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Critical and tricritical microscopic exponents of a Fermi-Bose mixture
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Critical and tricritical "microscopic" exponents (q, v, z) of a weakly interacting Fermi-Bose mix-

ture are calculated in an approximation scheme. The scheme is based on an approximate form of
the effective, low-momentum boson Hamiltonian derived in a previous paper and the Landau-theory

equation of state. The approximate form is quadratic in boson operators with nonzero momenta.

The scheme predicts its own range of validity. In the critical region of the condensed phase, the

range is given by a condition reminiscent of the well-known Ginzburg-Levanyuk criterion. In the
tricritical region, ho~ever, the scheme is exact. An attempt has been made to extract some informa-

tion concerning the underlying dynamical structure which leads to the static critical and tricritical
behavior observed. It is found that the spatial Fourier transform of the dynamic correlation func-

tion of order-parameter fluctuations is periodic in time with time period large compared to the in-

verse thermal frequency in the critical and tricritical regions. The Fourier transform in space and

time conforms to the prediction of Halperin and Hohenberg. A dynamic-scaling assumption at a
tricritical point is also verified. The value of the dynamic scaling exponent z, calculated with the aid
of this assumption, agrees with that expected on the basis of conventional (Van Hove) prediction.

I. INTRODUCTION

In a previous paper' (hereafter referred to as I), a sys-
tem of weakly interacting spinless bosons and spin- —,

' fer-
mions was introduced as a model to examine the tricritical
behavior of a He- He mixture. The fermion amplitudes
and the large-inomentum boson amplitudes were eliminat-
ed from the problem, using diagrammatic perturbation
theory, to obtain an effective, low-momentum boson
Hamiltonian. It was shown in another paper (hereafter
referred to as II) that if in the effective Hamiltonian, fol-
lowing Bogoliubov, the order parameter (boson operators
in the zero-momentum state) is replaced by a c number M
and order-parameter fluctuations (boson operators with
nonzero momenta) are completely ignored, a Landau-type
expansion for an appropriate potential 0'(M) =0+hM is
possible„where 0 denotes the thermodynamic potential
per unit volume and h the field conjugate to the order pa-
rameter. The main aim of the present work is to calculate
values of the critical and tricritical "microscopic" ex-
ponents, viz. , ri, v, and z, for the system considered in I
and II, in an approximation scheme which, in the effec-
tive Hamiltonian, takes into account the order-parameter
fluctuations to lowest order. These exponents are micro-
scopic in the sense that they belong to a class different
from the class comprising of the exponents a, P, y, etc.
used for discussing macroscopic thermodynamics at criti-
cality.

A move was initiated in I to understand how various
scaling assumptions at a tricritical point ' may emerge
froin a statistical-mechanical theory of tricritical behavior
which starts with a microscopic, quantum-mechanical
basis. The effort led to a self-consistent Hartree-Fock
(HF) theory in II which starts with the quantum-
rnechanical description in I. It was found that the scaling
form of thermodynamic potential per unit volume in HF

theory conforms to the corresponding scaling assumption.
This work aims at accomplishing the unfinished task, viz. ,
to verify the scaling assumptions for static and dynamic
correlation functions of order-parameter fluctuations,
starting with the same quantum-mechanical description.
It must be added that the main aim of the work, however,
does not require a quantum-mechanical basis. Another
reason for the choice of the quantum-mechanical descrip-
tion in I for this work is explained below.

The Landau expansion obtained in II could not lead to
a Ginzburg-Levanyuk (GL) criterion for its validity in
the critical region, for it was obtained by ignoring order-
parameter fluctuations completely. This author intends to
derive a GL-type criterion here taking the fluctuations
into account. As far as the author is concerned, the
natural choice for a basis, to achieve this goal, is that in I.

In Sec. III of this paper, the GL-type criterion for the
critical region is derived. In the tricritical region, howev-
er, the criterion reduces to a trivial one (see Sec. III). The
latter explains why values of the tricritical exponents, for
d=3, in the Riedel-%egner theory, are the same as the
corresponding Landau-theory values. It may be men-
tioned that these authors, too, had noted in one of their
publications that the GL criterion for the molecular-field
behavior holds, at all temperatures, only for higher-
dimensional (d~3) tricritical systems. But since an ex-
amination in sufficient detail was not carried out, prob-
ably because these authors were unable to exhibit a tricrit-
ical point as the terminus of a first order coexistence
line, ' the need is evident to justify this remark.

The fields ( T,p&,p4) appear as the natural variables in
the discussion to follow; p3 and pz, as in I and II, are the
partial chemicals conjugate to the mean number densities
of ferrnions and bosons, respectively, in Q. The variables
( T,p&) will be regarded as the independent ones, with p4
playing the role of a parameter.
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It is interesting to examine underlying dynamical struc-
ture which leads to static critical and tricritical behavior
of the system. In Sec. IV it is shown that the spatial
Fourier transform 9F(q, t) of the dynamic correlation
function of the order-parameter fluctuations is periodic in
time. The time period is large compared to the inverse
thermal frequency in the critical and tricritical regions.
This indicates that, for dynamic critical phenoinena,
fields which depend on time small compared to the in-
verse thermal frequency are relatively unimportant (see
Sec. V also). The Fourier transform in time of 9F(q, t)
conforms to the prediction of Halperin and Hohenberg. "

The dynamic scaling exponent z has been calculated in
Sec. IV with the help of a scaling form found to hold for
the function 9P(q, t) at criticality. The value of z agrees
with that expected on the basis of conventional predic-
tion. ' The value is also very close to that estimated from
the e expansion of previous workers. '3'~

