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We calculate the chemical potential eo and the effective mass m /m3 of one 'He impurity in

liquid He. First a variational wave function including two- and three-particle dynamical correla-
tions is adopted. Triplet correlations bring the computed values of Ep very close to the experimental
results. The variational estimate of m /m3 includes also backflow correlations between the 3He

atom and the particles in the medium. Different approximations for the three-particle distribution
function give almost the same values for m /m3. The variational approach underestimates
m /m3 by —10% at all of the considered densities. Correlated-basis perturbation theory is then
used to improve the wave function to include backflow around the particles of the medium, The
perturbative series built up with one-phonon states only is summed up to infinite order and gives re-
sults very close to the variational ones. All the perturbative diagrams with two independent pho-
nons have then been summed to compute m /m3. Their contribution depends to some extent on
the form used for the three-particle distribution function. When the scaling approximation is adopt-
ed, a reasonable agreement with the experimental results is achieved.

I. INTRODUCTION

Dilute solutions of He atoms in superfluid He are
suitable systems to study the elementary excitations of
quantum fluids. The theory is based on the properties of
isolated He atoms in the liquid, and one is allowed to
describe the low-lying excited states of the system in
terms of weakly interacting elementary excitations above
the ground state. ' There are two types of excitations:
phonon and roton excitations of the He medium, which
are affected very little by the presence of 3He atoms, and
the He quasiparticle excitations, characterized by the
Landau-Pomeranchuck spectrum

4„(p)=+OF+exp(ip r;), (1.2)

where 4o is the ground-state function of the He medium
plus one He atom, and the correlation operator

confirmed by second-sound measurements. The main
reason for m' to be -2.3 times the bare mass mi, as
first proposed by Feynman and Cohen, is the presence of
backflow correlations between the He impurity and the
background of "He atoms.

A number of variational calculationss ' have been per-
formed for the effective mass, by using a trial wave func-
tion of the type

e~=eo+p /2m', F =gf (p, ;), (1.3)

where p is the momentum of the excitation and rn' is the
quasiparticle effective mass. There is very little admix-
ture between the two types of excitations at low momenta

p « rrt 4c, where c =238 m/s is the He first-sound veloci-
ty and mq is the mass of the He atom.

In this paper we present and discuss a microscopic cal-
culation of the excitation spectrum e& of one He atom
immersed in a background of liquid He, determined
by the two parameters eo and m' of Eq. (1.1). Experi-
mentally, eo is measured from the heat of mixing of He
in He and is eo ———2.785 K. The value rn '/m

&
—-2.3 for

the effective mass at zero pressure has been derived from
the specific heat of dilute solutions and, more recently,

induces backflow correlations between the impurity I ( He
atom) and the A atoms of the inedium. The results ob-
tained depend, to a certain extent, on the correlation func-
tions adopted, as well as on the approximations used to
evaluate the two- and three-particle distribution functions.
Gwen' assumed to have the optimal Jastrow wave func-
tion of the type

for %'o in Eq. (1.2) and used the optimal two-body back-
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flow function f~(p, rj; ). The results obtained indicate that

the Feynman-Cohen effect alone is not sufficient to ex-

plain fully the enhancement of m'/mi above unity. In
fact the values obtained in Ref. 10 for the Lennard-Jones

(LJ) potential range from 1.4 to 1.65 depending on the ap-

proximation used to calculate the three-particle distribu-

tion functions.
Triplet correlations have been found to play an impor-

tant role in the binding energy per particle of He (Ref.
11). The most reliable variational calculations' of the
chemical potential eo given in Eq. (1.1}use a ground-state
wave function of the type

4'p ——I'JI'g, (1.5)

where

p(q)= ge (1.9)

where the triplet correlation operator is given by

e
-«~a~2A

e
i,j,k=1 ij =1
(i &j&k) (i &j)

with

'Vajk gP ajar( ak}raj 'rak
cyc

Here, g,„, denotes a summation on the cyclic permuta-

tions of the indices a,j,k, and the index a may represent
either a He atom or the 3He impurity.

It is found that three-particle correlations, in spite of
their large effect on eo,

' give very little contributian to
the variational estimate of rn'. Our best variational re-

sult, obtained by using the hypernetted-chain plus scaling
(HNC/s) approximation' " and by including two-

particle correlations only, gives m ' = 1.48m 3 at the
equilibrium density po

——0.02185 A, which is in fair
agreement with the corresponding result of Ref. 10. The
inclusion of triplet correlations brings the value of m' to
1.46m 3.

