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Spin-wave spectra are usually calculated within the circular-precession approximation which

neglects ellipticity of the microwave magnetization. This approximation yields rigorously correct re-

sults only for perpendicular resonance and becomes worse for parallel resonance. Even if the ellipti-

city is accounted for, only single-wave-vector modes are commonly postulated for nonperpendicular

resonance. Such modes cannot satisfy the boundary conditions except for zero surface anisotropy

energy when the model is exact for any configuration of applied external field. Rigorous results cor-

respond to normal modes made up of waves with two different wave vectors. Calculations with a

set of parameters typical for a 1000-A.-thick Permalloy film indicate that the exact results may sig-

nificantly differ from the single-wave-vector model both in the position of the normal modes and

their intensities. The predicted critical angle is also different from the m/4 observed. It is concluded

that the exact procedure is, in principle, required.

I. INTRODUCTION

The quality of a spin-wave-resonance spectrum depends

on the quality of the sample. The main factors affecting
it are the homogeneity of the film and conditions on the
two surfaces. Volume inhomogeneity (VI) models'

must be employed when the saturation magnetization I
varies in the bulk of the film. In this paper we assume a
uniform M so that the surface inhomogeneity (SI}
model is applicable. Calculations of the spectra, the
resonance field H„, and the intensity I„ofthe nth mode,
are based on the surface pinning parameters introduced by

the boundary conditions.

A circular precession of the dynamic magnetization

takes place for perpendicular resonance when a magnetic

field is applied along the normal of the film plane The.
wave vector k is a good quantum number and the

boundary conditions yield allowed k„ from which H„and
I„ofthe nth mode are obtained. The precession is ellipti-

cal if the magnetic field is out of the perpendicular con-

figuration. However, the circular-precession approxima-

tion may still be applied, provided the deviation from

the circular precession is not too large. Better ap-

proaches ' account for ellipticity. However, in most

cases a solution for the dynamic microwave magnetization

is assumed to be a single-wave-vector mode (SWM}
characterized by one k only. A normal mode is actually
made up of two waves with different wave vectors, "'
but one of the waves is claimed to be negligible since the
corresponding wave vector is always imaginary and usual-

ly large. However, both waves must be accounted for if
the boundary conditions for the microwave components
on both surfaces are to be satisfied. It may then be desir-
able to compare the SVfM model and the exact calcula-
tions presented in this paper to see whether the two pro-
cedures agree.

The equation of motion for spins inside the film and on
the surfaces is discussed in Sec. II. The numerical pro-
cedure for any set of pinning conditions is suminarized in

Sec. III. The model is applied to the case of uniaxial sur-
face anisotropy and uniaxial bulk magnetic energy in Sec.
IV. Results of calculations for a thin Permalloy film and
comparison of the SWM model with the model presented
here are given in Sec. V, followed by a discussion in Se:.
VI.

Recently, a similar model based on two wave vectors
was independently worked out and presented in a series of
papers' ' for symmetrical or antisymmetrical pinning
conditions.

II. MODEL

The equation of motion for the magnetization is given
by

1 d(M+m} =(M+m) X(H;+h;)
dt

+(M+m)XH, +T—S,

where the magnetization M+m is the sum of static M
and dynamic m components. Static H; and dynamic h;
internal magnetic fields are subject to Maxwell's equa-
tions. The exchange field in the bulk

H, = (}' (M+m)
M

is different from the value at the surface of the film,

H, =
z

—B„(M+m)2A I

where A is the exchange constant, a is the lattice parame-
ter, and B„ is the normal outward derivative. The torqueI comprises all other magnetic energies E,

1 BE BE
sin@ By B5 '
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where 0 and (p are unit vectors in the 8 and qr directions,
respectively, in the spherical coordinate system. The
damping term S will be ignored since we are interested in
normal modes.