An outline of the content of this paper is as follows:
The effective boson Hamiltonian is approximated by a
quadratic form in Sec. I. An equation of state (i.e., rela-
tionship between h and order parameter M) is derived
from this Hamiltonian. It is found that the first approxi-
mation to this equation, which is nothing but the equation
of state in the Landau's theory, is adequate for the goals
to be achieved in this paper. In Sec. III an expression for

static correlation function of order-parameter fluctuations
is derived using the quadratic Hamiltonian and the
Landau-type equation of state. The exponents (7),v) are
calculated using this expression. The scaling assumption
for the static correlation function is verified in Sec. III.
The GL-type criteria for critical and tricritical regions are
also derived. In Sec. IV the dynamic correlation function
is calculated and a dynamic scaling assumption at a tri-
critical point (T„p3, ) is verified. The dynamic scaling
exponent z is also calculated. Section V contains a discus-
sion related to this work. It is pointed out that a
fluctuation-dissipation (FD) relation cannot be satisfied
under the approximation of replacing boson operators in
the zero-momentum state by a c number. In Appendix A,
dependence of quantities, used in the derivation of the
critical exponents, on th= elementary fields T —T, and
p 3 p 3g is discussed. Appendix B contains steps leading
to the FD relation alluded to above.

II. LANDAU'S THEORY AND ORDER-PARAMETER
FLUCTUATIONS

The effective boson Hamiltonian (in units such that
irt= 1) of I is

2

H, =c,+ y
m4

u4
p4 bqbq + g bq bq bq bq 5q +q q +q

e e

+ b b , b b , b b , 5,p'2 qi ql —ql q2 q2 —q2 q3 q3 —q3 ql+q2, —q3

I I I

ca ——V[ —,u3(n3) +u34n3n4+2uq(n4) +O(u34)], (2)

@4=@4 u34n 3 +O (u 3—4)
F 2

FBn3
Q4 =Q4 —

2 Q34
p (4)

u',, 8'nF
Q6=

6 BP3

k
n3 2V 'g——exp P —p3

m3

T T

2

ng V' g exp P ———p4 —1 .
ls l&s, .

Here, u3, u4, and u34, respectively, denote the fermion-
fermion interaction strength, the boson-boson interaction
strength, and the boson-fermion interaction strength. It
has been assumed in I that u4 ——O(u34(Bn3/Bu3)). All
q's in (1) are such that 0&

~ q ~
&p„where p, is small

compared to the boson thermal momentum

A,g '(T) =(mg/4n. p)'i2 .
The expression for co, second-order contributions to p4,
and third-order contributions to u4 will not be needed for
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calculations to follow.
The thermodynamic potential per unit volume of the

system can be written as

. 1+e p
k

k
P— P—3

Pl 3

Q(T p3,p4, h)=Qi(T p3,p4)+Q2(T, p3,pq, h), 1 —exp —P —p4
P7f 4

(12)

where hV bo bo

2 vV vV (13)

Q, = —(p V) 'ln=F,

Q2 ———(PV) 'ln Tr exp[ P(H, +—H, )],

(10) In (13), h denotes the field conjugate to the real part of
the order parameter bo/~V Up.on replacing bo/~V by
a c number M, one gets

H, +H, =co+h &+h2,

co ——co+ V[( —p4+usf )M +(u4+3u6f)M +usM hM—],
bi= 2 g E(q)(bqtbq+b qb q)+ &

UM g (bqb q+b qbq)

(2u4+9usM~)M t t t (uq+9u6M')
yz

'
(bq, +q, bq, bq, +bq, bq&bq~+q2)+

3u M

0] C2 93 0)

~ ~ ~ p I)4

bq, bq, b», q. q, +q, .q, +q.

(14)

(16)

+
3&& g (bq bq bq bq +q bq +bq +q bq bq bq bq )

g), $2, i/3

btb, b b,btb, 5,p'2 0]+Op

I I I

E(q) = —p,4+4(u4+3u6f)M +9u6M
PFl 4

U=2(u4+3u6M ),
f=V ' g 1.

Iel &s,

(18)

(19)

(20)

The primed q surnrnations above exclude the point q=O.
In co as well as E(q), 3u6f appears as a correction of or-
der u34 to u&, and will be omitted. Similarly, u6f ap-
pears as a small renormalization of p4 and will be omit-
ted. The unknown M wi11 be determined by the require-
ment that the thermodynamic potential per unit volume
be rninirnum with respect to variations in M.

In a microscopic calculation of the exponents (rl, v,z),
one needs explicit expressions for correlation functions of
order-parameter fluctuations. For the present system, M
is the order parameter and the boson operators b& with
q&0 are fluctuations in M. The simplest way to obtain
expressions for correlation functions of the fluctuations
corresponds to starting with a truncated Bogoliubov-type
Hamiltonian where the fluctuations are retained up to

second order. From (14) one finds that, for the system
under consideration, the Bogoliubov-type Hamiltonian is

Hq ——co+h (21)

In the following sections, various ensemble averages will
be calculated with this quadratic Harniltonian. The equa-
tion for M which will be used in calculating these aver-
ages will be derived now by demanding stationarity of Qn
with respect to M, where

Qs=Q& —(PV) 'ln Trexp( PHz) . —
The Hamiltonian Hq can be diagonalized by defining a

new set of creation and destruction operators (eq, eq) with
the help of the Bogoliubov transformation. Upon di-
agonalizing, one gets

Ha=co+ 2 g' I[E (q) —U M ]' E(q)]+ ~ g' I[E (—q) —U M ]' I(cq~q+~q~q) . (23)
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Consequently, the thermodynamic potential per unit volume