Other processes, like those by which the He atoms ac-
quire an effective mass, could be relevant as suggested by
the recent results of Manousakis and Pandharipande' on
the excitation spectrum of liquid He. A different ap-
proach to study the excitation spectrum of one 3He atom
embedded in a liquid- He medium is furnished by the per-
turbation theory' ' based on a set of nonorthogonal
correlated basis functions (CBF's) ~+;(p)). These func-
tions differ among themselves in the partition of momen-
tum between the He medium and the impurity He, and
are given by

~+;(p))= ~k;q 'q ' )=g[p(q)] 'p~(k)+o, (1.8)

II. VARIATIONAL CALC'PLATIONS

In this section we calculate the excitation spectrum Ep

of one He impurity in a liquid- He medium by using the
variational theory with a wave function %„(p) of the type
given in Eqs. (1.2) and (1.3) and %0 given by Eqs.
(1.5)—(1.7). The correlatian operators Fz and Fr, ob-
tained by minimizing the ground-state energy Ep w111

also be used in the perturbative calculation of m', dis-
cussed in the next sections, to determine %0 in the defini-
tion of the correlated-basis functions of Eq. (1.8).

The Harniltonian of the system is given by

H =H4+HI, (2.1)

sence of the backflow operator Fjj in (1.11}. The in-

clusion of the one-phonon state
~
k;p —k) admixture in

the unperturbed state %0(p) gives most of the backflow
correlation effects. ' ' It is found that the sum of all of
the perturbative terms built up with one-phonon inter-
mediate states only (ladders) leads to a value of the effec-
tive mass m'=1. 54m& [at p=po for the Lennard-Jones
(LJ) potential], which is very close to the variational esti-

mate.
In order to explain the excitation spectrum ez one has

to go beyond second-order perturbation theory with a
one-phonon intermediate state (OIP). Terms having two
independent phonons (TIP) are important in explaining
the discrepancy between the experimental and the theoret-
ical estimates of m'. These terms, as already pointed out

by Woo et al. ,
' include the effects of the backflow corre-

lations around the He atoms. A large cancellation is
present amongst the TIP terms, which have then all to be
summed. The net result depends on the approximation
used to calculate the three-particle distribution functions.
In the best appraximation used, the effective mass is
2.0m3 for the LJ potential and 2.2m3 for the Aziz paten-
tial, ' which are quite close to the experimental value of
2.3m'. The contribution of the TIP terms is (20% of
the OIP term. The rapid convergence of the nIP series in
the ladder-type terms strongly indicates that one should
expect a similar convergence in the full nIP series.
Analogous indications are furnished by the results ob-
tained at densities higher than the equilibrium.

The paper is organized as follows. After the Introduc-
tion, Sec. II deals with variational calculations and the
prescriptions for %0. The perturbative scheme for the ex-
citation spectrum ez which has been developed in Ref. 19
will be briefly reviewed in Sec. III, where the calculation
of diagonal and off-diagonal matrix elements is also treat-
ed. The results obtained for the effective mass when the
ladder-type terms are included in the calculation and
those provided by the OIP and TIP terms, are presented
and discussed in Sec. IV.

pj(k) =e (1 10} where

In this scheme the unperturbed state is given by

'4(p}=pj(p}'4
which differs from %„(p) of Eq. (1.2} because af the ab-

A A

H4 ——— gv;+ g u(rj),
2771 4

(i &j)

is the Hamiltonian of the He background, and

(2.2)
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Hr = — Vr2+ +U(r„),
2l?l 3

is the part which invo1ves the impurity He.

(2.3)

A. Ground state

It is convenient to write the expectation value of the
Hamiltonian H with respect to Vo in the following form:

of the medium, i.e., that obtained by setting urj ——qrjk =0
in Vo; (I/Q)g„ is the contribution to the distribution
function coming from the rearrangement of the medium
due to the presence of the impurity. The cluster expan-
sions of gr, grr, and g;~j have been extensively stud-
ied"' ' and some of the contributing diagrams are
displayed in Fig. 1. The two-body distribution functions
are most conveniently expressed by the following equa-
tions:

Eo=E,4+co (2.4) p( —ij+ ij+ ij+ ij lr, =o (2.11)

Here E~4 is the energy of the medium and therefore pro-
ortional to A, whereas ep is the chemical potential of the
He atom and hence of order of unity. The derivations of

the expressions for E4 and eq have been given in Refs. 11
and 12, respectively, and will not be repeated. The expres-
sions obtained within the Jackson-Feenberg prescription
for the kinetic energy expectation value are

2..E4/3 =(P/2) drirg2 ir Uir+ 7 Qij
4m4

L

R
gij ~ gij I pr

——0 ~

oPI
(2.12)

where N» and C&j are the contributions from nodal dia-
grams and dressed three-body links, and E„r.

4P„'"j' is the sum of the elementary diagrams.
The index j2 in Eq. (2.11) may represent either a He or a
2He atom. The functions N and C are calculated by solv-
ing the following integral equations of the HNC type:

N„j gp„——fdr„(g„„—1)(g„j N„j —1), — (2.13)

2 .. . .. 2 ..+
16 p drij drikgi, ijk+rgip(
16m4

(2.5)

eo=er+eR

where the interaction term eI is given by

Er ~P drrjg2 rr Urj+ V Qrj
2

4P2

(2.6)
0
0

/ 4

/
/

/

o' b 0

+
8 P «rr«rkgi, rjk~rrjrjk ~

8@3
(2.7) (b) (c)

with I/j22 ———,
' (1/m4+ 1/m & ) and 1/j22 ———,

'
(2/m4

+ I/m&). The term eR is due to rearrangement of the
medium and it is given by

2 R + 2eR= —,P «ijg2, ij Uij+ ~ uij
4m 4 0

2

+ p dry rgg3, ijk~;a,k
16m4

(2.8)

