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The field dependence of the magnetic susceptibility and collective mode frequencies of superfluid
3He- B are calculated perturbatively in (yH /A) using the quasiclassical theory. With the aid of this
perturbation theory, we interpret the gap distortion, nonlinear susceptibility, and collective excita-
tions of the order parameter in terms of additional correlations between Cooper pairs that are in-
duced by a magnetic field. We also calculate the dispersion splittings of the real squashing modes in
a magnetic field. In addition to the nonlinear Zeeman shifts of these modes, which occur in strong
magnetic fields (yH ~0.10A), there are low-field (yH ~g*}/A) nonlinearities of the collective
mode frequencies resulting from the field dependence of the quantization axis. Our results for all of
these response properties of *He- B depend upon a small number of material parameters; thus mea-
surements of these properties can provide detailed information on the quasiparticle interactions.

I. INTRODUCTION

The behavior of superfluid *He-B in a strong magnetic
field [vH < A(T)] has received increased study in the past
few years. Qualitatively new phenomena are observed in
the properties of *He-B when external magnetic fields are
sufficiently large to significantly distort the B-phase order
parameter.' 3 This gap distortion, which is partly due to
depairing of the S,=0 Cooper pairs, affects both the
equilibrium and nonequilibrium properties of the B-phase.
NMR measurements of the nonlinear field dependence of
the magnetic susceptibility by Hoyt et al.’ clearly exhibit
the magnetic field distortion of the order parameter. The
nonlinear Zeeman splittings of the real squashing modes
observed by Shivaram et al.! result from field-induced
mixing of the nonequilibrium order parameter with states
of different total angular momentum, in addition to dis-
tortion of the equilibrium order parameter. Both sets of
measurements provide a probe of the underlying quasipar-
ticle interactions in He.

In Sec. II we present our calculation of the B-phase or-
der parameter in a strong magnetic field. An interesting
result is that the B phase is no longer described by a pure
p-wave order parameter; an f-wave component of the
equilibrium order parameter enters at quadratic order in
the magnetic field. These f-wave pairing correlations also
affect the nonlinear magnetic susceptibility, which we cal-
culate through order (yH/A)%. In Sec. III we derive
equations for the time-dependent order-parameter
response in strong magnetic fields. These equations are
solved to obtain the quadratic nonlinear Zeeman split-
tings, as well as the field-dependent dispersion splittings,
of the real squashing (RSQ) modes. Our results are exact
in weak-coupling BCS theory through order [yH /A(T)1?,
and include all quasiparticle molecular-field effects.
Strong-coupling corrections are not included, so our
theoretical results are only applicable to an interpretation
of the low-pressure response  properties  of
3He-B, where the specific-heat jump (a direct measure of
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strong-coupling effects) is close to the BCS prediction.
The remainder of the introduction briefly reviews the
current status of collective mode spectroscopy in super-
fluid *He-B.

The order parameter collective modes of superfluid
3He, which have been studied theoretically and experimen-
tally by several authors,* are unique signatures of the in-
tricate structure of the *He order parameter. In the B
phase, several order parameter collective modes have been
observed as resonances in the ultrasound attenuation for
frequencies @ <2A(T). In this frequency range, zero
sound phonons can excite Cooper pairs out of the ground
state (or equilibrium state at 7=<0) into excited Cooper-
pair states that lie below the pair-breaking threshold of
2A(T). The sharp peaks in the ultrasound attenuation
correspond to the resonant excitation of these Cooper
pairs. The width of the excited Cooper-pair states is
determined by quasiparticle damping; since Tali << A at
low temperature, the resonant structures in the sound at-
tenuation are very sharp. In consequence, ultrasound has
developed as a powerful spectroscopic tool to study or-
dered states of superfluid *He-B.

It is well known that the equilibrium B phase order pa-
rameter and the collective modes are eigenfunctions of the
square of the total twisted angular momentum,’

J=L+R"S, (1)

where L (S) is the orbital (spin) angular momentum
operator and R is the rotation matrix that defines the
equilibrium B-phase order parameter in zero field (the
Balian-Werthamer, or BW state),

AP)=A(T)Nioo?)-R-(B) . (2)

The equilibrium state is J =0, in addition to /=1 and
S =1. The sharp features that appear in the ultrasound
attenuation correspond to the J =2 order-parameter
modes; there are ten such modes associated with the real
(2+ mode) and imaginary (2— mode) parts of the J =2
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order parameter. The 2+ and 2— modes, also referred to
as the real and imaginary squashing modes, are fivefold
degenerate in zero field for zero wave vector. Unlike the
equilibrium state in zero field, which is a pure p-wave
(I =1) state, the excited states are not eigenfunctions of
L% the J =2 states are superpositions of /=1 and /=3
states.®

The order-parameter collective modes are also indexed
by their signature under the particle-hole transformation.’
The 2+ (2—) modes have signature + (—) under this
operation. The particle-hole transformation is not an ex-
act symmetry of the quasiparticle effective Hamiltonian,
but the deviation from exact particle-hole symmetry is
small. This asymmetry is nevertheless important. Zero
sound and the 2— modes have the same signature under
the particle-hole transformation, which is opposite to that
of the 2+ modes. In the limit of exact particle-hole sym-
metry a selection rule would prohibit the coupling be-
tween the 2+ modes and zero sound. Thus, the observed
weak coupling of the 2+ mode to zero sound is a direct
measure of particle-hole asymmetry in the underlying
Hamiltonian. The identification by Koch and Wélfle’ of
the 2+ mode with the “weak” attenuation feature ob-
served by Giannetta et al.® and Mast et al.’ was con-
firmed by Avenel et al.'® who observed the fivefold Zee-
man splitting of 24+ modes in weak magnetic fields
(H <0.3 kG). The five magnetic substates are labeled by
the eigenvalues of J-2=J,, where Z is the direction of the
magnetic field. Schopohl and Tewordt!"!? first predicted
a Zeeman splitting of the 2+ modes. Sauls and Serene!'
calculated the g factors for the 2+ modes including, as
they did for the zero-field collective-mode frequencies,
Fermi liquid, and pairing interaction effects. The detailed
dependence of the collective-mode frequencies on the
quasiparticle interactions is discussed in Sec. III. The
main results are equations for the nonlinear Zeeman split-
tings and field-dependent dispersion splittings of the RSQ
modes which can be solved numerically to analyze the ex-
tensive data on these collective modes. It is worth em-
phasizing that spectroscopic determinations of the
collective-mode frequencies can provide detailed and pre-
cise information about the underlying interactions be-
tween *He quasiparticles.

Depending on the strength and sign of these interac-
tions, subtle dynamical correlations between quasiparticles
and Cooper pairs may be observable at very low tempera-
tures.® Reliable determinations of the higher angular
momentum Fermi liquid and pairing interaction parame-
ters also place stringent constraints on any microscopic
theory designed to predict the effective interactions in
liquid 3He.'* The information that can be obtained on the
quasiparticle interactions from NMR and collective-mode
spectroscopy is considerably richer than any information
on Fermi liquid parameters obtainable from measure-
ments in the normal state. One reason is that the higher
angular momentum pairing interactions, which
parametrize the quasiparticle interaction in the particle-
particle channel, enter observable properties of the super-
fluid phases on equal footing with the Landau parameters,
which parametrize the quasiparticle interaction in the
particle-hole channel, and which are the only relevant in-

teractions in the normal Fermi liquid.