Qa ——Qi+ V 'co+(2V) 'g' I[E (q) —U M ]'~ E—(q) j+(PV) 'g'ln(1 —expI f3[—E (q) U—M ]'~
j } . (24)

From (24) one gets the following equation for M:

h =232M+434M +6Q6M

2 p4+4Q4gl 2Q4g2 ~

Ay =Q 4+ 9Q6g] —6Q6g2,

E(q) expIP[E (q) —U M ]'~ j+1
[E (q) —U M ]' exptP[E (q) —U M ]'~2j —1

UM 1 expIP[E (q) —U M ]'~ j+1
[E (q) —U M ]' exp[P[E (q) —U M ]' j

—1

(25)

(26)

(27)

(29)

Equation (25) is not the same as that in Landau's
theory, inasmuch as the coefficients A2 and A4 are func-
tions of M. As explained below, these are, however, in-
dependent of M to the leading orders in the interaction
strength u 34.

In Aq, the terms 9Q6g~ and 6Q6gq are small corrections
to u4, the reason being u4 is of order u34 while these
terms are of higher order. In Aq, 4u4gi and 2u~2 ap-
pear as small corrections to the first-order term of p&,
viz. Q34ri 3 [cf. Eq. (3)]. Thus Eq. (25) can be written as

A~ 2@4M +4upf +6Q6M (30)

where pz and u&, respectively, are correct to 0(u34) and
0(u34} only. Equation (30) is the Landau-type equation
of state. The expression, for the thermodynamic potential
per unit volume, consistent with (30), is

QL ——Qi+ V 'cp+ ( p4)M +u P—f +u6M hM . —

(31)

This is of the form of the Landau expansion appropriate
for discussing tricritical behavior. From (31) one finds
that only those solutions of (30) are admissible which
satisfy the condition

128m Q4
p4&

777 3Q 34

(34)

In both the cases, u6 & 0 (cf. Sec. IV of I).
In the region u4 g 0, those points correspond to the con-

densed phase where ( u 4 ) +4@~6p 0; those where

(u4) +4p, 4u6 &0 correspond to the normal phase. The
equation (u4) +4p4M6 ——0 corresponds to the coexistence
curve (CXC}, in the T-pz plane, along which the normal
phase (M=O) and the condensed phase (M = —u4/2uz)
coexist. In the region u4g0 there is no critical line. The
coexisting phases become identical at the terminus of the
CXC. The terminus, usually referred to as the tricritical
point (TCP), is nothing but the intersection (T„@3').
Therefore, it is also the terminus of the critical line p, 4

——0.
A possible form of the curves p4 ——0 and u4 ——0 in the

T p3 plane, for the case of degenerate fermions, is depict-
ed in Fig. 1, and that for the case of nondegenerate fer-
mions is depicted in Fig. 2. The positive and negative
sides of the curves are indicated in each of these figures.
The dashed lines correspond to the CXC. In these fig-
ures, the hatched regions correspond to the normal phase.

( @4+6u'4M —+15u 6M) ~ 0 . (32)

The conclusions drawn from the analysis of (30)—(32), foi
h=O, are stated below. These will be used for calcula-
tions in the remaining sections and Appendix A.

In the region Q4 & 0 in the T-p3 plane, those points cor-
respond to the normal phase (h=O, M=O, h/M&0)
where pal&0; those where p4&0 correspond to the con-
densed phase ( Ii =0, M+0). The curve p4 ——0 is the criti-
cal line. The intersection (T„p3,) of the curves p4 ——0
and u4 ——0 is also a critical point. If the fermions are de-
generate, the intersection exists, provided

64vr4 Q4
p4&

P2l 3Q 34.

(33)

In the Hmit of a nondegenerate Fermi gas as we11, the in-
tersection exists in the region p3 ~ 0, provided

FIG. 1. Qualitative phase diagram in the limit of a degen-
erate Fermi gas. Normal phase is possible in the hatched region
only. The dashed line corresponds to ( u4) +4p&u6 ——0.
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p~O, 0&~0
Tt J4t)

l
EJ l~o,~'j+~0 -:
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From (35}—(37), following Bogoliubov, one gets

S(q&0'T p3 p4 h): 4 ( bqbq+b qb

+b qbq+bqb q ) (38)

Introducing the following elementary Green's functions
defined with Ha, viz. ,

, (qr, q'~') = (T—,[bq(~)bq'. (r }]),
9',(q~, q'r') = (T,—[b t(r)b, .(r )]),

(39}9 3(qq, q 'r') = —( T,[bq (q )bq (r')] )

94(qr q w ) = —(T [bq(r)bq (q )])

FIG. 2. Qualitative phase diagram in the limit of a nonde-
generate Fermi gas. Hatched region corresponds to normal
phase. The dashed line represents the coexistence curve.

bq (r) =exp(Hiir)bq exp( Hri'7), —

one can write

S(q&0)= ——,
' [8i(qr, qr+)+ 93( qr, —qr+—)

(40)

Although these phase diagrams are different in several as-
pects, such as the segment T & T, of the line p3 p3i ly-
ing in the region @4~0,u4&0 for the degenerate case,
whereas this segment lies in the region p4&0, uq~0 for
the nondegenerate case, values of critical and tricritical
exponents are same for both cases. This conclusion up-
holds the universality hypothesis regarding tricritical ex-
ponents. As pointed out by Fisher and Sarbach, ' tricriti-
cal behavior has certain nonuniversal aspects too.