The distribution functions involved in the above equations
are defined by the following equations:

1
gn, 12 . n+ ~ gn, 12 ' n

2~(~-I) ~ ~ (~ n+I) -f«+i"
fdrl% l

o2
I

4 / I

I r i l

/ y I

0 b

0
i
I

gaI23. . ~

Q/I(g I} (g n+2) fdry+i ' '
I +ol 2

fd.
l +.I'

(2.10)

In Eq. (2.9) g»2. . . „ is the n-body distribution function

(g) (h) (~)
FIG. 1. HNC diagrams contributing the distribution func-

tions. Diagrams (a}—(c) belong to g;J, (d)—(f) belong to grj, and

(g)—{i) belong to g;", . The dashed, wavy, and broken-dashed
lines represent g;J —1, gIJ —1, and g;~ links, respectively,
whereas the triangles made up of solid or wavy lines denote trip-
let correlations.
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C„j=—gp„fdr„[exp( —q„j ) —1]g„„g„j, (2.14)

gs, pjk=giugpkgjkexP( qp—jk+Aiuk) I p, =o (2.15)

where the sum g„ is extended over the two types of
atoms in the system.

The three-body distribution functions are given by

/
/

/
/

/
/

/

gs, ijk = ~ gsijk , I pi=0 r

OPI
(2.16)

5E4/5u;, =5Eg/5q;jk ——0,
5'EQ/5u jj 5eo/5qjjk 0

(2.17)

(2.18)

In this paper we use the solutions u;j and ujj of the ap-
proximated Euler-Lagrange equations given in Ref. 12
and the parametrized triplet correlations q;J~ adopted by
Schmidt et a/. in a variational Monte Carlo calculation
of the binding energy of liquid He. This correlation has
the form given in Eq. (1.7) with

~Br exp{ —[(r r, ) /oj] —Ii

P r'j ) P rlj ) X[(r rjj)/rjj] for r &—ra,

where A&jk ——g„i &tA&z'k is the sum of the Abe dia-

grams. ' Both the elementary and the Abe diagrams are
built up with g —1 links and triplet correlations and give
a substantial contribution to the distribution functions.

We use the scaling approximation of Ref. 11 to calcu-
late E and A, by taking the same scaling factors for all
three types of elementary and Abe diagrams. This is justi-
fied by the fact that we keep q;jk ——qjjk in the calculation
and that g j differs very little from gjj. '

The correlation functions u and q appearing in Eqs.
(1.4) and (1.6) are obtained by minimizing E4/A and then
eo. The optimal variational choices are furnished by the
solutions of the Euler-Lagrange equations

Experirnen t

I

22. l6
I

22. 76 23.36
p(lo ~A ~)

perimentally one has 1.17 K. Table I gives the sHe chem-
ical potential eo is a function of the pressure P. eo(P) is in
better agreement with experiment than eo(p), but it is still
too fiat. However, for densities p&0.023 A, the ap-
proximations used in the calculation should be completely
reliable. A somewhat better agreement with the experi-
mental results can be obtained by using the more involved
triplet correlation of Ref. 11 and the more realistic Aziz
potential. '

B. Excited states

FIG. 2. He chemical potential eo as a function of the density

p, calculated with the LJ potential in the Jastrow [eo(J)] and in
the Jastrow + triplet correlation [e~ (J+ T)] models and com-
pared with the experimental data {dashed curve). The dots
denote the values at the equilibrium density.

0 for r &ra .

(2.19)

The simplest variational ansatz for the state of one sHe

quasiparticle in liquid He is given by

The values of the parameters A=7cr, r, .=0 82cr, .
ro, =0.5o, and ra ———,

' (108/po)'~, o =2.556 A,
which give the minimum of E4 at p=po, have been
adopted at all of the densities considered in the calcula-
tion. The results obtained for eo [using the Jastrow model
with triplet correlations (J+ T)] in conjunction with the
LJ potential are shown by the solid curve eo(J + T) of Fig.
2, where the experimental curve and the Jastrow results
[eo(J)] are also reported for comparison. Triplet correla-
tions lower eo(J) from 0.14 to —2.58 K at the experimen-
tal equilibrium density, contributing to more than 80% of
the difference between eo(J) and the experimental result of
—2.79 K. The flatness of the curve eo(J + T) with respect
to the experimental curve is mainly due to the lack of ac-
curacy in the scaling approximation at higher densities,
which is more effective in the calculation of eo than in the
calculation of Eq(p). At p=0.023 88 A the result for
the He chemical potential is —4. 13 K, which should be
compared with the experimental value of —3.97 K;
whereas we find eo(p=0. 02388 A )=0.40 K, and ex-

'4(P) =
I P & =Pj(p)

I
+o& . (2.20)