The collection of our results for the gap distortion, sus-
ceptibility, and nonlinear Zeeman splitting and those of
Refs. 6 and 13 for the zero-field and linear Zeeman shifts
provide stringent constraints on the ultrasound and NMR
data bases of Refs. 1 and 3, and should ultimately provide
precise values for the / =2 Fermi liquid parameters (F3°)
and the ! =3 transition temperature ( T,3), at least at low
pressures where strong-coupling effects are believed to be
small. Since theoretical results for the response functions
of 3He-B overdetermine the interaction parameters
(F3°,F§,T,3), significant discrepancies between the pa-
rameters obtained from different data bases may indicate
either (i) discrepancies in temperature scales or (ii) impor-
tant strong-coupling corrections. We discuss in detail the
comparison between our theoretical results and the data
obtained from NMR and ultrasound by several research
groups in a separate publication.'®

II. QUASICLASSICAL THEORY OF *He-B
IN A MAGNETIC FIELD

The quasiclassical theory of superconductivity formu-
lated by Eilenberger,'® by Larkin and Ovchinnikov,'” and
by Eliashberg'® has been applied by several authors!>?° to
superfluid *He. Our notation follows that of the recent
review article of Serene and Rainer.?! We use this theory
to calculate the equilibrium and nonequilibrium properties
of superfluid *He-B in strong magnetic fields. The
quasiclassical theory is formulated in terms of quasiclassi-
cal propagators, 4X4 matrix Green’s functions in
particle-hole and spin space, that are integrated over the
magnitude of the quasiparticle momentum, or equivalent-
ly the normal-state quasiparticle energy §,=v/(|p| —py)
near the Fermi surface (v; and py are the quasiparticle
speed and momentum on the Fermi surface). The ther-
modynamic and static response functions may be calculat-
ed from the Matsubara propagator

€, A
E"BRie) o [ dEHG(p.Re,) 3)

where G is the one-particle Matsubara Green’s function
and 73=(73),.4 X Lspin; We use 7 (o) for the Pauli matrices
in particle-hole (spin) space. For a complete derivation of
the quasiclassical equations and a full explanation of the
notation see Serene and Rainer?? or the original refer-
ences.'®~ 18 The structure of § ™ in particle-hole space is

g" S
fm gm
where g™(P,R;€, ) is the conventional one-particle Green’s
function integrated over £, and f™(p,R;¢€,) is the corre-
sponding anomalous propagator. The Matsubara propa-
gator depends on P, the quasiparticle position on the Fer-
mi surface, R, the center-of-mass coordinate, and
€,=(2n 4+ 1)7T, the Fermion Matsubara frequencies.
The time-reversed propagators are g"=g™(—p,R;¢,)*
and f™=f"—P,R;€,)*. The particle-hole degree of
freedom, which is essential for the description of super-
fluidity, combined with spin must be given a fully

Am__

, (4)
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quantum-mechanical treatment. The quasiclassical prop-
agator satisfies a Boltzmann-like transport equation,

li€,#3—A—6,8 ™]+ivP Vg8 "=0. (5)

The other central equations of the quasiclassical theory
are the normalization equation for g ™

g™Pp,Rie, 2=—7m1, (6)

and the self-energy equations for the diagonal (&) and
off-diagonal (A) self-energies, which are defined diagram-
matically in terms of the propagator § ™ and the quasipar-
ticle interactions that are taken as inputs to the theory.
The diagrammatic contributions to A and & are classified
by a small parameter (T, /T;) <<1.'° The leading order
contributions to the self energies

o 0
07

0 A
T 1A 0

6= A (7)

’

are the quasiparticle mean fields, which are independent
of energy i€,; G and A are related to o and A by the same
symmetries as the corresponding propagators,

o(p,R)=v(p,R)

+T2f —[As(ﬁ p')g (P, R;e,)1
+A%Pp")gp " R;e,)-0], (8)
ABRI=T S, [ S (Vb5 /olp" R, ic
+ VDB R;e, ) ia0?],

9)

where v represents an external field that couples to the
quasiparticles. The decomposition of the propagators in
spin space is given in Eq. (48). The Landau interaction
functions 4%9%p- ﬁ ') are related to the conventional Fermi
liquid parameters F;"° by
AS4PP)= E APCP(DPD)
1>0

APC=Fe/(0+Fpe/20+ 1),

(10)

and the pairing interactions ¥° (V') for the singlet (trip-
let) channel is parametrized as
(0dd)

even

2 QU +1VP(PD) . (11)
l

Vo(l<ﬁ /\l

The physical transition temperatures for pairing in the /th
partial wave,

T,=1.13¢,e """, (12)
can always be used to eliminate the ill-defined cutoff pa-
rameter €, and the pairing interaction parameters {V;}
that enter the “gap equation” [Eq. (9)]. Equations (5)—(9)
define the propagator and molecular field in weak-

coupling BCS theory. The static response functions are
calculated from the propagator g™; in particular, the
magnetization is given by

M=XYyH+Xy(y/2) ‘f——rzg p.R;e,), (13)

where X y =2N (0)(y /2)*/(14F}) is the normal-state sus-
ceptibility, 2N (0) is the total normal-state quasiparticle
density of states at the Fermi surface, and y is the
gyromagnetic ratio that determines the Larmor frequency
YH in terms of the external field H.

The effects of a magnetic field on the B phase are cal-
culated perturbatively in the parameter

(yH/A)=0.16(H /kG)/(A/mK) , (14)

which is typically small even for fields as large as 1 kG,
except for temperatures very close to T,. To calculate the
magnetic field dlstortlon of the order parameter we for-
mally expand g ™, &, and Ain powers of the field:

Em=EEHRTHET
3 KO+A1+A2+ :

where the |g"| ~(yH/A)|8] ]|, etc.
the zero field propagator

Starting from

gr=N(Ag—i€7s) ,

(16)
N =n/(e2+A3'"?,

and zero-field gap matrix (order parameter) for the BW
state given in Eq. (2), the finite field corrections to the
propagator are obtained by first solving the transport
equation and normalization condition, order by order in
(yH/A), in terms of the mean field and order parameter.
It is convenient to parametrize the diagonal mean field in
terms of the total effective field

—(y/2)1+F§)~'H

d ! A A7 A7
+T3 f ———42 AP-p'gP’r€n) -
n

h(p)=7 trloa(P)]=

(17)

Similarly, the gap matrix is represented by the vector or-
der parameter,

Ap)=— T tr[ic’oAP)] . (18)
It is straightforward to show that o and A are represented
only by h and A provided H is uniform in space. It is
also simple to show that h(A) contains only terms of odd
(even) order in (yH /Ag). The resulting perturbative solu-

tion for the propagator through third order in (yH /Ap)
becomes

g1=N3/mAy'h))( Ay o), (19a)
f1=N3/1*(—i€,)(Ag-h))ic?), (19b)
g2 =(i€,)[N3/mX(Ag'Ay) — 3N /7*(Agh;)?]0° (19¢)
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Fo={N3/m(€2 + Aj)A;—(Ag-Ay)Ag—(Ag-hy)hy]
+3N3/m*(Ag-h Ao} -(ioa?)
g3={N3/ﬂ2[(Ao-h3)Ao+(Az-hl)Ao-o—(Ao-hl)Az]
— N3/7*[3(Ag*Ay)(Ag-hp A,
+(Ag'hy)h}Ag+(Ag-hy)?h,]
+<N7/7%Ag'h)* A} 0, (19e)
fi=(—i€,){N’/7*[Ag-hy+Ay-hy]
—N3/7%[3(Ag A (Ag-hy) +(Ag-hy)h1]
+3N7/7%Aghy)}i0?) .

(19d)

(19f)

Inserting g, into Eq. (17) we obtain the self-consistency
equation for the first-order effective field,

BB =hoet [ L 4%

X { Y3080 )0 (P )]A(D )]}, (20)

where
hew=—(y/2)H/(1+F§),
Y,,,/2=7rT2(e,2,+A(2))_"'/2, m>1. (21)

Note that h,(P) is necessarily even in p. For the BW
state A} is independent of P and the equation for h(p) is
easily solved to obtain the standard result,

hy={[14+ (% +3p)F5/5)](1+Fdhy
+(1—p)F5/5)[(Ag-hex)Ag/Af— They]
X(1+Fg)}/D ,
D =1+(5+5V)F§+(5+2y)F3/5) +yF3Fs/5, 22

where y =1 ~A(2)Y3 ,2 is the Yoshida function. Having
determined the first-order effective field, the linear sus-
ceptibility is easily found to be

X1=M/H=Xy[5+(5+F5/5)](1+F%)/D, (23)
the result first obtained by Serene and Rainer.?