The static magnetization M is assumed to be uniform
in the bulk of the film situated in the x-y plane. For the
external magnetic field H applied in the 8,$ directions
one obtains the equilibrium condition from the static part
of Eq. (1): 0 =(P+k d)(Q+k d) R— (10)

are taken at the equilibrium values 5,p given by Eq. (5)
and the stiffness constant is

2A

4mM

For a wavelike form of nr —exp[i(cot —kz)] one obtains
the dispersion relation

BZ aEBe=' B,
='

where

E(y 8)=E(q& 0)—M H —2aM sin 5 .

(5)
where

From Eq. (10) we have

The dynamic part of Eq. (1) yields, for m=m@S+m~y
in the film,

dpi@ —Amp —Pm~+de m~ ——0,
4nMy d. t

'2
P —0 +g 2+ Q2

2

l/2
P+Q

2
(12)

+Rm +Qma —dV m@=0,2

4' y dt

where

and «r k d&0 the microwave component is of a
sinusoidal form describing volume modes. For k d &0,
when k =ip, we obtain surface modes. The other solution
of Eq. (10) provides only imaginary wave vectors k =is,

P= 1 BE
4irM sin 8 By

1 BE
4aM M

1 BE
4~~ sin@ BqB@

P- +R'+Q'
2

I /2
P+Q

2
(13)

Let us consider a film of thickness L, L/2&z &L—/2.
The general solution is a superposition of the k (or p) and
7 IQodes:

me =ae+g sin(kz ) +pe +g cos(kz )+ ye g exp( rL /2) sinh(r—z ) +5e g exp( rL /2) cosh—(~z),

m /i =ae g+ sin(kz)+ pe g+ cos(kz) ye+g+ exp—( wL /2) sinh(r—z) 5e+g—+ exp( rL/2) cosh—(&z)

for the volume modes and

ma =ae+g exp( pL /2) sinh(pz—)+Pe+g exp( pL /2) cosh—(pz ) +ye g exp( —wL /2) sinh(vz )

+5e g exp( —rL /2) cosh(rz ),

(14)

m /i =ae g+ exp( pL/2) sinh(pz—)+Pe g+ exp( pL/2) cosh(pz) ye+g—+ e—xp( rL/2) sinh(vz)—
—5e+g+ exp( rL /2) cosh(m)—

for the surface modes, where a, P, y, and 5 are constants
to be found later on. The exp( . . ) factors were excluded
from the constants only for numerical reasons, to prevent
us from having to deal with large numbers. Other sym-
bols used in Eqs. (14) and (15) are

e-=[(0 +R +6 )'~ +b]' A=(P —Q)/2 (16)

g
+—=1+iR/[0+(0 +R )'~ ] .

The microwave magnetization distribution across the
film thickness is given by Eqs. (14) and (15), provided the
constants a, P, y, and 5 are known. The constants are ob-

I

tained froin the boundary conditions resulting from the
equation of motion for spins on the surface. These spins
experience different exchange fields, Eq. (3). Also, an ex-
tra torque can be due to the surface energy per unit area,
E(y,8). Therefore the equation of motion for the surface
spins is different from the bulk equation. From the static
part of the equation we obtain

2A
(B„M)~+

1 BF
sin Bqr

2A
(B„M)p+ =0,BI'
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B~Pl @+PPBy +PPl ~ =0,

~gg~~+gPl~+ PP?ly =0,
where

p = —(B„M)/M,1 BF
5

(19)

for the Q and 0 components of the normal derivative

B„M. The dynamic part, after employing Eq. (18), pro-
vides boundary conditions ' ' of the form

a2i {——e+g pi+ie -g+r, )sink+e+g kcosk,

a22 ———(e+g p, +ie g+r, ) cosk+e+g k sink,

a23 =(e g pi ie—g+r i ) exp( r—) sinhr

+e g rexp( r—)coshr,

a 24 {e g pi —ie+g+ri ) exp( —r) coshr

g 'r exp{—r) siiillr,
(25)

(a„M)—/M,
2A sin@ 85 sining 5q)2

T

cos8 BF 1 QzF
T= +

sin2@ Bp sin@ a@a~
(20)

a31 =(e g+q2 ie+g—rz) sink+e g+k cosk,

ai2=(e g+q2 ie—+g r2) cosk —e g+k sink,

a33 = (e+g+q2+ie g rz) exp( —r) sinhr

—e+g+r exp( —r) coshr,

Equation (19) should be applied at both z=L/2 and
z= —L/2, with the dynamic magnetization given by Eq.
(14) or (15}. This leads to a 4X4 matrix equation for a,
P, y, and 5.