The expectation value of the Hamiltonian on
~ p) is easily

evaluated by using the relation

& P ~

H
~ P) E, &+o IPj( —P)[H Pj(p)] I

+o&

where

(2.21)

I' {atm)

0
10
20

—2.62
0.14
2.83

pxpt {K)

—2.79
1.17
4.69

2.36
2.74
2.92

TABLE I. 'He chemical potential versus pressure for the LJ
potential in the Jastrow + triplet correlation model; s is the
scaling factor.
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[»pl(p)] = pl(p)(p' —2'p ~l }
2@i3

(2.22)

The wave function %0 is real and independent of k; thus
the term involving ip.Vl vanishes and one obtains

TABLE II. Effective mass m /m 3, calculated at

po
——0.02185 A ' for the LJ potential with Jastrow (J) and Jas-

trow + triplet correlation (J+ T} model, and compared with

the results of Ref. 10.

Ref. 10

gV gV+ P
2m,

(2.23)

CA
KSA
HNC/s

1.45
1.46
1.48

1.44
1.44
1.46

1.58
1.49

The resulting effective mass m'=mi indicates that the
wave function %'0(p } of Eq. (2.20) is too simple to describe
the single-particle excitations. A better ansatz is given by
%„(p}of Eq. (1.2), which explicitly contains the backflow
correlations between the impurity and the He atoms.
However 4'„(p) does not explain the experimental m' if
the Jastrow model is adopted for %0. '0

We have calculated the effective mass m' by using the
J+ T model previously discussed for 40 and a backflow
correlation operator of the form

Fs ——ff exp[ip rl;i}(rl; )] . (2.24)

The expectation value of the Hamiltonian with respect to
%„(p) is given by

&q'oIF +p ( —p)[»p (p}+ 11'4&
EVB gV+ (2.25)

0 0

Thus, the single-particle excitation energy becomes

Ep~ =Ep+
2m 3

2

l+p rJJgIj 29Ij+ 3rIjQIj+ ~3 I 2 9IJ+ 3 ~IJ 9IJ +2/Ij~IjQIJ

+P Jd Ij drIkgII'k I QIj Ilk+ Y~[ "IjVII'9lkrlk(rIj ~lk) +29II'rjIk "Ik]j (2.26}

The function rj(r) adopted in this calculation is of the
form

rj(r) =AoexPI —[(r—ro)/PIo] j (2.27)

where the Parameters rp, PI0, and Ap are varied to find the
minimum of e~ . Table II reports the results obtained for
the LJ potential at the equilibrium density. The Jastrow
and the Jastrow + triplet correlation models give nearly
the same results and these are in close agreement with
those of Ref. 10. For the sake of comparison we have cal-
culated m'/m3 by using the convolution approximation
(CA) and the Kirkwood superposition approximation
(KSA) for gllk. The results are very close to those ob-
tained in HNC/s approximation. The calculated m'/mi
is compared with experiment at three different densities in
Table III. The comparison confirms the conclusion of
Ref. 10 that backflow correlations between the He and
the He atoms are not sufficient to explain the experimen-
tal data on m'/m3.

III. PERTURBATION THEORY

&q, [H[q;&
(q iq )

HI;, ——(1—5;, )
(q, ia-E, iqj)

(3.2)

=(1 5~I. )(H;, ErN;,—), — (3.3)

where Ez Eo+ez is the ei——genvalue of H for the eigen-

~

qI(p) ). The Brillouin-Wigner series for the
perturbative correction ~&& to Ez is given by

The variational results discussed in the last section indi-

cate that the eigenfunction of the Hamiltonian

I
q'(P) & =Pl(p)

l
q'0&++&0

I
q' (P)) (3.1)

J

has strong admixtures of CBF states
~
4;(p) ) with i&0

The CBF scheme is based on the following unperturbed
and interaction Hamiltonians:

TABLE III. The effective mass m /m3 calculated at three different densities for the LJ potential
and compared with the experiment. P and P,„p, are the calculated and experilnental pressures. Ao is
one variational parameter of g(r). The other two parameters ro and ~0 have been kept fixed at the
values rp=0. 80', 600=0.44o given in Ref. 14.

p(A )

0.021 85
0.023 88
0.025 71

P,„p, (atm)

0
10
25

P (atm)

0.1

8.0
19.4

(W /PPl 3 )glypt

2.3
2.7
3.0

(~ '/~3)

1.46
1.53
1.59

0.23
0.26
0.26
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(Ho E—pNp )(H~ E—pN~o) (Ho —
E'EN@ )(H~p E—pN~p)(Hpo E—pNpo)

bEp ——g + 0 0 ~

a(~0} Ep Ea a, p(~o) (Ep E—" )(Ep E—p)
(a+P)

(3.4)

5@~= g F ' '(p, 5@~),
a, n&, e

(3.5)

S~,N

where Ii~
' i' is a CBF term having a number ni of inter-

mediate states and a number nz of independent phonons.
The structure of F is

where the index refers to the state
I
%'o(p) & =pl(p)

I
%'o&

and the summations are extended to all of the CBF states
defined in Eq. (1.8). The series is first expanded around
b,Eo ——E4 E4—and then resumed in such a way to cancel
all the terms which diverge in the thermodynamic limit.
This procedure has been devised in Ref. 24 for the
ground-state energy of an infinite Fermi system and then
generalized in Ref. 19 to calculate the excitation spectrum

ez of one He impurity in He. Here, we limit ourselves to
summarizing the properties of the renormalized CBF per-
turbative scheme for ez. The perturbative correction 5'
is given by

&n
P

vo, va, a,
' ' va, o/Da, ' ' (3.6)

v p=H p (Eg +—5')N p,

D =5e~+e~ (E" ——Eo) .