Finite field corrections to the order parameter first ap-
pear in second order; the first-order correction from f
vanishes when summed over frequency. Thus A, is ob-
tained as the solution to the inhomogeneous gap equation,

$)= fd—“V (55 NIKo(T)+1n(T /T )]A,
- Y3/2[(A0‘A2)A0+(Ao'h])hl]

+5Ys5,(A0 A}, (24)

Ko(T)=oT 3

le, | <€,

|€n| ~'=In(1.13¢,/T) . (25)

This logarithmically divergent sum also enters the linear-

ized gap equation which defines the transition tempera-
tures for /-wave pairing,

Ko(Tcl)=1/V1 . (26)

Thus, the pairing interactions and cutoff €, can be elim-
inated in favor of the physical transition temperatures.
We solve Eq. (24) by projecting out the angular momen-
tum components of A,(P),

A ®=01+1) [ L P58, @7)

and by introducing traceless and symmetric tensors of
ranks /—1 and /+1 to represent the components of

A
P-Aoiy,

P-Ayn=A0BiLT

Lh, ... (41,0 ...
Puy """ Ppy_y T B0B ] PuPuyyy o

(28)

where {p,,u=1,2,3} are the direction cosines of p. We
use the notation [u] to denote the relevant collection of
indices. It is sufficient to solve the equation for A, using
the reference order parameter Ay=AgP; since spin-orbit
corrections to V! are negligible, the physical A, is ob-
tained by operating on the reference solution with the ro-
tation R that defines the physical Ay.2> The resulting
solution for A,(P) contains three terms labeled by the to-
tal angular momentum (J) and orbital angular momen-
tum (1),

A5=Ao{(Bo18;+ B2 Z;j )p;
+B23[(Zij5kl +Z,-k5j1 +Z,~15jk )

— 585 Ziy +8uZj+84Zjx ) 1p; P 1}
(29a)
3 a4 2
1 F40Ys5,, (23
By=~ | |22 2
=7 H -— T (29b)
2A8Y s F$/54+3yF5/5
By = - "
1—y 14+F2/5
(1—=y)(14yF5/5)
ER Sl Rl AL ok L 290)
14+F5/5 24
(1—p)(1+F2/5) :
By=3x , 29d
B=7x3" 11F2/5 2A0 (29d)

where Z;=%2;— 38, o, =(yH)1+F3/5)/D is the
Larmor frequency correspondmg to the effective field,
and x3=V7'—V3'=In(T,;/T,,) measures the relative
importance of the f-wave pairing interaction to the p-
wave interaction. Because of m1x1ng between the /=1
and /=3 channels with J =2, x5! enters B,, as well as
the f-wave component of A, proportional to B,;. Howev-
er, x3! drops out of the angle-dependent energy gap
through order (wy /2A,)%,

|AI2=A(2)[1+2301+(Bz1'—%BB)(FZZ_%)] . (30)
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FIG. 1. Gap distortion versus T/7T.. Coefficients of the
quadratic gap distortion, Egs. (29), are plotted versus T/T..
The solid curve is [ — Bo; /(@ /2A¢)*], the dashed curves are
[Byi /(. /280?+5], and the dashed-dotted curve is
[ — B3 /(wr /2A0)*). The numerical labels refer to the following
sets of interactions: (1) x3'=F%=0, (2) x7'=0 and
F§=—-1.56, (3) x7'=—0.43 and F4=0. Cases (2) and (3) are
different choices of Fermi liquid and f-wave pairing interaction
which give the same value for the RSQ mode frequency at
T =0and H =0; wg=1.07A,.

Furthermore, for the angle average of | A |2,
2

(23
24,

S4A4Ys )
1—y

) (31

(a1 =a}1+%

only the Fermi liquid corrections that define w; contri-
bute. Even these terms drop out at T =0, leaving A dis-
torted, but ( | A|?)=A2 unperturbed to order (w; /2A,).
Finally we note that if we neglect quasiparticle interaction
effects by setting FS and x3 ' to zero then our result for
A, agrees with Eq. (24) of Tewordt and Schopohl'? at
T =0. In Fig. 1 we show the temperature dependence of
the gap distortion for realistic values of the quasiparticle
interaction parameters. Note that there is a sizeable re-
normalization of the / =1, J =2 gap distortion by quasi-
particle interactions.

The nonlinear magnetic susceptibility in *He-B is sensi-
J

2

w
X3=4Xy(1+F8)(1+F3/572D 2 | —=
24,

X {(A3Y3 ) [1—A4 + 5 A% — 2x71(A3Y;,,)(1— A)*]+(ASY s )

where A4 =(A}Y3,,)(A4%/5). This result for the quadratic
field correction to the B-phase susceptibility is exact in
weak-coupling BCS theory. At zero temperature Eq. (39)
reduces to
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tive to the distortion of the order parameter A,(p); thus
both f-wave pairing effects and higher order Fermi liquid
terms contribute to the nonlinear susceptibility. The sus-
ceptibility is formally expanded in powers of (yH /A),

X=X1+X3+ -+ . The leading nonlinear correction to
Xl)
X;=(y/2)" Xy %@/H , (32)

is of order X3~ (vH /Ag)*X,. It is convenient to define the
frequency summed propagator,

gi=T3 5 tr(o'%g3)=Y;,,(Ag'hy)A5+R(P) . (33)

We explicitly separate out the third-order contribution to
the effective field; R (P) represents the remaining terms in
Eq. (19¢). The calculation of X; is straightforward except
that h; is unknown a priori, but fortunately it can be elim-
inated from Eq. (32) without direct calculation. The gen-
eral form of the third order effective field is

$=G'+Gihgpapp+ " » (34)

where G'(Ghg) is the /=0 (I=2) contribution to A}

given by
Gi=A43(g}), (35a)

ap=745pappg’)—78.5(83)), (35b)

and (- )= f dQ/4n(--- ). There is an [ =4 contri-
bution to h3(p), but it does not contribute to X;. The sus-
ceptibility is independent of the rotation R(#,0) that de-
fines the BW state, so we calculate X; with the reference
order parameter Ag=Aqp;, in which case X; is proportion-
al to
(85 =(A3Y3))($G*+ 5 GL)+(R?) . (36)
The [ =0 effective field is eliminated with Eq. (35a);
the I =2 effective field is eliminated by using the identity,
(P25 =(g3) — (R +(BRPRY), (37

which follows from the form of the coupling of h; to g
in Eq. (33). The resulting susceptibility is determined by
moments of the function Rp),

X3=(y/2)"XNy(1+F&)1+F5/5D!
X[(R?) +(AJY3,, (A /5 (P2)p;R*—=R?)] . (38)

It is now straightforward to show that X; is given by

27 | AdY
-1+ ‘A—%;ﬁ +5A+34% |- (A8Yqp) 1,
(39)
[
o 2
X3=2Xy(14F3)D 2 f (B _x31y. (40)
0

Tewordt and Schopohl!? give an incorrect expression for
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FIG. 2. Susceptibility versus T /T.. B-phase susceptibility is
shown for magnetic fields of yH /2m=1 MHz (curves a and ¢)
and yH/2m=10 MHz (curves b, d, and e), and F§=—0.7.
The solid curves were calculated with F§=x7'=0, while the
two dashed curves correspond to F§= —1.56 and x5 '=0. The
dotted curve e was calculated with F$=0 and x5 '=—0.43.
Note that the interactions used to calculate d and e give the
same value for the RSQ mode frequency, wo=1.07A,, at T =0.

X3, with F§=x3'=0at T =0.
Equation (39) also simplifies in the high-temperature
limit, T<T,,

XA(T—-T,—)=5 (B N(1+F3) X yH /xT,)*,  (41)

which is independent of x3' and F5. However, this result
is valid only in the restricted range of temperature and
fields satisfying Y H << Ao(T) << 7T,, in which case the X;
correction is exceedingly small. Higher angular momen-
tum pairing correlations and Fermi liquid effects are only
exhibited away from the Ginzburg-Landau region of the
phase diagram.

In Fig. 2 we show the temperature and field dependence
of X(T,H)=X,+X; calculated from Egs. (23) and (39).

0.650 -

Xg/ Xy

0.625

0.600

0.575+

FIG. 3. Interaction dependence of the nonlinear susceptibili-
ty. This figure shows X(H,T)/Xy vs F§and x5 'for yH /2r=8
MHz, T/T.=0.65, with T,=1.04 mK and Fj=—0.7 ap-
propriate for low pressures.
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For the highest field shown, yH /2r=10 MHz, the ex-
pansion parameter is still small; (yH /A)?=0.07 at T =0
and becomes of order 1 only for T/T, >0.98, well above
the A-B transition at this field. The general effect of a
finite magnetic field is to increase the susceptibility by
depairing the S,=0 Cooper pairs. Attractive f-wave
pairing and negative Fermi liquid interactions enhance
this effect, as shown in Fig. 3.

Schopohl?* has recently calculated the nonlinear suscep-
tibility numerically for x7!=0. Our perturbative result
for X(H,T) compares favorably with Schopohl at low
fields, but does not show the double-valuedness obtained
by Schopohl for very high fields. This double-valued
behavior is unphysical since it appears only for tempera-
tures and fields where the B phase is thermodynamically
unstable.

III. MAGNETIC FIELD DEPENDENCE
AND DISPERSION OF THE COLLECTIVE MODES
IN 3He-B

We extend the work of Sauls and Serene®!* on the col-
lisionless dynamics of *He-B by deriving quasiclassical
equations for the order-parameter collective modes, valid
to order (yH /A)*. We solve these equations for both the
nonlinear Zeeman splittings and the field-dependent
dispersion splittings of the RSQ modes.

