PPL.

We decided to use spectrum I for further calculations.
Again we have to fit the “free” parameters ¢, and vr to
the experiment. In contrast to the Nb case, it is now no
longer possible to decouple the effects of ¢, and vy be-
cause of Eq. (24). Nevertheless, it is possible to fit the two
parameters quite independently, keeping in mind that
close to T, PPL is not effective and the theory without
PPL [Egs. (30)—(32)] can be applied. Thus we fit ¢, to
give one of the high-temperature k., values and then in a
second step we have to fit vr to reproduce the whole
h.,(t) curve using the full theory. Having established
both parameters, the theory has to reproduce the H, (T)
curve correctly.

Figure 6 presents the results of such a calculation. The
open squares in this figure correspond to the experimental
data,'®?? which were read off Fig. 8 of Ref. 16 and Fig. 1
of Ref. 23. The solid curves correspond to the results of
the strong-coupling calculations including PPL. We see
that with a ¢, =5.1 meV and a Fermi-surface velocity of
vp=0.168 X 10° m/s the experimental data are reproduced
perfectly. This vp value is in excellent agreement with
data found by Klein et al.** from band-structure calcula-
tions ({vp)=0.172X10% m/s). In order to emphasize the
effect of the PPL we also include the results of a strong-
coupling calculation without PPL (dashed lines). The ef-
fect of the transport relaxation time on H,, becomes

0.80

0.64

oa?F (0)

0.0 8.0 16.0 24.0 32.0 40.0 48.0 S6.0
o (meV)

FIG. 5. aF(Q) spectrum for V;Si. The dotted line corre-
sponds to the generalized phonon density of states G({2) as it
was measured by Schweiss er al. (Ref. 40); the solid line
represents the o?F(Q) spectrum as it was measured by
Kihlstrom (Ref. 38). Both spectra are renormalized to give a
mass-enhancement factor of 1.0.
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FIG. 6. Comparison theory—experiment for V;Si. The open
squares correspond to the data for the V;Si single crystal report-
ed by Foner and McNiff (Ref. 23). (Some errors may arise from
the fact that we had to read the data off the graphs in Refs. 16
and 23.) The solid line represents the results of our calculation
fora t, =5.1 meV and a Fermi velocity of vy=0.168 X 10° m/s.
The results of a calculation without Pauli spin paramagnetism
(dashed lines) and for the “clean” limit are included for compar-
ison.

transparent from comparison to clean-limit results
(t,=0).

If we take the electronic density of states at the Fermi
level, N(0)=13.64x10'° states/meV cm®spin,*! and the
above Fermi velocity, the Drude plasma frequency be-
comes h{l;=7.484 eV. This gives, together with the
above value of ¢, residual resistivity of pp=42.5 nQQm,
which is in excellent agreement with the experimental
value of py concerning the still substantial uncertainties in
determining the proper N (0) value of V,Si.*!

In closing, it is necessary to emphasize that this calcula-
tion does not include spin-orbit-scattering contributions;
they are obviously not necessary to explain the experi-
ment. The effect of such contributions in the WHH
theory is that the H,, values calculated at low tempera-
tures are enhanced. This is necessary as the BCS-related
theories usually result in intolerable deviations to smaller
H,, values at low temperatures, while the high-
temperature region is explained by these theories in a
quite satisfying way. From the above calculations, it be-
comes transparent that it is the impurity scattering in the
clean limit and the electron-phonon—interaction effects,
together with a strong Pauli paramagnetic limiting, which
govern the temperature dependence of H,, in V;Si.

IV. CONCLUSION

In this paper we presented for the first time full
strong-coupling equations on the imaginary axis for the
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upper critical magnetic field H,, which are valid over the
whole temperature range. These equations include the ef-
fect of momentum scattering of the conduction electrons
at randomly distributed impurity sites and the effect of
the Pauli spin paramagnetism. The equations do not in-
clude the effect of spin-orbit scattering. It was found that
the Pauli spin paramagnetism results in a complex gap
function, where the real part could be interperted as the
standard gap function related to singlet Cooper pairs,
while the imaginary part was interpreted as a gap function
which is related to triplet Cooper pairs antisymmetric in
time.

The results of numerical calculations were tested
against experimental data reported for an almost isotropic
polycrystalline niobium sample and the data found for a
V,Si single crystal. In the first case we find good agree-
ment between theory and experiment, except for some
minor deviations at low temperatures and at temperatures
very close to the critical one which we believe are related
to a remaining anisotropy of the sample. It was not
necessary to include PPL in order to explain the experi-
mental data.

It becomes necessary to include PPL in the case of
V3Si. In this regard we agree completely with the analysis
of Orlando et al.,'® but in contrast to their results we do
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not have to include spin-orbit scattering, and the value
found for the Fermi velocity is larger and in better agree-
ment with the results of band-structure calculations.

It is the main result of this study that the strong-
coupling correction results in larger values for H,, in the
low-temperature regime compared to the results one
would achieve by BCS-related calculations. This increase
in H,, is sufficient to explain the experiment even in this
regime (except eventual anisotropy effects) and we con-
clude that in most cases where it was necessary to include
spin-orbit scattering in order to fit theory to experiment
this contribution was only a substitute for the strong-
coupling effects apparent in this temperature regime. We
also found that the low-frequency part of the a’F(Q)
spectrum mainly controls the low-temperature behavior of
H_,, but this result is open to more rigorous proof by cal-
culating the functional derivatives of h.,(0) with respect
to changes in a?F(Q), which will become our next task.
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