(3.7)

(3.g)

The sum in Eq. (3.5) is extended to any value of ni ) 1,

nz & nr and to all of the allowed terms having the same
number of intermediate states and of independent pho-
nons.

Both H p and N p in Eqs. (3.7) may have unlinked
portions. Their cluster expansion shows up the factoriza-
tion property expressed by the following two equations:

where a„.. . , al refer to the nl intermediate states of the
ath term, and the sum is extended to all the momenta of
the n~ independent phonons. The interaction v p and the
energy denominator D are given by

(3 9)

P$p ~ 0 ~ 7 Pg

('0
I

H —Eo
I
4p&

&poI q'o& a, , a j =l, n

(%.. IH Eo
I qp &-

&PoI'Po&
(3.10)

where the summations are extended over all possible parti-
tions Ia; ] and I p; I amongst the phonons included in u
and p, respectively, such that the total momentum of 4
is equal to that of %p for every i = l, n, and the quantity

(X)NF represents the sum of the nonfactorizable cluster
terms of X. Figure 3 displays a few cluster diagrams of
the above matrix elements. Diagram (a) of Fig. 3 belongs
to the nonfactorizable part of (k;qi I k;qi & (or
(k

I
k;qi, —qi &) and diagram (b) of Fig. 3 to

(k
I
k & (0;q, I 0;qi & (or (k

I
k & (0

I 0;qi, —qi &); similarly,
diagram (c) of Fig. 3 belongs to the nonfactorizable part
of (k;qi, q2 I

H Eo
I k+qi, qz& a—nd diagram (d) of Fig. 3

to &k'qi
I k+qi & &0'qz

I
H Eo

I
0'q2& Eac" factor

((0
I qp &/(qo I%o&)Np or ((P IH —Eo I %p &/

(%o
I +o&)NF is of the order A, thus the leading terms in

A of the right-hand side (3.9) and (3.10) correspond to
partitions having the largest number of states. However,
in calculating an interaction term v~p appearing in a term

F~' ~ one also has to keep the lower order terms of
&q'a

I
H —Eo I

q'p&/&q'o
I

q'o&. In fact, the leading order
terms may give rise to an expression which diverges in the
thermodynamic limit in which case there is also' a coun-
terpart term which cancels it.

NI, N

In Ref. 19 the terms F~' ~ were constructed with the
interaction v~p H~p E~~p=v~p ——D~N~—p for a~0 in—

t

place of v~p. The reason given there was that the "in-
teractions" v'p and N, p do not depend upon the energy of
the impurity or phonon states belonging to both 4 and

Because of this property, their use helps into the
understanding of the cancellation process occurring
amongst those CBF terms which diverge in the thermo-

ql

q

(cI )

FIG. 3. Cluster diagrams contributing to the CBF matrix ele-
ments given in Eqs. (3.9) and (3.10). A thick solid line
represents the interaction and a solid q line oriented from i to j
denotes exp(iq r,~).
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dynamic limit. Here we opt for an easier classification
scheme of the various perturbative terms and their di-

agrammatical representation: U~~ is the only "interac-
tion" of the scheme and it is diagrammatically denoted by
a wavy line. Discontinuous wavy lines represent matrix
elements factorized according to Eqs. (3.9} and (3.10).
Continuous and discontinuous wavy lines will be referred
to as single and broken-wavy lines, respectively. A por-
tion u~) of U~&, built up with the n factors corresponding
to the partition [a; ), I P; J, i = l, n, is given by

pr) -R) Pi& rf)i) rI p q q-R

(e)

{c)

(3.11)
-Pz P q) ~I)~

l

The energy denominators D do not need to be represent-

ed, since they are always associated with an intermediate
state. A few examples of diagrams are given in Fig. 4.
The number of single or broken-wavy lines is equal to
nz+1 and that of separate closed loops to nz Dia. gram
(a) of Fig. 4 is a second-order diagram (nI ——1) with one
independent phonon. Diagrams (d)—(f) of Fig. 4 have

nr ——1 and two independent phonons. The differences be-

twmn them arise from the types of terms considered for
the u~)s interactions. Diagram (d) of Fig. 4 is not present
in the renormalized perturbative series, since it has been
proved'9 that unlinked CBF diagrams cancel amongst
themselves. Diagrams (h) and (i) of Fig. 4 are third-order
diagrams which have large cancellations with the second-
order diagram (g) of Fig. 4 [see the discussion after Eqs.
(3.12) and (3.13)], which shows that a classification
scheme based upon the number of intermediate states may
not be adequate.