As noted earlier a magnetic field lifts the fivefold
degeneracy of the J=2+ modes. For weak fields,
yH << A, the degeneracy splitting is linear in the field. A
larger magnetic field distorts the /=1 order parameter
and generates an /=3 component of order (yH/A)%.
This “gap distortion” is partly responsible for the non-
linear Zeeman splitting of the 2+ modes.> Like the non-
linear susceptibility, the Zeeman splitting of the 2+
modes depends on the / =0 and / =2 Fermi liquid param-
eters and the / =3 pairing interaction. Our result for the
nonlinear Zeeman effect includes all interaction effects
that enter the weak coupling theory. Perturbation theory
reveals that to first order in the field, the real squashing
(RSQ) modes are no longer purely J =2, but also contain
J =1 and J =3 components. The 1+ and 3+ amplitudes
lead to additional nonlinear field dependence of the mode
frequencies; this mode repulsion weakens the effect of the
gap distortion. In addition to the interaction parameters
that enter the linear field splitting — F§,F$,x7'—the
nonlinear splitting also depends on F§, albeit weakly. If
we neglect all Fermi liquid and pairing interactions except
Fj§, our results reduce to those of Schopohl et al. only
when numerous terms are neglected in the “effective
Hamiltonian” of our eigenvalue equations (see below).

In zero field, but finite wave vector, the degeneracy of
the RSQ modes is again partially lifted. The low field
data of Shivaram et al.! reveals this dispersion splitting
of the RSQ modes; the RSQ modes are excited at finite
wave vector ¢ =w/cq, where c¢( is the velocity of zero
sound. The quantization axis is determined by q, the
direction of propagation of zero sound, and the modes
split into three groups labeled by | m, |. As the magnetic
field is increased the quantization axis rotates from the g
direction to the 2 direction; the dispersion splitting of the
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modes also changes. The dispersion effect depends on the
Fermi liquid interactions F{,F$,F3, as well as the f-wave
(x3') and d-wave (x3!) pamng interactions. The depen-
dence of the RSQ modes on x5 ! results from mode repul-
sion between the J =2+ modes and the S=0, /=

modes. Detailed measurements of the mode dispersion
can in principle yield information about the presently un-
known d-wave pairing interaction and Fermi liquid pa-
rameter F{;. We find that the mode frequencies ap-
proach their zero-field limits without crossing. For zero
field, in the absence of superflow, only the m, =0 mode
couples to zero sound. Our result also shows that for 412
the m, =0 mode evolves into the m, = +2 mode for high
magnetic fields. We postpone detailed examination of the
J

et 8 X(P,R;e,€)

(2) the normalization conditions for the Keldysh (g X), retarded (g ®

gRA GRS Rie, €)= —2m%8(e—€)1 ,
with

4Bee)= [ L AleeBee)

—8XP,R;€,€) 7y € +ivgD-Vr8 X(P,R;e,€)— (R +0)-8 K®P,R;e,e)+8 %6
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mode dispersion and consider first the field dependence of
the 2+ modes for q=0.

A. Quasiclassical equations for the RSQ modes
in a magnetic field

A theoretical description of collective excitations in su-
perfluid *He requires a nonequilibrium generalization of
the quasiclassical theory. The quasiclassical kinetic equa-
tions were originally derived by Larkin and Ovchinni-
kov.!? We follow the review by Serene and Rainer.?! The
central equations are the (1) nonequilibrium transport
equation,

415)(P,R;¢,€)
—6Kg4p,R;e,€)+8 X6 K(p,R;e,€)=0

(42)
), and advanced (£ #) propagators,

(43)

and (3) the self-energy equatlons for 6 #4X, In weak-coupling theory the self-energies are given by the mean field equa-

tions: 6 8=§4=6 and 6X=0, with
op,Ro)= | — ——[A Ppegkp

4qri

ApRio)= [9E [ ER popprirf

What is left out of the weak-coupling theory are (i)
quasiparticle collision effects and (i) strong-coupling
corrections to the mean field self-energy. These omissions
restrict the Kkinetic equations to high frequencies
oTqp>>1. Since our interest is the collective mode spec-
trum in the frequency regime w~A, w7qp>>1 is always
satisfied except in a very narrow temperature interval
close to T,. Thus, the damping of the collective modes
can in principle be calculated perturbatively in (a)TQp)”l.
The neglect of strong-coupling corrections is potentially
more serious. At least the omission of strong-coupling
corrections restricts the theory to low pressures where all
strong-coupling effects are supposed negligible.

The diagonal components of g X(p,R;e+w/2,e—w/2),
first introduced by Keldysh, are simply related to the
distribution function for quasiparticles with energy € trav-
elmg with velocity vfp In equilibrium for H=0,
geq =278(e—¢€')g*UP,€) is simply proportional to the nor-
malized BCS density of states and the Fermi distribution
[Eq. (51)]. The off-diagonal Keldysh function fX has the

"Ri€'+w/2, —0/2)1+A%PDgXD

P Ri€'+w/2, —w/2)id?) + VPP XD

"Rie€'+w/2,e—w/2)0o], (44)

"Ri€'+w/2,e—w/2)lioo?)].

(45)

f

interpretation of the time-dependent pair amplitude. The
equilibrium, zero-field pair amplitude may be expressed
directly in terms of the equilibrium gap matrix
A=Ayioo* Quite generally the static Keldysh propaga-
tor may be obtained by analytic continuation of the
Matsubara propagator to the real frequency axis,
g¥=[g™P,R;e, = —ie+7)

Be
2

This equation is used to construct the equilibrium Kel-
dysh functions in a magnetic field, which are inputs to the
linearized kinetic equation for the nonequilibrium Kel-
dysh propagator. The linearized version of Eq. (42) for
2 X has a much simpler structure since the internal energy
integrals are trivial. In terms of the equilibrium Keldysh
function g% and mean field 0%, the linearized Kkinetic
equation becomes (we drop the superscript K from here
on)

-—g"’(ﬁ,R;e,,=-—ie—77)]ﬂ=0+ tanh (46)
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[e’%bag]“'

7’3,881 [6°9,68]+ivsP-VrE

—(04+86)8 Ue—w/2)+8Ue+w/2)T+66)=
(47)

where the square brackets and large curly brackets
represent the usual matrix commutator and anticommuta-
tor, and 88(p,R;€,0) and 86(p,R;w) are functions of the
quasiparticle energy € and the frequency o of the external
field 5(p,R;0).

Equations (44), (45), and (47), with g°! and 6 sup-
plied as inputs, describe all the collisionless collective
modes of superfluid *He, at least in the weak-coupling ap-
proximation. There are numerous collective modes corre-
sponding to oscillations of the spin and particle-hole com-
ponents of the time-dependent mean field 85. To exhibit
these collective excitations we expand the diagonal propa-
gator in scalar and vector components, and the off-
diagonal propagator in singlet and triplet components,

6g +68g-o (8f +6f-0)io,
8=\ 67 +6T-0) og+o80" | 48
and similarly for the time-dependent mean fields,
56— | ¢teo (d:{—d—-a)ia" , @)
io)(d+d-0) e4eo
where the time-reversed functions are given by
g=g(—p,R;—¢€,0), g=g(—p,R;—¢€,0),
f=—f(—p,R;—¢,—0)*, T=f(—P,R;—€,—0)*,
g=e(—p,R;0), €=e(—p,R;0), o
d=d(p,R;—w)*, d=d(p,R;—w)*

These equations eliminate redundancy contained in the
4X 4 matrix formulation of the quasiclassical kinetic
equations. It is convenient to introduce sum and differ-
ence functions, 4*=A+4, since these new functions
have simple transformation rules under (p,e)—( —p, —€).
For instance e*(—p)=+e*(p), and d*(d~) represents
the real (imaginary) part of the time-dependent spin-
triplet order parameter. Acoustic and magnetic modes of
the superfluid correspond to natural oscillations of e*
and e*. These modes are, in general, coupled to order pa-
rameter collective modes corresponding to oscillations of
the time-dependent singlet and triplet gap functions d*
and d*. Although much of our analysis may be applied
to any of the collective oscillations of superfluid *He, we
concentrate on the RSQ modes of *He-B which have been
studied most thoroughly using ultrasound.* For zero
wave vector, the RSQ modes correspond to coherent oscil-
lations of the order parameter d* and the spin-dependent
mean field et. The equations of motion governing the
RSQ modes in a magnetic field are obtained from Eqgs.
(44)—(47), and the analytic continuation to real frequency
of Egs. (19) for the equilibrium Keldysh propagators,
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g88= —2iNetanh 'B
f8=2iNetanh JAO ioo,,
gii= —ZI?tanh Be Ayohi-A

=3 (51)
fi= —Z%Gtanh h{-Ayo, ,

N 3N?
g‘;q:—Zz?etanh L; [Ao A+ 3-’;—(111 Ay)? J )
f§q=2iﬁtanh %E_ l A2+ 2 [AO(AO A)+h(h-Ap)]

4
+—2_‘AL‘A0(}11 A()) i0'(72 ,
with

2 IAOIZ)]/Z )

The equations of motion for the RSQ modes are obtained
from the solution to the transport equation (47), with Egs.
(51) and (52) as input, and the self-consistency equations
(44) and (45) for the time-dependent mean field and order
parameter. We can write the homogeneous eigenvalue
equation governing the RSQ modes in the matrix form

d(P)=L(Pp,p"w)*xd (D), (53)
where d'*=(d*,e") is a six-component vector and the
star product is defined as

[LBp500d(B = [ LTLBp50Id,B) . (54

The matrix L is expressed in terms of four scalar opera-

VippIL,(B) VDD IL, P

FYPp-p')L:(P") FUPPIL4D") |’ 63
where V(p-p’) and FAP-p’) are, respectively, the pair-
ing interaction in the triplet channel and the exchange in-
teraction in the particle-hole channel. The operators
L,(p";w), given in Appendix A, are functions of the
equilibrium order parameter, the effective field, and the
frequency w.