III. COMPUTATIONS

It is convenient to introduce dimensionless variables,

z =2/L, (21)

and so the film extends from z'= —1 to z'= 1. The wave
vectors are also redefined,

a34 —— (e—+g+q2+ie g r2) exp( —r) coshr

—e+g+r exp( r) si—nhr „

a/i (e ——g+q, —ie+g r i ) siiik+e g+k cosk,

a4Z
———(e g+q, ie+g —r, ) cosk+e g+k sink,

a4s —— (e+—g+qi+ie g r, )exp( —r)sinhr

e+g—+r exp( r) cosh—r,
a~ (e+——g+q, +ie g r, ) exp( —r) coshr

+e+g+r exp( r) sinhr, —

k'=kL/2, ij, '=ij,L/2, r'=rL/2,

and so are the pinning parameters,

p'=pL/2, q'=qL/2, r'=rL/2 .

(22)

(23)

for volume modes, k d &0. Index 1 refers to the lower
plane z= —1 and index 2 is for the upper plane z=1.
For surface modes, k d &0, a formal substitution in Eq.
(25) is

From now on we omit the primes.
With given values for L, A, co, g, and M, and assuming

values for (B„M)/M, the bulk anisotropy energy E(qj, @),
and the surface energy F(qj,@), one obtains «r any mag-
netic field H applied in the $,8 directions the equilibrium
angles y, @ of the static magnetization M from Eqs. (5)
and {6);values of P, Q, and 8 from Eq. (8); the wave vec-
tors k (or p) and r from Eqs. (12) and (13); e +and g-
functions from Eqs. (16) and (17); and the pinning param-
eters p, q, and r at both surfaces from Eq. (20). Then the
boundary conditions (19) are of the form

sink~ exp( —p, ) sinhp, ,

cos k ~ exp( —p ) cosh@,

k sink —+ —exp( ij )ij, sinhy, , —

k cosk —+ exp( —p)p cosh@ .

Equation (24) has nonzero solutions only if

dte( ,a)i=0. (27)

4

aijxj —0
j=l

where xi ——a, x2 ——P, x3 ——y, x4 ——5, and

aii ——(e+g p2+ie g+rz) sink+e+g k cosk,

a i2 ——(e+g p2+ie g+rz) cosk —e+g k sink,

ai3 ——(e g pz ie+g+r2—) exp( —r) sinhr

(24)

&y scanning the applied field H, one obtains the reso-
nance fields H„(and also k„) for which Eq. (27) is satis-
fied. The n th solution for a, p, y, and 5 is then given ex-
cept for an arbitrary multiplication factor. Thus the
dynamic magnetization distribution m(z) given by Eqs.
(14}and (15) may be used for calculations of the intensity
I„of the nth mode. "' For the microwave driving
field in the x-y film plane along the (p direction, which is
a commonly used configuration of the magnetic fields in
experiment, we have

+e g r exp( —r) coshr,

a i& ——(e g p2 ie+g+rz) exp—( —r) coshr

1

IN = f dz m~/j
'2

f d[zm@ +( m~ i/) ],
+e g r exp( —r) sinhr, and the arbitrary multiplication factor is irrelevant in Eq.
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(28). Normalization of the intensity is such that in per-
pendicular ferromagnetic resonance when m e ——m ~ /i
= const, l=1.

The above procedure is an exact one. In the SWM ap-
proximation one ignores the ~ mode corresponding to the
opposite polarization of m. It is argued that this antireso-
nance mode is negligible since the imaginary wave vector
with r)(QL /4d)'~ is usually a large number, and
therefore this mode is heavily damped. The SWM ap-

pmach is equivalent to setting y=5=0. Then all four
boundary equations cannot be satisfied simultaneously. In
the SWM one considers only the first condition in Eq.
(19), B„m@+pm e+rm& 0——, which produces just two
equations for a and P.