For a fixed number nz of independent phonons, the al-

lowed diagrams are all the possible linked diagrams which
are made up of nz closed loops of vertical, solid, and hor-
izontal wavy lines, with the number of (single or broken)
wavy lines being less than or equal to n~+ l. Each wavy

hnes brings a nondiagonal matrix element u ~ and an en-

ergy denominator D (except for the topmost wavy line).
Each independent phonon q; carries a factor 0/(2n. ) and
an integration over q;.

In calculating the diagonal and off-diagonal matrix ele-

ments we have assumed that the two- and three-particle
correlation factors u and q in 4'o, are solutions of the
Euler equations (2.17) and (2.18). These equations are
conveniently written in the following equivalent form:

sures the correct linear behavior of the phonon energies at
small momenta. Moreover, the use of Eqs. (3.12) and
(3.13) leads to considerable simplifications in the calcula-
tion of the matrix elements as well as to large cancella-
tions amongst the CBF diagrams. For instance, if Eqs.
(3.12} and (3.13) are satisfied for n =2, then diagrams (g)
and (h) of Fig. 4 cancel each other, while both diagrams
(e) and (i) of Fig. 4 give rise to expressions which are
linear in 5e& with coefficients which vanish at p =0, and,
as a consequence, do not contribute to the effective mass
m /m&. Similar cancellations are present for all of the
diagrams having paired phonon substructures.

By using the factorization property expressed by Eqs.
(3.9) and (3.10), the diagonal matrix elements of the iden-

tity operator and of the Hamiltonian are readily calculat-
ed

«qi 'q2' q. " Ik;qi 'q2''''q "&/(q'ol'4&

= g [AS (q;)] 'm;!+O(1/A) {3.14}

{ c! ) (4) {i)
FIG. 4. Examples of allowed and not allowed CBF diagrams.

The single and broken wavy lines in diagrams (a) and (d)—(i)

represent the interaction, and the oriented solid lines denote im-

purity (straight line) of phonon {curved line) states. Diagram (d)

is unlinked and thus it is not allowed. Diagrams (b) and (c) cor-
respond to diagram (a) in the diagrammatical representation of
Ref. 19.

(%1,
~ g p(q;)(H —E,")

~

ql, &=0, (3.12)
and

i =1,n

(3.13)

where the values n =2,3 correspond to the Euler equa-
tions for the two- or three-particle correlation functions,
respectively. The Euler-l, agrange prescription for %'o en-

=Eo+ek+Xro"{q;)+O(1/A), (3.15)

where the n-particle structure functions S„are defined by

(ql
~ p (q, ) p (q„,)p{q,+. . . q„) ~

)po&

$„(qi, . . . , q„ i) =(1/A)
(

(3.16)
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and the variational energies are given by

ek —— —k
2%i 3

$2 2

co"(q)=
2m4 Sq(q)

(3.17)

(3.18)

The nondiagonal matrix elements are most conveniently calculated by using Eqs. (3.12} and (3.13), as schematically

shown below:

& p —qi —q2;qi, q2 I
& —Eo

I p& =& +0 I ps(p —qi —q~)p'(qi)p'(q2)[H, pr(p)] I
'po&

=(R /2m3)[p —p (qi+qp)]S3(qi, q2),

where we have used Eq. (2.22} for the commutator.
The mixed n-particle structure functions S„are defined by

&'po
I p (qi) ' ' '

p (q -i)pr(qi +q. -i}I
po&

S (qi q2

(3.19)

(3.20)

By using Eq. (3.19) one gets the following expression for diagram (f}of Fig. 4:

1 [p (qi +q2) +5e, ]'[S3(qi,qz)]'

2m3 (2m) p 5ep+6p —e+p q q
—co (gi ) co (g2)—

(3.21)

More generally, a diagram with a number nz of indepen-
dent phonon states involves at most the n -particle struc-

I P
ture functions. Since S„and S„ for n ~2 contain long-
ranged terms, the contribution of a diagram with nz p 2
may be large. It is necessary to sum up all the diagrams
having the same number of independent phonons, because
they cancel each other to a large extent. This is due to the
fact that CBF intermediate states are not mutually
orthogonal. For instance, the state

I
k —qi —q2,'qi, q2&

has a nonvanishing admixture of the state

I
k —qi —q2, qi+q2&. The spurious contributions from

the various diagrams with the same n~ cancel when they
are all summed up.