The eigenvalue equation (53) can be solved perturbative-
ly in the magnetic field by expanding the operator L, the
eigenfunction d, and the eigenfrequency o in powers of
(‘}/H / Ao)y

L(a))=L‘0)+L”)+[_4(2) ,
d=do+d +d,+ " ", (56)

O=wo+w+wr+ ",
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where | ;| ~(YH/Ap) |wo|, etc. Equation (53)
separates order by order into the equations
do=L""wo)*d,, (57a)
L
élzé( (a)o)*d -‘|'—I;(l (wo)*d 4w a *_d_o, (57b)
@
d =L %w)*d ;+L""(wo)#d 1+ L (wg)*d o
L © 9LV w aZL 0)
— ——xd d
+w, 3w, *d o+o 30g ot 2 ol —— 2 *4o
oL@
“+w, — *dl , (57¢)
3(00 -

where the derivative terms result from the o dependence
of L(w). Because L is not Hermitian it is necessary to
solve the transposed eigenvalue equation,

b(P)=b(P")*L(P",P;®) , (58)

for the transposed eigenfunction b($) (which is not d*')
and eigenfrequency @. It is easily proven by induction,
for solutions d and b with the same spin and orbital sym-
metry, that @=w to all orders in perturbation theory.
Having solved Eq. (57a) and the corresponding equation
for b, we can calculate the first-order quantities,
1,d 1,b 1. The second-order correction to the mode fre-
quency, ,, which gives the quadratic nonlinear Zeeman
splitting of the collective modes, can then be computed:

w,=—N,/D, , (59a)
N1=20*L(”(w0)*g0, (59b)
w,=—N,/D, , (59¢)
Ny=bo*L*(wo)*d o+b o* L' (wp)*d ,
L\ w? 2L O
bk ——xd _ —=  «d
T2 dwyg *dot 2 bot dw] *£o
aL(O)
+a)1b0* *dl y (59d)
dwy ~
oL@
Du,:b 0¥ *do . (59¢)
< awo =

The solutions to the zero-field eigenvalue equation [Eq.
(57a)], given in Ref. 6, are classified by the total angular
momentum J of the excited pair amplitude dg. The
RSQ modes in zero field are superpositions of pair ampli-
tudes with /=1 and /=3, both with J=2; the general
form of the J =2 order parameter is

d =B pu+ 3B puery— 3B s, (60)
where B.>" are traceless and symmetric tensors reflecting
the J =2 symmetry of dg (). The / =1 and ! =3 orbital
components are related by

2
B3 _pgaD 30p 1 AF3
uv uy 8( Ao)2 5

aFe |7
wlli+ 2wl

5
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where

tanh

Be
2

(Ap)?
2 [€2_(A0)2]1/2 ’

Ma,B)= [, d
2

2

and W=1—(w/2Ay)% The technique for solving the
eigenvalue equation follows closely the paper of Sauls and
Serene;® we expand the spin-dependent mean field in
spherical tensors.?> Only the J =2 component is nonzero
for the case of the RSQ modes, in which case
e0+j =E; ,pup, Where E;,, is related to the order parame-
ter by

Ey= 1€k B jp+€okErju) » (62)
-1
. Siag AF3 AF3
=——Bo"——W|1 w 63
Euu 4A0 uv 5 + 5 ( )

Equations (60)—(63) solve the zero-field elgenvalue prob-
lem for any traceless and symmetric tensor B2V (i.e., any
J =2 order parameter) and yield the eigenfrequency

2
xi!

5 | @0

2 8
(L)():?A A
0

1+ WA —F‘2‘+

] ) (64)

which reduces to the well-known limit 0= %A% when in-
teractions are neglected.
A similar analysis yields the solution to the zero-field

transposed equation b o=b o*L?, with b=(b*,p *),

bgi=B % p,+3B > puppi— 3B 5 pu (65)
-1
= Vi~ 5w AF§ AF$
gey__lgan 1 wll w
uv V3 uv 8(A0)2 5 + 5 ’
(66)
P& =E; ubuPy » (67)
1
= 51(1)0 —_ }\.Fg
= ™ AVBZVW |1+ s w (68)

From the zeroth-order solutions we obtain for the denom-
inator, common to the frequency shifts w; and w,,

D, = Swo . v,B LV
24(A)
2
A 2 (2]
X | 2opn—W | 2 —
K] awo [s 4(A0)2 ]
2 -2
AFS
+ Al—3aAwixih) 2 )
T ’ H” s ¥

(69)

The quantization axis is determined by H, so we label the
J =2 tensors in (69) by the quantum number m,. With

.. —-m, _m 3 -
the normalization, B /B, =58 we have B,,=B,,

m,m;’
and
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By =1,

B =By =1,

B;"21=i‘ ==B;"3’=il =;£(%)1/2 ’
B;’=il=BT3’=il=$%(%)1/2, (70)
B;';J=t2=__B;"21=i2___(%)1/2 ’

BY =By T —xidy 2,

The evaluation of Eq. (59b) for N, is equally straightfor-
ward; in terms of w;, the effective Larmor frequency de-
fined in Egs. (29), we obtain the linear Zeeman shift of
the RSQ modes,

2ra a
w F; F;
W =myop | == A+l—y+ 5 2-+—y—-5—-
X @ A= 2AWixs!)
— A1 —FAWx
242 3 }
—1
s o BA g2 00 (71)
T80 |5 Al ||

which is the result of Sauls and Serene.!?

The perturbation theory calculation of the quadratic
Zeeman shift is complicated by the first-order corrections,
d i, to the eigenfunctions for the RSQ modes. The
correction d{; of the order parameter is not a pure J =2
state, but a superposition of amplitudes with J=1, 2,
and 3.

d it = Cj(ul’ ! )Pu + C},%JSJ;PuPqu + Cj(lf, ! )pu
3CE iy 1C 2

Similarly, the first-order correction to the spin-dependent
mean field contains / =2 and ! =4 terms,

e 1+j ‘_“D},%J)vpupv +D]g,‘tl)vwxpupvapx ’ (73)
that couple to the J =1, 2, and 3 order-parameter ampli-
tudes. The first-order solutions to Eq. (57b) are lengthy,
so we list the results in Appendix A. The point we em-
phasize regarding these solutions is that the RSQ modes
in a finite magnetic field are no longer pair excitations
with total angular momentum J =2; there is an admix-
ture of Cooper-pair amplitude with J =1 and J =3. This
mixing has an important effect on the nonlinear Zeeman
shift of the RSQ mode frequencies. From Egs. (59) and
the solutions to Egs. (57a) and (57b) we calculate the
quadratic Zeeman shifts; the explicit formulas are given in
Appendix A. There are three types of contributions: (i)
terms directly proportional to w? [Eqgs. (A11) and (A12)],
(ii) terms that arise from gap distortion—i.e., A; in Eq.
(A13), and (iii) contributions from mixing with the J =1
and J =3 amplitudes [in Egs. (A14) and (A15)]. These
latter contributions give rise to ‘“mode repulsion,” which
reduces the effect of gap distortion.