+9'3(qr, qq+)+—9'4( qq, qr+—)] . (41)

Here, 0&
~ q ~ &p, [p, &&As '(T)]. The symbol T, or-

ders the operators according to their q values with the
smallest to the right. q+ denotes the limiting value q+rl
as q) approaches zero from positive values. These Green's
functions can be calculated by solving equations of
motion for them. The equations of motion for the opera-
tors bq(q), bt q(q), etc. are required for this purpose.
From (21) and (40) we get these equations. For example,
the equation for b q(q) is

III. STATIC CORRELATION OF ORDER-PARAMETER
FLUCTUATIONS

b q(r}=E(q)b q(r)+ UM bq(q)
T

(42)

In this section the exponents (rl, v) will be calculated.
The scaling assumptions' for a correlation function at a
tricritical point will be verified. A GL-type criterion for
the critical region will also be derived toward the end.
The definitions of the tricritical exponents (il, v) can be
found in Griffith's paper. The calculations require ex-
pression for the spatial Fourier transform S(q) of the
static correlation function of the order-parameter fluctua-
tions. For a Fermi-Bose mixture these functions can be
written in the following manner:

S(q T,p3,pq, h)= V ' f d3r d3r'e'q'"

With the help of (42) and similar equations, one finds

a 9' i(qr, qr+ ) =E (q)9 i(qq, qr+ )
BT

+ UM 9'4( qr, qr+)+5—( —q)),

93( qq', qr+) —=E(q)9'—3( —qq, —qr+)

+ UM'$3(q~, qr+)+ g q}—, —
(43)

8
9'3(q~, qq+ ) =E(q)9'3(—qr, qr+ )—av.

where

XI (r r', T p3,p4, h), — (35)
+UM 9 2( q~, q~+), — —

(36)

1(r r';Tp3, p4, h}=(——, [g(r)+p (r)]—,
' [1((r')+p'(r')])

—( —,
' [g(r)+|( (r)])

x( —,'[y( ')+yt( ')]),

8'4( q1,qT+) =E—(q.)$4( qT,q~+)—
+UM 9'i(qr, qr+) .

P(r)=V ' gbqe'q',
e

(37)
The Green's functions above are expressed in the usual
Fourier representation. In units such that 4= 1, the repre-
sentation is

and the angular brackets, ( . ), denote an ensemble cal-
culatni with H, +H, . In what follows, the average, how-
ever, wi11 be calculated with HB.

9'(qr, q'r')=P 'ge " 9'(q, q', co„),
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where co„=2nn/P .Upon using (44) in (43), one gets the
following equations for the Fourier coefficients S(q, con ):

2

Ec(q) = [1+2(qj) ]'~
m4

(S3)

[ico„E(—q)]9'i(q, co n)
—UM 9'4(q, con ) = 1,

[i con+E (q)]9'z(q, con )+ UM 9&(q, con ) = —1,
[ico„E(—q) )9'i(q, co„)—UMz9'i(q, co„)=0,
[ccon+E(q)] &4(q, con )+UM'9', (q, con ) =0 .

In the normal phase, one finds

9'i(q, co„)=[ico„Ez(—q)]

&2(q, ~n) = [c~n—+E~(q)] ',
9i(q, co„)=0=9'4(q, co„),

EN(q) =(qz/m4 p4) —.
On using the well-known result for bosons, viz. ,

lim j3 ' g e " /(ico„—z)=(1—e@)
n even

(45)

(47)

1 1+(qg)
'7 2 [1+2( g)

—2]l/2

I+(qC) '
[1+2( g)

—2]i~2

g=(UM m )

(55)

(56)

From (56) one sees that in the region u4&0 in the T-p3
plane, for g to exist, M &

~
uq

~
/3u6. Thus, once again

one finds that in this region a critical line does not exist.
In view of (38), (47}, and (52), S(q&0) for the con-

densed phase can be easily written. One finds

exp[PEc(q)]+ 1
S(q&0)= —,

'
(ue —

Ue ) . (57)
exp Ec q —1

Upon using the fact that
~ q ~

&& A,a '(T), in the neighbor-
hood of a critical point including the TCP, one can write

—p4+2u~ +3u6M =0, (51)

which follows from (30) for Ii =O, M&0. This equation
will now be used to determine the Fourier coefficients
9'(q, co„) in the condensed phase. From (45) and (51) one
finds that

from (38), (44},and (46) one gets

1 exp[PEN(q)]+1
4 exp[PE~(q)] —1

In view of the fact that
~ q ~

&&A.ii '(T) (see I), one finds
from (48) that at any point on the critical line (p4 ——0) in-
cluding the TCP (p4 ——O=u4), S(q0)-q-'[1+R(q)],
where R(q)-+0 as q —+0. This shows that the exponents
il and ii, both equal zero. In the neighborhood of a criti-
cal point including the TCP, one gets

S(q+0)=[2PEN (q) ] (49)

Therefore, in the normal phase close to a critical point,

I"(r r')=— , , (50)
m4ka T exp( —

~
r r'

~
/g)—

8m. r —r'

where g=( rn4p4) '~ . T—he quantity g is the correlation
length in this phase. When pi is held fixed and T —Ti is
small, in view of (Al) (see Appendix A), one finds

g —(T —Ti) ", v= —,'. Similarly, for p, &
——p, &, and T y T„

it follows from (A9) that g-(T T, } ', v, = —,'.—
In the preceding section the domains of the condensed

phase have been obtained on the basis of the equation

m4
S(q&0)= [q +(g') ] ', g'=g/v 2 .