For this reason we classify the perturbative terms con-
tributing to 5m~ according to the number of the indepen-
dent phonons considered. Accordingly,

IV. PERTURBATIVE CALCULATIONS

(a} (c}

In this section we calculate the effective mass m'/m3
by using the perturbative scheme described in Sec. III.
The diagrams included in the calculation are displayed in
Fig. 5 and correspond to all of the contributing OIP and
TIP diagrams. In addition, we have calculated the contri-
bution from all of the ladder-type diagrams [(a) and (b) of
Fig. 5 are the first two diagrams of the ladder series], in

5' =+5ep (3.22)

with

(n ) all, 8 [n )5' ~ —— g E ' ~(p,5' i' ),
a, n&( &n )

(3.23)

where the summation ove" a is extended to all of the al-
lowed terms (diagrams) with a given nz and n~ The.
dependence of E on 6eP implies a self-consistent solution
of Eq. (3.23). Such a solution is not necessary to compute
the effective mass, which is indeed given by

L'L

)IL

(m'/m3) '=1+
(m/iri )—g (p, 0) I~

1 BE

p

1 —g (0,5'}I s, o
BE

(3.24)
FIG. 5. OIP and TIP diagrams included in the calculation of

the effective mass of one 'He impurity in He.
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S3(ql 'q2) S2(ql+qz)[S2(91 )+ 2(92 } 2]

+S (ql)S (qz)+AS (ql, qz), (4.1}

where the remainder M (ql, qz) is given by

ks (q„qr) rr' f dr=rr dr l"rrrr" " rr+rIrrrjrragj r

X (
&jjk+ jjk 1 )]

X exp(i q1 rjj +i qz rjk ), (4.2}

order to check the convergence in the number of indepen-
dent phonons.

The ingredients necessary to calculate the above pertur-
bative contributions are the two- and three-particle struc-
ture functions. The structure functions Sz and Sz used
are those obtained in the variational calculation of the
chemical potential ko and described in Sec. II. The three-
particle structure functions S3 and S3 have been calculat-
ed by using the convolution approximation (CA), the
Kirkwood superposition approximation (KSA) and the
HNC/s approximation. S3 is readily extracted from Eq.
(3.20) with the result

Xexp(iql rjj+i qz rjk ),
~SHNC/ (qi, qz) ~KSA (q 1 'q2)

+p' f«jj drlkgljglkgjk

(4.4)

X(1+s/2)&4, jjk

X exp(iq, rj, + iqz rjk ), (4.5)

where the scaling factor s is taken from the variational
calculations of Sec. II. In Eq. (4.5) /I f jjk refers to the
four-particle Abe diagram, which in the present calcula-
tion is computed without triplet correlations. Similarly,
S3(ql, qz) is obtained from Eqs. (4.1)—(4.5) by first replac-
ing Sz(ql+qz} with S(ql+qz) —1, then dropping the
upper index I, and finally substituting particle i for parti-
cle I.

The contribution to m3/m' from ladder diagrams is
given by

with ji =g —1. The three different approximations used
correspond to the following expressions for M:
ESCA(ql, qz) =S2(ql+qz)[S2(el) —1][S2(ez)—1] (4»

AS'KsA(ql qz) =p' f«jj«jkhjf j jkj jk

(ql qz} Sz(91) Sz(92)
5L, (m3/rn ') = [ I/(2m ) p] —,

'
dql dqz /, , [—p5(ql —qz)+L (q„qz)],g 1/2(~ )g 1/2( ) S1/2( ) S 1/2(

(4.6)

where

E(q)=q +(m3/m4)q /Sz(q) . (4.7)

~here

The function L(ql, qz) is the solution of the following in-
tegral equation:

1
L(qi, qz) =Lo(ql, qz)—,fdqL(q»q)Lo(q qz)

(21r)'p

(4.8)

function S3, indicating that the CA is already good
enough to compute ladder diagrams. The convergence in
the number of independent phonons is very fast, suggest-
ing that the OIP + TIP approximation might be a good
approximation for the complete set of diagrams also. The
OIP results obtained for the effective mass m'/m3 are
very close to the variational results reported in Table II,
which confirms that perturbative corrections calculated
with one-phonon intermediate states only, correspond'5'6
to the backfiow correlations. The contributions to
1fi3 /m ' from TIP diagrams (c)—(i) of Fig. 5 are calculat-

[«ei)S(ei)]'"[«ez)S(ez)l'"

X [S'3(ql, qz)+(m3/mq)S2(ql+qz)] . (4.9)

Diagrams (a) and (b) of Fig. 5 are given by the integral in
Eq. (4.6), when only the 5 function or the function L =Lo
is retained in the expression enclosed in the second set of
square brackets.

The results obtained for the LJ potential are given in
Table IV. The first two columns report the OIP- and
TIP-ladder contributions and the third column lists the
results from all of the ladder diagrams with more than
two independent phonons. The results depend very little
on the approximation used for the three-particle structure

p (A ')

0.021 85 CA
KSA

OIP TIP nIP {n &2) m /m3

—0.42 0.10
—0.42 0.09

—0.03 1.54

0.023 88

0.025 71

CA
KSA

CA
KSA

—0.46 0.13
—0.46 0.12

—0.50 0.17
—0.50 0.16

—0.06

1.59

1.63

TABLE IV. Perturbative contributions to 5(m3/m ) from
ladder diagrams at three different densities for the LJ potential.
The last column reports the effective mass resulting from the
summation of all the ladder terms.
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TABLE V. Analysis of perturbative contributions to
5(m3/m ) from all the diagrams with two independent pho-

nons, at equilibrium density and for the LJ potential.