The general form for the field-dependent Zeeman effect
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to order (yH /Ay)* is

_YH_

-r _YH_
Ay(0)

w=wo+ |am,+Bm} 2g0) yH, (74)

where Ay(0)=1.767, is the zero-temperature gap.
Shivaram et al.! have analyzed their data using this quad-
ratic formula to determine the coefficients a,3,I" from ex-
periment. Analytic expressions for these coefficients can
be obtained from Appendix A. In Figs. 4—6 we exhibit
the temperature and interaction dependence of the non-
linear Zeeman effect. Interactions, except Fg, drop out of
the Zeeman shifts in the limit T— T, just as they do for
the nonlinear susceptibility,

al(T—T,)=0.0833(1+F3)~ !,
B(T—>T,)=0.0599(1+F&)~1-T/T,)~ %, (75
[(T—T,)=0.1689(1+F3)~%(1—T/T,)~ /2.

In principle measurements of these parameters, extrapo-
lated to T, would yield unique determinations of F§. For
the region in temperature away from T,, which is the
relevant limit for comparison with experiment, there is
significant dependence of the Zeeman shifts on the f-wave
pairing interaction and Landau parameter F3; B and T de-
pend only weakly on F§. The divergence of B(T) and
I[(T) for T—T, reflects the breakdown of the perturba-
tion expansion in [yH /Ay(T)] for fixed H. Since experi-
mental measurements of the RSQ modes necessarily re-
quire temperatures outside the Ginzburg-Landau region,
comparison with results based on perturbation theory are
typically valid for magnetic fields up to a few kilogauss.
Nevertheless, there are numerous details, in particular, the
dispersion corrections described in Sec. III B below, which
complicate the comparison between theory and experi-
ment. We discuss these matters and our numerical
analysis of the data of Ref. 1 in a separate publication.'
Finally we comment on the relationship of this work to
that of other researchers. At the time Shivaram et al.!

0.30

0.28 L

0.26 -

. 1 "
0.4 0.6 0.8
T/T¢

FIG. 4. Linear Zeeman coefficient. a(7T) is calculated for the

RSQ modes for (1) $=x7!=0 (solid curve), (2)
F§=—1.56,x7'=0  (long-dashed  curve)) and (3)
F3=0,x37'=—0.43 (short-dashed curve). All curves were cal-

culated with F§=—0.7.
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FIG. 5. Quadratic Zeeman coefficient B(T) is calculated for
the same three cases shown in Fig. 4.

observed the nonlinear Zeeman shift of the RSQ modes,
Schopohl et al.? predicted this effect based on an earlier
paper on the gap distortion.!>? They also noted that
mode-repulsion effects reduce the nonlinearity resulting
from gap distortion. We agree with Schopohl et al.? on
these qualitative observations. However, in contrast to
Schopohl et al., we find no mixing of the RSQ modes
with the J =0 order parameter, at least to leading order in
(yH /Ap). It is conceivable that mixing with J =0 occurs
at higher order in (yH /A). We do obtain mixing with the
J =3 order parameter because we include f-wave pairing
correlations. It is important to note that our expressions
for the quadratic nonlinear Zeeman shift do not immedi-
ately reduce to those of Schopohl et al. in the limit
F$=F5=x31=0; Eq. (1) of Schopohl et al. omits all
nonlinear effects except gap distortion. We elaborate on
this fact because Shivaram et al.! have recently used the
formula derived by Schopohl et al. to analyze their data.
Their procedure amounts to inserting the RSQ mode fre-
quency wq and the g factors for both 2+ and 2— modes,
calculated with interactions,'® into the formula of Scho-
pohl et al., which omits interaction effects (except F§)
and mode repulsion. This procedure cannot yield reliable
results for the material parameters F§ and x5 .

T T T T T T

rm

6.0

40

2.0

0.4 0.6 ' 0.8
T/Te

FIG. 6. Quadratic Zeeman coefficient I'(T) is calculated for
the same three cases shown in Fig. 4.

B. Dispersion of the the RSQ modes

The RSQ modes have so far been observed only
through their coupling to zero sound. Essentially all de-
tailed comparisons between theory and the experimentally
determined mode frequencies neglect the dispersion of the
RSQ modes.®'>! This is generally a good approximation
because zero sound excites the RSQ mode at g =c¢y/w,
and the resulting dispersion correction to the mode fre-
quency is small,

(l)q~%C%{SQ qz/wo~%(uf/c0)2wo<<wo . (76)

The dispersion shift is not necessarily small compared
with the Zeeman shift. Furthermore, the finite wave vec-
tor partially lifts the degeneracy of the RSQ modes in
zero field;* i.e., the five RSQ modes travel with different
group velocities when excited by zero sound. This disper-
sion splitting has recently been observed by Shivaram
et al. at low temperatures (T ~0.47,) and low fields
(H ~30 G). A detailed theoretical analysis of the Zeeman
splittings of the RSQ modes necessarily requires an
analysis of the dispersion splittings as a function of mag-
netic field. The effect of the dispersion splittings on the
Zeeman splittings of the RSQ modes is shown in Fig. 7.
The dispersion corrections lead to unequal Zeeman split-
tings which persist for fields yH >>v}g”/A.

To calculate the dispersion splittings of the RSQ modes
we use the perturbation theory previously described. We
start from linearized transport equation [Eq. (47)]; the
gradient term generates the perturbation, —73g, with
n=vsp-q. Combining the solutions to the transport equa-
tion with the self-consistency equations for the order pa-
rameter and mean fields we obtain a matrix eigenvalue
equation,

H (kG)

T
A

0.3

T T T

0.2

0.1

F I SN UNE NS SR SO SN NN SN SN S SN N S S

LENNS S S s S s e |

T

FIG. 7. Dispersion and Zeeman splitting of the RSQ modes.
The dashed curves show the Zeeman splittings calculated for
T/T.=0.65, low pressure (F§=—0.7,F§=—0.5,x7'=—0.4,
T.=1.04 mK), and g =0. The effect of dispersion of the RSQ
modes on the Zeeman splittings is shown in the solid curves.
The nonlinearity at low fields results from rotation of the quant-
ization axis from q (at H=0) to H (1q) at intermediate fields
(H >0.3 kG). The dispersions splittings were calculated with
(quy /@) =(vs/co)?*=~ —0.10, appropriate for p =0 bar. The
states are labeled by | m, | at H =0, and by m, in high fields.
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d®)=L({Pp,p0)*d(®"),
VLY 0
F°L}; F°L{; F°Mj
0  VM} VN
F°L{; F°L{; F°M}

VILE;
F°L§;
Sk an
F°L};

for the ten-component eigenvector d'*=(d*,e*,d ~,e”).
The dimensionality of the eigenvalue equation increases
for q#0 because of the coupling of the eigenfunction for
the RSQ modes to the singlet order parameter, d —, and
the odd harmonics of the spin density e™. Explicit ex-
pressions for the matrix elements are given in Appendix
B. The quadratic dispersion of the modes is calculated
from

w,=—Ng/D, ,

(78)
Nq =2 O*L(Z)(wo)*40+2 O*L(l)(wo)*g 1>

where LV (L) is the perturbation of order 7 (17%). The
detailed expressions for the matrix products in Eq. (78)
are also given in Appendix B; we find that the dispersion
splittings depend on the interaction parameters F$, F§,
and x5!, in addition to F§ and x5 !. The dependence of
mode velocities on the d-wave pairing interaction results
from mode repulsion between the RSQ modes and collec-
tive oscillations of the singlet, / =2 order parameter. The
effect of d-wave mode repulsion is weak unless the d-
wave collective mode frequency is nearly degenerate with
the RSQ mode frequency wq, an unlikely situation.

In the absence of interaction effects we obtain for the
T =0 RSQ mode dispersion, o> —w3=c%q?,

65 2.8 2.2
T —Mg 1, avHwg<<qvf

(c/vf)= (79)

41 2 4 2 2
w5 M, 0g>>ayHog>>qf .

Note that in the low-field limit, ayHwy<<q%}, the
quantization axis is determined by q, and the dispersion
splitting is determined by the eigenvalues m,=Qq-J. In
the intermediate-field limit, w§>>ayHaw, >>q2v}, the
quantization axis is determined by the magnetic field, so
that the dispersion splitting is given by the eigenvalues of
m,=2-J. For zero-field several authors have calculated
the RSQ mode dispersion neglecting interaction ef-
fects.?~2% In this limit our calculation agrees with that
of Brusov and Popov?® at zero temperature. Combescot®’
has also calculated the RSQ mode dispersion for

3 =Ff=x7!=x37!=0, but F¢=£0. In this limit we find
(at T=0and H =0),

1+7F%/25
(e/vp =+ Fl—mg |35 + 50 FiT, Japa s |

(80)
which agrees with Combescot except for the (F$)? terms

which are absent from his equation for |m,|=2. A
quantitative comparison of the RSQ mode dispersion re-
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quires that the corrections from F3 and x3 ! be included
since it is known that these interactions shift the ¢ =0
mode frequency by 20—25% at low temperature.®~°
However, Fig. 8 shows that the effects of F§ and x3 ' on
the dispersion are relatively small; choosing x 3 1= _0.43,
F3=0 we find only a 3% change in the | m, | =2 mode
dispersion. This small effect results from a near cancella-
tion between the large shift in w, from V'8/5A, and the
explicit dependence of (c/vf)2 on F% and x5'. In con-
trast the dispersion is more sensitive to the interactions
F$ ; which enter the dispersion relation explicitly. The ef-
fect of x; ! gives rise to a small shift in the mode disper-
sion. It is worth noting that for H=O0 the ratio
(047 —w0)/(@+,—wo)= 7 is dependent of interactions.