In most cases the surface energy F(q,5) is assumed to
be y independent and then r=0. Also, one can always
choose the coordinate system so that 8 =0. The deter-
minant (27) is then for volume modes

det(a&)= t[1+2w —2w(1+w )' ]K(q»q2, k)T(p»p2, r)+[I+2w +2w(1+w )' ]K(pl,p2, k}T(ql,q2, r)

+K(pl, q2, k)T(p2, ql, r)+K(p2, ql, k)T(pl, qz, r) —2(pl —ql )(p2 q2)kr—exp( —2r) ) Q

where

w =6/Q =(P —Q)/2Q,

K(x,y, k) =(xy —k ) sin(2k)+(x+y)k cos(2k),

T(x,y, r}=[(xy+r ) sinh(2v)+(x+y)rcosh(2r)) exp( —2~) .

(30)

(31)

(32)

For surface modes, 0 & —k 1=p, &,

det(a J)= [[1+2w —2w(1+w )' ]T(ql, q2, p)T(pl, p2 r)+[1+2w +2w(1+w )' ]T(pi,p2, tu)T(ql, q2, r)

+T(pl q2 p')T(p2 ql r)+ T(pi ql lu)T(pl q2 T) 2(pl ql )(p2 q2)p1 exp( 2tl 27 }jQ (33)

IV. EXAMPLE: CASE OF UNIAXIAL ANISOTROPY

Here we assume the bulk anisotropy energy to be of the
form E(rp, @)=K sin 8 and the usually postulated surface
energy F(p, 5)=K, sin 8. We can choose the static mag-
netic field to be applied in the x-z plane, /=0, and then

ql =0. The equilibrium condition (5) now reads

u sin(25)+h sin(5 —8)=0,

well-known equation for allowed k vectors,

(p,p2 —k ) sin2k+(pl+p2)k cos(2k) =0 .

The resonance field is given by

h =Q —2u — k2,
L 2

and the intensity

(38)

(39)

where

2E -1
4+M

2, h =H/4n'M . (35)

2P sin (k)/k
a [1—sin(2k)/2k]+p [1+sin(2k)/2k]

For surface modes

Currently we have 8 =0 and

P=h cos(5 —8)+2u costs@,

Q =h cos(5 —8)+2u cos(28),

b=u sin 8 .

(36)

The pinning parameters (20) are r =0 and

E,
p =— cos(24 }—(B„M)/M

2 A

q =— cos 5—(B„M)/M
E,

2 A

(37}

Let us discuss the perpendicular resonance first, 8=0.
In saturation, h & —2u, the static magnetization is along
the z axis and 5=0. Then p =q and the determinant (29)
is greatly simphfied. We obtain for the volume modes the

(p lp2+p ) sinh(2lu)+ (pl +p2)tu cosh(2p) =0, (41)

h =Q —2u+ tu
L 2 (42)

1 1+
P2

I= 2p2 sinh2(p, ) i@2

a [—1+ sinh(2p) /2lu]+ p [1+sinh(2p)/2']

(43)

The ~ modes are obtained by replacing p ~~ and
Q~ —Q. For k and lu modes me —m~/i; for the r
mode me = rn~ /i. —

It is customary to discuss the phase diagram on the
(pl,p2) plane and the modes labeling for the perpendicular
resonance. There are three regions: I, II, and III (see Fig.
1},separated by critical curve
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FIG. 1. The critical curve 1/p ~ + 1/p2 ———2 for perpendicu-
lar resonance. Two surface modes are present in region. I, one
surface mode appears in region II, and only volume modes are
allowed in region III.