HNC/s

TABLE VI. Effective mass m /m 3 calculated for the
Lennard-Jones and Aziz potentials at the n~=1 order of the
perturbative scheme, by adding the n~=2 diagrams, and by
adding the ladder diagrams with n~ & 3.

OIP
(TIP}2
(TIP}3
TIP

—0.42
0.16

—0.13
0.03

—0.42
0.16

—0.26
—0.10

—0.42
0.16

—0.22
—0.06

OIP
+ TIP
+ ladders

Expt.

1.8
2.1

2.2
2.3

1.7
1.9
2.0

0.021 85
Aziz LJ

0.023 88
LJ

1.9
2.4
2.6
2.7

0.025 71
LJ

2.0
2.5
2.8
3.0

ed by using the expressions given in the Appendix. The
functions S3(q],qz) and S2(q]+qg)S3(q], qz), appearing
in most of the terms 5;, do not vanish in the limit q] ~0
or q2 ~0. This imphes that 5„5q, and 5, are large com-
pared, for instance, to 5L. Most of their contribution is
spurious and is due to the nonorthogonality of

I
k —qi —qz'ql 'q2& with

I
k —qi —q2;qi+q2&.

spuriousness is completely removed in the combination

5, +5d+5, which in fact is of the same order of 5L.
There are some further important cancellations which
have to be taken into account. We extract from the struc-
ture function S3(q],q2) its factorized part Si(q] }S2(q2),
namely,

S3(ql q2) S2('9 l )S2(72)+S 3(ql q2»

where

(4.10)

S 3(q],qz) =Si(q]+q2)[Sp(q] )+S2(q2) —2]+M
(4.11)

By inserting Eq. (4.10) into the Eqs. (Al) and (A4) of the
Appendix the terms 5' ' arising from the part
S2(q] )S2(qq) of S3(q],q2) cancel between themselves and
with 5s. At equilibrium density and for the LJ potential,

5s ———1.13, 5,' '= —1.07, and 5j' ' ——2.27.
The results obtained by summing up the contributions

from all the TIP dia rams are given in Table V. (TIP)2
represents the suin 5]]] +5,' ]+5f] ]+5s+5s of the expres-
sions in which the three-particle structure functions do
not enter explicitly; (TIP}3 collects the rest of the contri-
butions and has a strong dependence on the approxima-
tions used to calculate S3 and S3. Since the TIP contri-
bution is —15% of the OIP contribution, terms with
three or more independent phonons are not expected to
contribute more than 5% of the OIP contribution. The
calculated values of the effective mass are reported in
Table VI for both the Aziz potential and LJ potentials.
The results obtained when also the ladder diagrams with

nz &2 are added to the calculation are expected to be

slightly reduced if all the n~ =3 diagrams are considered.
The more realistic Aziz potential brings the calculated

effective mass at equilibrium density even closer to the ex-

perimental value. The satisfactory results obtained
strongly support the behef that the OIP+ TIP approxi-
mation is a reasonably good approximation for calculating
the excitation spectrum of one He impurity in He. The
HNC/s approximation used here should include the main
contributions coming from the elementary and Abe dia-

grams to the three-particle structure functions. However,
we believe that more extensive analysis of the approxima-
tion to be used for S3 and S3 is required in order to check
the accuracy of our HNC/s method. In particular, the
triplet correlations should be included explicitly through
the Abe term in the calculation of M and d6' . More-
over, the use of an optimized triplet correlation like the
one recently discussed in Ref. 26 would be desirable both
to check the accuracy of the approximations made in ap-
plying Eqs. (3.12} and (3.13) for n =3 and to determine a
better three-body distribution function. Work in this
direction is in progress.

The technique developed in this paper allows one also
to compute the single-particle spectrum of one 3He impur-
ity in He at higher momenta. From such a calculation a
better understanding of the behavior of the spectrum
around the rotonic He minimum should be available.
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APPENDIX

In this appendix we give the expressions corresponding to the contributions to m3/m from the TIP diagrams (c)—(i)
of Fig. 5:

O'[S3(qi q2)]'
5, = —[1/(2m. ) p] —,J dq] dqz
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2, Q T S2(Q)S3(qi, q2)

Q' T' [S2(Q)]'

(qi Q)E1 S2(qi )S2(q2)S3(qi, q2)
5f ——[1/(2n. ) p] —,

'
dqi dq2 E E qi S2 qi S2 q2

q 1E1 [S2(q 1 )S2(q2 )]
5s ———[1/(2m)3p] —,

' Jdqi dq2 E E'(ql) S2 qi S2 q2

(qi q2)EiE2 [S2(q 1 }S2(q2)]'
1 dq2

(q, Q)E1T S2(qi)S2(q2}S2(Q)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

where Q =q, +q2 and the quantities E and T are given by

E; =E(q;)+qi q2 for 1 =1,2,

Q S3('ql 'q2)+ ™3/m4)Q[qiS2(q2)+q2S2(ql )] '

Diagrams (d), (e},and (i} of Fig. 5 have been counted twice in 5q, 5„5;,respectively.

(AS)

(A9)

(A10)
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