2

Therefore, the correlation function

(58)

I (r r')—m44T exp( —
I
r —r'

I
/g')

(59)
8m /r r']-

The length g' can now be identified as the correlation
length in the condensed phase. For fixed p& and small
Ti T, in view —of (A6), one gets

(2Cgm4) '~ (Tg —T) (60)

where v'= —,. From (A10) and (A17}, for p&
——pi, and

T ~ T„the corresponding result is

g'=(4Cim4) ' (T, —T) (61)

Ec(I 'q, laz, l 'a4) =I 'El(q, a2, a4) (62)

where v,
' = —,

' . It may be noted that the values of
(rl„v„v', ) here are the same as the corresponding
renormalization-group- (RG-) theory ' values for d= 3.

In the neighborhood of the TCP, u6 can be approxi-
mated by u6 given by (A16). Therefore, while Ez(q) and
PS(q), respectively, in (46) and (49), can be regarded as
functions of (q,ai), Ec(q) and PS(q), respcx:tively, in (53)
and (58), can be regarded as functions of (q, az, a4). Equa-
tion (51) gives M as a function of ( a i, a& ). Here,
az ———p, 4 and a4 ——u4. It is easy to see that El(q)
(I =X,C) and S'(q) =PS(q), respectively, scale as

S'(I 'q, la2, 1 'a4) =I 'S'(q, a2,a4),
with v, =P, = 2, provided M scales as

M(la2, 1 'a4) =I 'M(a2, a4),
=u Uq I [ico„+Ec(q)] ' [ico„Ec(q)]— —

Si(q, con ) =uq[lcon —Ec(q)] Uq[i&n +Ec(q)]
9'i(q, co„)= uq [ico„+Ec(q—)] '+ vq [ico„Ec(q)]—

(52)
+3(q~~n ) +4(q&~n }

(63}

with P, = —,. Here, I is a positive number. Equation (51)
shows that (64) holds. The scaling hypothesis for the
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TCP requires the scaling variables to be linear combina-
tions of the elementary physical fields T —T, and

p3 p3r Since a2 and a4 fulfill this requirement [cf. Eqs.
(A9) and (A10)], they have been chosen as the scaling
variables above. Equations (62) and (63) can be written as

Et(qa2, a4}= lq I
'Et +1 a2 a4

(65)

5'(q, az, ag)= Iq I

'S' +1,
Q2 04

and

Et(l "q, laz) =I "Et(q,ai) (67)

&'(lq, iaz) =I '"&'(q,a2), (6S)

with v= —,'. The scaling forms (62), (63), (67), and (68)
will be useful for calculations in Sec. IV.

Now (59) will be used to predict the range of validity of
the approximation made to calculate the exponents. The
approximation is valid provided the fluctuations in M
over distances of order g' are relatively small, or roughly
I"(r r') in (—59), for

I

r r'
I
-g', is small —in comparison

with I . This means

mgktt T
Sn e(' (69)

In view of (A6) and (AS), where the latter gives discon-
tinuity b,C in the specific heat C& &, at T = Tr„, (69) can

be expressed as

(rn4Tr„C2) ks
4v 2~e bC

(70)

Here, r=(T —Tr„)/Tr, . UPon substituting for Cz from
(A4) into (70) and taking rn4/m3 ———,, one gets

2
kg

I
r

I
»0.044e (71)

kg(Tg)hc

e=[m4u3„kF /Xa(T„)] .
The inequality (71}is the GL-type criterion corresponding
to the critical region. Its form is reminiscent of the GL
form. Since the calculations are performed in the high-
density fermion limit, the dimensionless quantity

(66)

with g, =0. The scaling form of the order-parameter
correlation function in (66} is essentially the same as the
corresponding outcome of the parameter scaling assump-
tion of Riedel and Wegner. ' '

In the neighborhood of a critical point far away from
the TCP, choosing a 3 ( = —p4) as the scaling variable ( u 4

is a constant), similarly, one finds from (46), (49), (51),
(53), and (58), that

IV. DYNAMIC CORRELATION
OF ORDER-PARAMETER FLUCTUATIONS

A dynamic scaling assumption for a TCP (Ref. 16) can
be stated as follows: In the neighborhood of the TCP, the
dynamic correlation function f'( r, a z, a 4, t) of order-
parameter fluctuations satisfies the generalized hotno-
geneity relation

' I ( I "r,l 'a3, 1 'a4, 1 't) = II (r,a2, a4, t) . (74)

Here, l denotes an arbitrary positive number while the ex-
ponents b„, bz, etc. are unknown quantities, the inputs of
the theory. a2, a4 are the scaling variables. In writing
(74) it has been assumed that field conjugate to the order
parameter is zero. It follows that the spatial Fourier
transform 9t(q, a2, aq, t) is also a generalized homogeneous
function:

9F(l q, l 'ai, l 'a4, 1 't)=19'(q, az, a4, t), (75)

where be —— b, . One o—f the aims in this section is to
show that (75) holds for the present system. The other is
to calculate the dynamic scaling exponent z.

To achieve these goals, an expression for 9F(q, t) will be
needed. In what follows, we will derive first an expression
for Fourier transform 9F(q, to} in space and time of I (r, t).
This will lead to one for 9F(q, t). Frequencies in 9F(q, co)
may range from —ao to + oo, but momenta will lie in
the range 0 & I q I &p, as in Sec. III.

In the present approximation scheme, 9t(q, co) is given
by

9F(q to) = f dt e [(bq(t)bq(0) ) + (b q(t)b q(0) )

+ (b, (t)b, (0) ) + (b,'(t)b', (0) )],
(76)

where

b~(t}=exp(iHBt)be exp( iH tit), — (77)

and the angular brackets denote an ensemble average cal-
culated with Hq. An attempt will now be made to ex-

A,a(Tr„)kr »1. In view of the weak-interaction assump-
tion in I and this inequality, it follows that e « 1.