The crossover region, q2vf2~ayHco0, is slightly more
complicated to analyze. With the condition that
ayH <<w,, the first-order shifts in the RSQ mode fre-
quencies, when both magnetic and dispersive perturba-
tions are present, are given by

Aw=w0—wo=—[bo*(L¥+L9)*d ]/D, (81)

where L is the linear field contribution to Eq. (53), and
L7 is the dispersive perturbation of order g2 [we eliminat-
ed d in favor of d, using Egs. (B2) through (B7)]. In
the crossover region the quantization axis, which defines
the correct basis functions with which to compute Aw, is
neither § or Z. To calculate the correct frequency shifts
of the fivefold multiplet we consider the case qlZ and
choose the basis of J=2 eigenfunctions with Z as the
quantization axis. We then solve the determinantal equa-
tion,

(C/vg 2

0.250F

0.225

0.200

0.175

FIG. 8. Interaction dependence of the RSQ mode dispersion.
The dispersion of the | m, | =2 modes, (c/v)? is plotted as a
function of F{ at T=0. The solid curve corresponds to

9=x37'=F{=x5'=0. The short-dashed curve (dotted curve)
was calculated with only F§=—1.56(x3'= —0.43) nonzero.
The short-dashed-dotted curve exhibits the effect of a d-wave
interaction, x5 !=—1.5, on the curve with F$=—1.56 and

9=x3'=0. The Ilong-dashed curve, calculated with
F$=—1.56,x7!=x57!=0, and F§= —1.0, illustrates the size-
able influence that the / =3 Landau parameter has on the mode
dispersion; the long-dashed-dotted curve adds a finite d-wave
interaction, x5 ' = — 1.5, to this calculation.
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det[Awd .D,+bo #(LH+LI*d*]=0, (82
which factorizes into subspaces for m,=*1 and
m,==+2,0. For the m,=*1 subspace we obtain the solu-
tions

1

AwD,
Vi

AwD,
v, 1@ ]

where a and b are given explicitly in Egs. (B10) and
c=aD,yH/V; is proportional to the linear Zeeman
coefficient & defined in Eq. (74). These solutions reveal
the evolution of the g substates (for qzvf >>awao) into
the magnetic substates (for ayHwy>>q uf) As illus-
trated in Fig. 7, the m, =0 state evolves into the m, = +2
magnetic state, the mg,=1=1 states evolve into the
m, =+ 1,0 magnetic states, and the m, = 12 states evolve
into the m,= —1,—2 magnetic states. Note that the
mode frequency of each state approaches its zero-field
value, with zero slope d Aw/dH =0, without crossing any
other branch. Numerically we find the modes reach the
intermediate-field region at about 0.3 kG, above which
they exhibit the linear Zeeman effect until nonlinear field
corrections become important.

The combined set of equations, given in this section and

R. S. FISHMAN AND J. A. SAULS

a +4b)+(a +4b)*—

1%
——Lla4+bT (24917,

D, (83)

Aw+1=

while for the m,=+2,0 subspace we obtain the cubic
equation

2| _12p? ® ta+4b|= (84)

I

the appendices, for the nonlinear Zeeman effect and the
dispersion splittings of the RSQ modes may be used to
analyze experimentally determined collective-mode fre-
quencies obtained using zero sound. A detailed analysis
of the data obtained by Shivaram et al. will be published
separately.
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APPENDIX A

In this Appendix we collect the relevant results for the (1) matrix elements of the eigenvalue equation [Eq. (55)] that
defines the RSQ modes in a magnetic field, (2) the first-order corrections to the zero-field RSQ mode eigenfunctions, and

(3) the results for the quadratic Zeeman shifts.
(1) The matrix elements appearing in Eq. (55) are

5 A (h-Ap)? . h-A, fA)
LPhy=8 | =+ x+(z+m 0 L i(E+3) - ; p>
P=dy | 7+ Gy B2 (8o)* ] At =T (AP
A ki kai A2 3 .k -(h‘Ao)z_ iw h- Ao
— (AKAS+ AXAL + AXAL) —AKA s — 2AkA] =12 Al s, (A1)
(A0)2 020 2 {) (A )4 2 2040 (A0)6 ) klj O(A())
h-A, ioh ioh-Ay AgA, 3(h-Ay)? A
Ly®=—81 —— (S 4+ M)+ =28 A+ ———L S by + i Al
2Bl = =0y (BN + 5 ey Aot i R+ o€ Bo | 5 e 2 T = AR
A Ay k l
(A )2 hkAO + (A )4 A Aoz-- oA )2 [}\.+f(l)]€[mjhkhmA0 , (A2)
0 0
L3(Plj= o A v —=—3h-Ao€iim Aohm Ab
. A 4h? ) 2
—ie A | 2 14+ | 4 —2—3A, Ag+ —2—(h-Ap)E =(h-A)>
K00 2 (A,) o | T a0 (A e (o) w(Ag)* o
2i WA 2
—=— €xim Aohmhif (A szkleé—J'Ys/szuhlh'Ao
w(Ag) 2(Ao) »
i FP WSS SV B0 s agak+ 22 hehiOF + — 2 2 s AN ATR-A,,  (A3)
5 (o) (Ag)? (Bg)* 00 (ag 2 Eimili R0 Q2 I mOTITO TR0
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A 0)2 2iA IAj
L= A 7 —=— € Ach-Aq | (AO)ZE ‘mfklonthm
- m AP €10 AR [ A+ F ()] + —22— Ake . A
A 5 €k Pm€jap ASHS [ A+ £ (M)]+ (B 0€jab Aohs
| AgrA; . 3(h-Ag)? A x
+ kA S+ =+ (A%AL+ AkAD)
0 °{ (8 =T 24y (Ay)? As+
h-A,  4n? 2A0-A, AyA, (h-Ay)? 3(h-A,)?
+(AGh;+ A Ay —— S +8y | — = (A—1)—A— ———E
Ok (At T TR (Ao)? (A " (Ag* 2(A0)*
2
€k11h1+ hkh (}\.—1) (A4)

where the w-dependent functions =, Z, and f(A) are simply related to A(w) defined below Eq. (61),

E=[(A)*Ys,,—31/W ,

2=“[(AQ)ZY3/2+}\.]/W, (AS)
A (A 20y O
fR=A+2070 [1-2— | =280 W

(2) The first-order corrections to the order parameter, d; %, and the mean field, e’ j» are represented by their tensor ex-
pans1ons m Eqs (72) and (73). The nonzero components of the J =1 and J =3 tensors are related to the zeroth-order
tensor B{>! by,

-1
AF$ F3 AF“ AF$
tepCi =1 pavg |1 22| 1 22 o5 A2 (AR (A6)
—1
- AFS FS
1 — 2 2 —
T O + ek Clid +esp i) == o A e liclly 1Wl Wl 1+7]D ‘
AF“ AFS
521 52 (B%V8,3+B2Y8, 3+ B2V (A7)
D" =2Df3,,
—1
AF§ F$ F$ F$
puo_ _YH BV Iy li4p= 2 | 1+ 2w 1+=%|p-!
D =5[D{, +D2, + D3, — (D28, + D280y + D12 8,,)] (A8a)
uvw 3 u,vw v, uw wuv 5 Wy, juOvw JrjvPuw Jjw ’
—1
AF3 F$
—o' 2 2wl |1+=2
Q 6A0 75 ] *
. . AF§
XD 7 |2—A
5
F$ 3 AFS F§
+1 1+y—5—-H1 Bl 9“ +4(A )2,12 1+y—52— (B3V8,3+B,;3"8,5+ B>, (A8b)
Dl(lgl: =—D](j|}mw ’
_ 2vH .. F}§ AFS 1 AFS AF$
D =—0 le1%fo3 I+=2W | |[1+5 D z—a Py - (B‘z”8,,3+B,§§"’5,,3+%B,‘,,2,"’),

(A8c)
where
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0 =x; 1+%x§g+%u§: 4(‘:§)2A. (A9)
The linear combinations of J =2 amplitudes that contribute to w, are related to the zeroth order J =2 amplitudes by
—1
o= %TZ)%TZ" e 1+ 20
_45;("‘:;'; _x“;g Wl1+kfgw]_ [1+FT§lD-’(e“3,-3}3’1’+e,,3,-3;3"’>, (A10a)
Bu [1+ )fg =TZ’: )“?(c,‘,ﬁ"’—%c,i,%’”)w,ﬁgv“l1+ )‘fgwr %%’0—‘% wog)io-ﬂ 1 %Il
X |= |1+ FgW +A 1+f52 (€,3B" +€,3;Bi")) (A10b)
x3+4jf:))2 C=3MCV+ )
9 1+M:21W B —8755)2W§30+7‘(::)2 165(0;60)2—%—?(? H
i;o:j Vuv+;.z)(OZ:)IZW l+—k—I:EW|_1 1+—1[;—g D! —E—H»—k? (€43B)7 " +€,3B2") .