Some analytical results are summarized in Table I for
symmetrical pinning p&

——p and p2 ——p. Table II gives re-
sults for the nonsymmetrical case pi ——p and pi ——0. The
antisymmetrical case p& ——p and pz ———p is shown in
Table III. In perpendicular resonance both S%M and the
circular-precession-approximation calculations give
rigorous results. Mode labeling is easy, at least in the sa-
turation region when an increasing mode number corre-
sponds to a decreasing resonance field. In experiments
some care is necessary to prevent us from skipping over
the modes with zero intensities, see Tables I and III.

For nonperpendicular resonance 8&0. Then the circu-
lar precession, SWM, and the exact results differ from
each other F. or symmetrical boundary conditions the
even modes vanish since p=5=0, and so the magnetiza-
tion m is antisymmetrical in z. For asymmetrical-pinning
conditions all modes are present. The antisymmetrical
boundary conditions yield zero intensity for odd modes
only in perpendicular resonance; in the SWM approxima-
tion the odd modes vanish for any angle 8.

p=p cosh@+p2 sinhp =p coshiu+p, si~;
(ii} mode n =2, surface mode with p, &( tptpi t

)' and
the same a,P as for mode 1; (iii) modes n =3,4, 5, . . . ,
volume modes with (n —2)n /2 & k & (n —1)n /2 and

a=k sink —p2 cosk = —k sink+pi cosk,

p=k cosk+pi sink =k cosk+pi sink .
(46)

In region II there appears (i} mode n =1, surface mode,
as in region I; (ii} mode n =2, volume mode with
0&k&3m/4 and a,P given by Eq. (46); (iii) modes
n =3,4, 5, . . . , volume modes with (2n 3)n /4—
& k &(2n —1)m/4 and a,P given by Eq. (46).

In region III there are only volume modes: modes
n = 1,2,3, . . . , volume modes with (n —1)ir/2 & k
& nn /2 and a,P given by Eq. (46}.

In region I we have (i) mode n =1, surface mode with

~ & ( I p tpz I

}'"~d
a= —(p sinhp+p2 cosh@)=p sinhp+pi cosh@,

V. RESULTS OF CALCULATIONS

Calculations were carried out for a set of parameters
typical for a Perm alloy polycrystalline thin film:
L =1000 A, A =0.5)&10 erg/cm, microwave frequen-

cy f=9.6 GHz, and M =800 G. We assumed the g fac-
tor g=2 and no variation of the magnetization in the
presurface layer, (t}„M)/M=0. Results for some values

of the pinning parameters are collected in Tables IV, V,
and VI. Numbers resulting from the exact calculations
are followed by numbers of the SWM model. As was

mentioned before, for 8=0 the two models are identical.
In the wave-vector column, positive values are k's, indi-

cating the volume solution, negative ones are p, 's for sur-
face modes.

Table IV contains three examples of strong negative,
weak, and strong positive symmetrical pinnings. Even
modes are not shown since their intensities I=O. Perhaps
it is illustrative to discuss in more detail the mode label-
ing, say for the case of strong negative pinning. For 8=0
we obtain resonance fields, in descending order, for modes
n =1, 2, 3, 4, 5, and 6 for saturated fields when 8=0;
then we label modes as 6', 5', and 4' for nonsaturated

TABLE I. Perpendicular resonance with symmetrical boundary conditions p ~
——p and p2 ——p.

n=l, p(0

n=l, p&0

n=2, p( —1

n=2, p& —1

n=3, 5,7, . . .

n =4,6,8. . .

Allowed
wave vectors

p=k tank

p = —p cothp

p = —k cotk

p =k tank

p = —k cotk

Intensity

2 sinh2(p. ) /p, 2

1+ sinh(2p)/2p
2 sin (k)/k

1+ sin(2k )/2k
0
0

2sin (k)/k2
1+ sin(2k )/2k

0

Remarks

v& lp I

0(k (m/2

0(k(m
(n —2)~/2 (k (n~/2

(n —2)m'/2 (k (nm!2
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TABLE II. Perpendicular resonance with nonsymmetrical boundary conditions p~ ——p and pq ——0.

n=l, p&0

n=1, p&0

n ~2p3}4y ~ ~ ~

Allowed
wave vectors

p = —p tanh(2p)

p =k tan{2k)

p =k tan(2k) tank

Intensity

4 cosh(4p, ) —1

(4p)~ sinh(4p)/4p+ 1

4 1 —cos(4k )

(4k)' sin(4k)/4k+1
4 1 —cos(4k )

(4k)~ sin(4k)/4k+1

Remarks

v& ls I

0&k &m/4

(2n —3)m /4 & k & (2n —1)m /4

TABLE III. Perpendicular resonance with antisymmetrical boundary conditions p &

——p and p~ ———p.

n=1
n =2,4, 6, .
n =3,5,7, .