In the neighborhood of the TCP ( T„p3,), the condition
(69) reduces to a trivial one. To clarify, one may consider
a point on the segment T &T, of the line p3 —p3r At
this point, g' and M are given by (61) and (A17), respec-
tively. Substituting these equations in (69), one gets

0 16m e
(73)

3m4ktt T,

In view of (A16), (73) is valid anyway. One may also con-
sider a point, in the tricritical region corresponding to the
condensed phase, close to the CXC in the T-p3 plane.
Here, M —

I
u4

I
/u6. Consequently, P-[(u4) m4/

uo6] '~. In view of these results, from (69), one again
gets a condition effectively the same as (73). The con-
clusion is that GL criterion spares the tricritical region in
a Fermi-Bose mixture.
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press A(q, co) in terms of the spectral weight function

Ai(q, co)=i [Si{q,co„) ~;„

where the Fourier coefficient g, (q,co„) is given by (45).
In view of (46) and (52}, one finds that while in the nor-
mal phase

/CO

Ã i(q, co„)= dec " 9 i(q, r) .

From (82), (85},and (86) one gets

fi(q, co) = i—f dt e'"'e(t}
+~ dN

A&q, —a' e ~ —1
2'7T

(88)

A i(q, co) =2mgco Etc(—q)), (79)
X lC01 (89)

in the condensed phase

A i(q co)=2~[uqI5(co Ec—(q}) UqI—5(co+Ec(q))] (80)

Comparison of (81) and (89) yields an expression for the
average (bq(t)bq(0) ). It follows that

fi(q, co) = i f—dt e'"'(bq(t)bq(0))e(t),

fI(q, co)= —i f dte' c(b q(t)b q(0))B(t),

f 3(q, co) = i f—dt e'"'(b q(t)bq(0) )e(t)

f4(q, co)= i f dt—e (bq(t)bt q(0))e(t)

(81)

where e(t) is the step function, for the purpose of ex-

pressing 9F(q, co) in terms of A i(q, co). Using the integral
representation of e(t), viz. ,

Thus, in the present approximation, A i(q, co) is an even
function of q in both the phases.

It is useful to introduce the functions

f dte (bq(t)bq(0))

Ai(q, —co}
[1—exp( —Pco)]

2m
(90)

Upon considering the functions fI, f3, and f4 and

proceeding as above, one gets the similar results

A i( —q, co)f dt e'"'(b, (t)b, (0) ) = [1—exp( —Pco)]

f dte' (b q(t)bq(0))= f dte' (bq(t)bt q(0))

A2(q, co)
[1—exp( —Pco ) ]

2m

+cc dco ee(t)=i
2% CO+ l'g

(82)
Here,

(91)

one gets the following Lehmann representation for
fi(q ~):

fi(q, co)=e pe (m
~

b'q
~
n)(n

~
bq

~

m)

A2(q, co)=i[9 (q, co„)~;„„+,z
-9', (q, co„)~;;„],j =3,4 (92}

m, n

X(co+Ha~ Ha„+i') —', (83)

Ha ~m)=Ha (m) .

From (78) and (83) one finds that

(84)

where Qz is given by (22),
~

m ) is an exact eigenstate of
HB, and

(93)

AI(q, co) =2m'uqUq[5(co+Ec(q)) 5(co Ec(q))]—. —

The results above show that whereas for the normal
phase

(94)

SJ(q,co„)= f dre " PJ(q, v) .

In view of (46) and (52), one finds that while in the nor-
mal phase A z(q, co) =0, in the condensed phase

+ ce dco' IIIlf I (q, co )
Ref i(q, co)= —P (85) 9F(q,co) = (1—e ) [A i(q, co) —A i(q, —co)],-p -) (95)

Imf i(q, co) = ——,A I (q, —co)[exp( —Pco) —1] ', (86)

where P denotes a Cauchy principal value. In writing
(86), in particular, the Lehm ann representation of
9 i(q, co~ ), viz. ,

for the condensed phase

9P(q, co) = (1—e ~)
8m

X [A i(q, co) —A i(q, —co)+2AI(q, co)] . (96)

3 i(q, co„)=e ge (m (b ~n)(n ~b ~m)

1 —exp[ P(HB „Hz )]- —
l&n +HB m ~B n

These are the expressions sought for. It can be seen from
(95) and (96), respectively, that 9F(q, co) satisfies the identi-
ty

(1—e ~)A'(q, co)+(1 e~)9F(q—, —co) =0

has also been used. The representation is easy to obtain
using the result that the Fourier coefficient

in the normal phase, and the identity

[(1—e ~)A(q, co}+(1 e~)9P(q, —co)]—
1

[A2{q,co)+A2(q, —co)]
4m

(98)
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in the condensed phase. With the help of (79), (80), (94),
(95), and (96) one finds that, for the former,

A( q, co) = —,
' (1—e ~) '[5(a)—E)v(q) )

(74) holds for the present system.
For the critical region, relation similar to (75} is

%(1'q, l 'ai, l 't) =198(q,ai, t), (108)

5(—co+Eiq(q})],

and, for the latter,

A(q, tt))= —,'(1—e ~) '(uq —Uq) [5(co—Ec(q))

(99) where (cq,cz,ct) are unknown exponents and az is the
scaling variable. Upon choosing —p4 as the variable a2,
with the help of (67) and (68) it can be easily shown that
(106) satisfies the relation (108) with