(A10c)

(3) The quadratic nonlinear Zeeman shifts of the RSQ modes are calculated from Egs. (59) and the equations above
and in Sec. III. The contributions to N, are

2

-2 2
aL'! AF§ Fil  _,|yH
wrbox xdo=—TaVim}|1+—"W| |1+==| D~ Ji;— W
2 AFS AFS EYS AFS
X | (At 1=p) | 1= —2— 3 W(y—ZA)—moawo 1+2=2W |, (A1)
of L@ s 2 AF3 - 2 i 2| YH : 2
'—2—20* aa)% #40=7V1mz 1+ 5 w 1+'—5— D A, g
o1, @ Swp |
—_— 0 —_—
6 303 | 8(Ap)?
2 a a
g 3}\ 5 2 -1 1 27\'F2 )“FZ
A 200~ (1= S W2hx Lawr—2
+8(A0)2 + a)oawo ( 3 3 J+FAW 5 1+ 5 , (A12)
H 2 Ma - Fﬂ 2
boxLPxd =%V, | L5 | w—' 1+—2w| |1+°2| D2
- - Ag 5 5
Ay | AF$ ke |
X [{W|1+—=w (AO)ZYM(1—§A)—%x~5—2wz(1-,4)(1—AW>—éw 52W (1—A)?
LA —1)W }”FSW2+2f(MW(1 awp_ 00 [ ey
A 5 ; 8(,)? 16(A0)?
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Twd 10 AF3
_]—l6a)(2)Y3/2 ‘%—m—%AW*&-TTWZ(I——A)
Aw} 5303 wg AF$
+ - 2w? )
48(Ay)? 8(Ap)? + 16(A0)* +
Shap Y @y g AF3 } wy 1 AF§
- w +— Ly - AWA |1— — W (8+5W)
16 Y3, 40(Ag)? 5 5 4(Ay)? 24(A0)2+6 5 +
AFe |
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2 2
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2 2
Sw
—EWE (=AW= —0 1= 220y
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FrwdYs, L @5 —4AW + (1—A)
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@y 5 A.Fz
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144(4) 4(Ap)?  16(Ap) 5
aL(O) lli 2
box |[L'V 40, 20 *d =V, A 1+— D %R,+R,+Q 'Ry, (A14)
0
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AFS AFS b 5w} _AF3 AFS
Ry==m?|1+ w A |14+ — Iy iw
P 5 [g 5 )1 (80 | 8(Ap)? 5 s
2
A AF3 505 AF3 o}
—2w—W 1 |1+ + 1 1
% 3wy [ 5 ] 8(Ao)? R RTINS
o 2h 'F3 | 503 O
3w, | 5 8(A)?
1 “’(2) 5(0(2) Al AF;’ 2W
78| T a0 | 3(4y)2 * 5
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2 | M AW + i 1
_+_ J—
5 Y1882
L B 1 A1+ My 2
T | TS Sl R R
a)é +i AF§ AFS
120402 7 5 5
AF? AFS F8
—AW 1—y +A |1+ w 1+y—
5 5 5
« w} s 1+MgW
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AFS Fe P arFe o
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1 al‘ 1.2 2 2
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o, M3 AFS F3
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5 5 5
2
AF? Fg AFS
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Ll ,m 2 142 , A15b
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1 2
}\F(I a a
Ry=+ [1 52 (I—tm) {142 1422w |y |1— 52 WI
2
F§ Fj§ Tw} 11 AF3 7 | AFS
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where g is the g factor for the linear Zeeman effect defined by w;=m,gw; , and 4 =(A,)*Y;,,4%/5.

APPENDIX B

In this appendix we collect (1) the matrix elements of the eigenvalue equation that determine the RSQ modes for finite

wave vector, (2) the first-order corrections to the q=0 eigenfunctions, and (3) the coefficients that determine the quadra-
tic dispersion of the RSQ modes in a magnetic field.

(1) The matrix elements appearing in Eq. (77) are

l w?
4( Ag)?

Lij=38; —pipj |A

2
AL fh)
[0}

ye LTI }

2 3 7’
Lij=—Li;= 2A A €kijPi +w2 [A+F(A)]

2
L=8 | —A+ i%[l—zk—f(k)]

+PiDj

2
r+ L [k+f(k)]] ,
w

A
Lij=—L};=inewp;—— 25, L,f,:L,?j:—;Lakj(l—M ,

(B1)
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2
L,?,-:B,cjg;(l—k)—pkpj

2
x+g7m+f(x>1] ,

A A w
1:-— 2=A — M3=— 0— M4=——
Mi=—Mi=pm7, = Mj=—pjoy s Mi=7 4P

2
A+ ilz—[mf(x)]] ,

N———1—+

2
AL f (1)
@

4(A,)?

where f (1) is defined in Eq. (A5), and n=v,p-q.
(2) The first-order correction to the q=0 eigenvector is d '=(0,0,d ~,e™) with

d~=p’+piPub »
e =¢i1,upu +¢?,uvaupva .
For the J =0 contribution we find p®=0, while the J =2 amplitudes for q=gJ are given by

—1
Awg @ (2,1, 4(2,3)
X,+ A )
Puv 2A0 2 4(A0)2 ¢ ¢
-1 a a 2
2,1 iqup }‘Fl AF) -1 5 AFS @o 2,0 (2,1)
—_— w P 14— 1 —A iB; B R
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2.3  iqup AF§ AFS . F$ AFS } . @1
—_— 1 w P 1+— 1 —A | B ’ B ),
uv 128 7 5 + 5 + 3 4(A0)2 €y2j +€y25
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2 AF{ 3 AFS W}
P= 14— — A
X, +5 3 +5 7 +4(A0)2
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(B2)

(B3)

(BS)

The quantity P(w) that enters the J =2 amplitudes has a simple physical interpretation. This factor reflects the cou-
pling between the § =1, J =2 RSQ modes and the S =0, / =2 (d-wave) order parameter; P(w) is the denominator for
the d-wave order-parameter response, and P(w*)=0 defmes the excitation energy for d-wave Cooper pairs. This eigen-
value equation has a solution with ©* < 2A provided x; ! <0; i.e., the d-wave pairing interaction is attractive. In the un-
likely event of near degeneracy between the RSQ modes and the d-wave modes (0* =w,) the perturbation expansion for
the mode dispersion breaks down. The more likely case is that the modes are well separated, in which case the d-wave
modes contribute weakly to the dispersion by repelling the RSQ modes. The quantity Q(w) defined in (A9) has a similar

interpretation as the denominator for the J =3+ order-parameter response.
The J =1 and J =3 amplitudes also contribute and are found to be

-1
iqup AF§ AFS F$
T 125 3 s W W+ |(ewyBy '~ B +2eu;Bj3 ")
qu AFS AFS - » F
eujk¢k102+€vjk¢k]u2 AO 7 Wil+ 5 w P 1+_5—
5 AF{ 4 AF§ g
B 142 4 A
%P HCRERRC R I RTYY
AF¢ 16 AF$ w}
L(BEY (2,1 2p2,1 1AMy 16 A3 0
+4( 6v2+‘B 8142"' 3B22 auu) X2 1— 15 3 + 15 7 +4(A0)2k

(B6)

(B7)

(3) The above relations for the first-order corrections to the q=0 eigenfunctions are used to evaluate the matrix ele-

ments in Eq. (78) for the quadratic dispersion of the RSQ modes,
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The above equations are also used to obtain the field-dependent mode dispersion given by Eqgs. (83) and (84) with
2 -2
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These equations neglect small field-dependent corrections of order (quy/ Ao (YH /Ay).
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