Allowed
wave vectors

@=Is I

k =(n —1)~/2
k =(n —1)m/2

Intensity

tanh(p) /JM

2p'/[k'(k'+p') ]
0

TABLE IV. Spin-wave spectra for symmetrical boundary conditions K, ~L /2A =E,&J /2A =p. The
angle 8 is in degrees. Numbers in the first column result from present calculations, numbers in the
second column are obtained from the single-wave-vector model. The two models are identical for 8=0.
Positive wave vectors are k's, negative ones are p's.

H„(Oe) kore

—5.0

10

90

14 733
13 294
11 942

7565
3819

1043
532

6480
1551

972
245

0.400
0.558
0.032

1.044
0.002

1.292
0.003

0.966
0.065

0.913
0.066

—5.00
1.94
5.55

—1.70
3.06

0.55
3.24

1.06
4.01

1.31
4.03

0.2

10

90

13473
12 969
11 489

6787
3643

1059
567

6818
3751

1069
585

0.999
0.001
0.000

1.012
0.000

1.018
0.000

1.000
0.001

0.999
0.001

0.43
3.20
6.31

0.22
3.14

—0.13
3.14

—0.26
3.09

—0.46
3.08

5.0 13 396
12 669
11095

6590
3681

1097
628

7303
5267

2307
870

0.913
0.066
0.013

1.180
0.000

1.283
0.017

0.947
0.310

0.400
0.558

1.31
4.03
6.91

0.86
3.13

—0.87
2.93

—1.36
2.24

—5.00
1.94
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TABI.E V. Spin-wave spectra for asymmetrical boundary conditions E,tI /2A =0 and
E,21./2A =p. See Table IV for description.

—5.0

10

90

14 733
13445
13 146
12 556
11 722
10623

7439
6391
3723

1052
919
584

6694
5570
2631

1033
827
405

0.200
0.707
0.063
0.017
0.006
0.003

0.730
0.243
0.000

1.199
0.009
0.001

0.936
0.068
0.021

0.874
0.084
0.023

—5.00
0.87
2.60
4.28
5.93
7.56

—1.55
1.19
3.11

0.37
1.67
3.19

0.61
2.02
3.58

0.71
2.15
3.61

5.0

10

90

13457
13 251
12 829
12 182
11 300
10 178

6716
5881
3665

1083
966
596

7237
6490
4528

2308
1020
722

0.874
0.084
0.024
0.009
0.004
0.002

1.067
0.025
0.000

1.210
0.076
0.003

0.732
0.443
0.045

0.200
0.707
0.063

0.71
2.15
3.61
5.10
6.61
8.13

0.55
1.76
3.13

—0.70
1.36
3.04

—1.27
1.04
2.70

—5.00
0.87
2.60

fields when 5&0. Obviously, this single-domain model
may fail, especially for the perpendicular case and a non-
saturated sample, when many-domains structure may
develop. For this reason the 6', 5', and 4' modes are not
included in Table IV. However, if we assume the single-
domain model is still valid, the labeling follows from the
fact that the wave vectors of modes 6 and 6' are close to
each other, and also those of the 5,5' and 4,4' modes. It
seems more justified to label the modes according to the
peak position in k space rather than in descending
magnetic-field order. In experiments only odd modes 1, 3,
5, and 5' are visible. Of course, moving off the pi ——pz
line we obtain, although small at first, nonzero intensities
of the other modes also. This is the situation for 8=0.
With increasing 8, the separation of resonance fields of
modes 6 and 6' tends to zero and the two modes disappear
at a critical angle 80. The two modes correspond to two
adjacent zeros of the determinant (29) as a function of the
applied field H. Above the critical angle 80, det(a;1) has
no solution as the local maximum goes down so that
det(a;J). Further increase in 8 makes modes 5 and 5'
disappear, then modes 4 and 4' also vanish. Finally, only
modes 1, 2, and 3 survive for 8 greater than about 5'. The
case of weak pinning provides the same sequence of
modes. In the case of strong positive pinning we have