—5(~+Ec(q))]
1

cq
————,, c2 ———1, c, =1 . (109}

(100)

In the critical and tricritical regions, (99) and (100) can be
expressed as

a(q, ~)=~ S,(q)g(~l~, ), I =1)1,C (101)

where the static functions SI(q) are given by (49) and (58)
and

r

co EI(q} a)=—5 + +5
2 cop cop COp

E,(q)

Np

~( )
) [( 1

pEttiq)) i iE—tt(q)t—

PEN(q), i tE&(q)t]—j1—e j e (104)

and

(102)

The quantity ~0 is called the characteristic frequency. It
is defined through the equation

f 9F(q, ro)de= —, f A'(q, ei)dtt) . (103)

The result in (101) complies with the prediction of Halpe-
rin and Hohenberg. "

From (99) and (100) one finds that the Fourier
transform 9F(q, t) for the normal and condensed phases,
respectively, are given by

The critical dynamic scaling exponent z is given by the re-
lation' z = —c /tc .

q
We thus find that in the present ap-

proximation z=2. Upon defining a tricritical dynamic
scaling exponent z, by a similar relation, we find from
(107) that this, too, has the same value.

In the model chosen for this work, order parameter is
not conserved, the reason being the order-parameter field
P(r) does not commute with the Hamiltonian. Moreover,
it has been found in Sec. III that r1=0. Therefore, the
value of z obtained above agree with that expecttxl on the
basis of conventional prediction' ( z =2 —r1 ) for the
order-parameter nonconservation case.

Many years ago, Halperin et al. ' calculated the ex-
ponent z to order e for the two cases, viz. , the order-
parameter nonconservation and conservation cases of a
time-dependent Ginzburg-Landau (TDGL) model. For
the two-component (n =2), nonconserved order parameter
of this model, from the expansion to O(ez), the estimated
value of z is 2.01, for d=3. The subsequent work of
Dominicis et a/. ' provides a slightly better estimate. The
present system is a member of the universality class allud-
ed to above, viz. , the class with n=2, d=3, and noncon-
served order parameter. One can therefore conclude that
the result obtained above is quite good. In fact, this is the
best possible outcome that can be expected from the
present theory, which is valid only when one stays away
from a critical point specified by the GL-type criterion
(71). Since for tricritical region there is no such criterion,
the value z, =2 is exact, like those for P„y„5„etc.

A'(q, t)= —,'(uq —Uq) [(1—e ) 'e

PEct q) i iEc(q)t]—(1—e e (105)
V. DISCUSSION

As expected, setting t=O above, one gets back Sr(q) in
(48) and (57). In the critical and tricritical regions (104)
and (105) are given by

A( q, t}~1(q)cos[EI(q)t], (106)

1

bq
————,, b2 ———1, b4 ————,', b, =1 . (107)

It is thus established that the dynamic scaling assumption

where SI(q) are given by (49) and (58). One sees that
9F(q, t) is periodic in time with time periods 2qrEI (q).
From Eqs. (8), (46), (53), and the fact that

~ q ~
&&t(,E '(T), it can be checked that these periods are

large compared to (kET) in the critical and tricritical
regions.

Upon choosing —p, 4 and u4, respectively, as the scaling
variables az and a4, with the help of (62) and (63) one
finds that (106) satisfies the relation (75) with

The work reported in this paper is based on the findings
in I. An attempt has been made here to extract some in-
formation regarding the statics and dynamics of a
statistical-mechanical theory for a Fermi-Bose mixture.
The theory goes beyond Landau's theory to incorporate
some measure of the fluctuations in the order parameter.
The method of temperature and real-time Green's func-
tion was used in the analysis. The approximation
H, +H, =Hs enabled us to write exact equations of
motion for the temperature Green's function used.

The additional facts related to the contents of the
preceding sections are as follows:

(1) In the neighborhood of a critical point the correla-
tion length P is very large Therefore, f.or a finite q, the
region qg' »1 in the T-ttt, 3 plane corresponds to the criti-
cal and tricritical regions of the condensed phase. The re-
gion far away from this, usually referred to as the hydro-
dynamic region, corresponds to qg'«1. In the hydro-
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dynamic region, from (53) one finds Ec(q)=uq, where
U =(2M Um4 ')' . The sound velocity U exists, in the
region u 4 & 0, provided M &

~

u 4 ~

/3u 6. Thus, the con-
densed Bose component of the mixture shows a phonon-
like dispersion relation in the hydrodynamic region.

(2) In Sec. II, b ply V was approximated by a c number
M. This approximation does not allow one to derive the
thermodynamics of the mixture through the static correla-
tion function of the order-parameter fluctuations. The
reason is that a fluctuation-dissipation (FD} relation (see
Appendix B for derivation}, with the help of which this
can be achieved, cannot be satisfied under this approxima-
tion. The FD relation in question is

—)M4-Ci( T —Ti ) +0 ( T —Ti )

Ci = —(Bp4/BT) p

T —TA.

(Al)

(A2}

To justify this assumption, one has to show that C2 exists.
In the high-density fermion limit (pi »ks T),

4T
n3 —— 1+ (A3)

3m' 8 P3
+ 0 ~ ~

We consider the transition at fixed values of the fields
other than temperature. Let T),(pi,p4) be the solution of
p4 ——0. If p4 is assumed to be analytic at the transition
temperature T~, we may write, for T close to T~,

where

=pS(q =0;Tpi, IJ,4,h),
r pyp4

1 &o &0

2 vV vV

(110)
Upon using (A3) in (3), one finds that

u 34m 3k+ T)„2 2

12kF

kF = ( t7) i)L), y )
1/2

(A4)

(A5)

Here, ( ) denotes the ensemble average calculated
with H, +H, . The function S(q =0) in (110) is given by
(35)

The problem of calculating the function S(q), in a
manner such that (110) is satisfied, is being studied
presently by the author of this paper. The problem ap-
pears to be a challenging one.

(3) It has been noticed that the scale set by the thermal
momentum is a special one. One of the reasons for this,
being exponentiation of the connected graphs in I belong-
ing to the first and second orders, can be proved to all or-
ders provided momenta associated with external legs are
small in comparison with the thermal momentum. The
results in Sec. III of this paper, e.g. ,
S[

~ q ~
&&A,i) '(T)]-q at any point on the critical line

including the TCP, highlight the fact that the scale is a
special one for statics. The result obtained in Sec. IV,
viz. , the periodic time of A'(q, t) is large compared to
(kgT) in the critical and tricritical regions, indicates
that there is an analogous scale for dynamics, viz. , the
scale set by the inverse thermal frequency R/kqT. It ap-
pears that for dynamic critical phenomena, fields which
depend on time, small compared to fi/kiiT or of order
A/k+T, are relatively unimportant. Therefore, it is a task
for a future theory of dynamic critical behavior to find a
scheme to integrate out these fields. It may be noted that
this remark concerning dynamics is meaningful only for a
model with a quantum-mechanical basis. For classical
models, such as the TDGL model, ' ' the remark is not
meaningful, since the inverse thermal frequency tends to-
ward zero in the classical case.

, (~)+ V co»

c}2 C 2

= —T (Q)+V 'cp)+T, T &T) . (A7)
)3T 294

The magnitude of the discontinuity in C& &
at T = T), is

thus

C 2

hC =Tg (A8)
2u4

The equations to determine the TCP ( T„p3, ) are
p& ——O=u4. In the neighborhood of the TCP, one can
write

—)u4-Cq( T —T, ) +K2,(pi P, 3, ), —

u4 —-C4(T —Ti)+K.(Pi P3)»—(A 10)

Thus C2 exists, in the limit of a degenerate Fermi gas,
provided Ti„exists in the same limit. Equations (3) and
(A3) indicate that, for p4 slightly greater than
u 3$ ( ni 3p3 ) /3ir, Ti does exist. Similarly, it can be
shown that in the limit of a nondegenerate Fermi gas
[niA, s(T)-e "'«1]also, Ci is finite.

From (51) and (Al) one finds that, far away from the
TCP, for fixed )Mi and p4,

M = (T)„—T) .
C2

(A6)
2ug

Upon using this result in (31), for the specific heat C& &

one finds

APPENDIX A

It has been noted in Sec. II that, for A=O and u4&0,
the curve p4 ——0, in the T-p3 plane, separates the regions
corresponding to the normal ()u«0) and condensed
(p4 & 0) phases. This fact is also depicted in Figs. 1 and 2.
Therefore, this curve is the critical line, in the region
u4&0, when h=0.

Bp4
C2 ———

BT P3 P4

~=~i I 3=I 3i

u 34l?l 3k+ Tg
3 2

+O(u 34),»kFV 3=vi))

u6-u 6+0(T — )T+(pO3)L).3, ) .
In the high-density fermion limit, one finds that

(A 1 1)

(A12)
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u4
C4 ——

BT

T,pl4

T = T), p3=p3f

+O(ui4),
2m2

83~84

~ =T~ I 3=&3~

—,Tr[e * (bplv V+bp/V V)]
m+5m = —yH+sa )Tre

Expansion for exp[ —P(H+5H, )] in powers of 5H,
can be obtained with the help of an operator U(r, r') de-
fined by

U(r, r') =exp(Hr)exp[ (H—+5H, )(r—r')]exp( Hr—') .

(85)
u 34,m 3kB Tg

+O(u34),
48k@(ps Iss—,—)

u4

t)p
' ~=Tr &3=1 3~

2 2
u34m3 3+O(u s4),

(A14)

(A15)

By setting up differential equation for U and solving it,
one gets

oo
( 1)PI

U( rr')= Q, f, dpi f dr„T, [5H, (ri)

x 5H, (r„)],

(86)

3 2
u3qm3

Q6=
24+kF(p3 p3t )

(A16)
where

5H, (r) =exp(Hr)5H, exp( H~) . — (8&)

From (51), (A9), (A10), and (All), one finds that along
the segment T ~ T, of the line p& ——ps, in the T-p& plane,

1/2

(A17)M =
3u6

APPENDIX 8

Let the order parameter (m) of the system be defined
by

Hence, the required expansion is

P(H +5Hs
—) —

PHU(P 0)
P=e ~ 1 — dr5H (r)+

0 S

With the help of (88), from (Bl) and (84) one gets
P

5m =5hV f dr[(Bp(r)Bp(0))

—(Bp(1 ) ) (Bp(0) ) ]+
where

(88)

(89)

+ ~ j (Bl)

where ( ) denotes the ensemble average calculated
with H =H, +H, . From (35) and (37) one then finds that

S(q =0;Tps, p4, h) = —,
' ((bp+b p)(bp+bpt) ) —Vm

&0 bo

2 vv vv (810)

Upon using the cyclic property of the trace and the fact
that any two functions of the same operator commute,
one finds that

(82)
Upon giving an increment 5h in h, for fixed ( T,p3 p4),
H~H+5H, and m ~m +5m, where

5h bo bo

2 vv vvV

It follows that

5m Bm ~PS (q =0; T~p i,p4, h ) .
Tp3 P4

(811)

(812)
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