n = 1, 2, 3, 4, 5, and 5' modes for 8=0. The first four are
still present for parallel resonance.

Table V shows the results for asymmetrical boundary
conditions when one surface is unpinned pz

——0, and spins
at the other surface are strongly pinned. In this case all
modes have nonzero intensities. As in the symmetrical
case we have modes n =1, 2, 3, 4, 5, 6, 6', 5', and 4' for
perpendicular resonance. With increasing 8, the 6,6' pair
vanishes first, then the 5, 5' pair, followed by disappear-
ance of the 4,4' pair of modes.

For antisymmetrical boundary conditions the results
are collected in Table VI. Odd modes n =3,5,7, . . . have
zero intensities for the SWM model. The exact calcula-
tions yield small I&0 except for the perpendicular reso-
nance when I=0. The sequence of the critical angles 80
are same as in the symmetrical case.

There is another possible mechanism of approaching a
critical angle 8, (or 8, ) at which intensity I=D. This
happens when the integral of m(z) as a function of the
angle 8 changes its sign. Now, unlike the previous case,
the mode still exists for 8&8,. This is the situation, for
example, for mode n =3 of strong positive symmetrical
pinning, Table IV, when 8, =10', which corresponds to
0, =70'; or mode n =2 of antisymmetrical pinning, Table
VI, with 8, = 15' and 0, =70'.
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TABLE VI. Spin-wave spectra for antisymmetrical boundary conditions E,&I. /2A
= —EC,~I. /2A =5. See Table IV for description.

kore

10

90

14733
13 359
12 372
10398

7432
6127
3736

4309
3841
2339

1079
948
579

7230
6077
3646

5718
3788
2282

2308
935
565

0.200
0.738
0.048
0.009

0.692
0.281
0.001

1.171
0.002
0.001

1.162
0.123
0.001

0.676
0.536

0

0.357
0.698

0

0.200
0.738

0

—5.00
1.57
4.71
7.85

—1.54
1.52
3.10

—0.42
1.48
3.10

—0.64
1.49
3.10

—1.26
1.57
3.14

—2.78
1.57
3.14

—5.00
1.57
3.14

VI. DISCUSSION

General boundary condition (19) produces a set of four
equations, and so the test functions for the microwave
magnetization must be a superposition of four wavelike
solutions. If, as it is usually assumed, the surface energy
is (p independent, then r =0 in Eq. (20). If also p =q, the
two pairs of equations (19) are identical and so a single k
mode, a sin(kz}+Pcos(kz), is a proper test function cor-
responding to the SWM model. In general, however, p&q
due to the different angular dependence of the surface an-

isotropy terms. Therefore it is only for perpendicular res-
onance or for no surface anisotropy, F=0, that the SWM
model is correct. There is also an isotropic contribution
to the pinning (B„M)/M due to the variation of magneti-
zation near the surface. The isotropic and anisotropic
parts of the pinning are compatible with parameters intro-
duced in Puszkarski's theory. s' His pinning parame-
ter a can be expressed by our dimensionless pinning p; the
relation is a=1—2p/S, where S is number of atomic
layers along the normal to the film plane.

Detailed comparison of the model with experiment is
difficult. We still lack a well-established theory that
would predict simultaneously all mode positions and their
intensities in satisfactory agreement with observed values
even for perpendicular resonance. The presented ap-
proach which falls into the SWM model for the perpen-
dicular resonance obviously cannot provide any better
agreement for this configuration. Assumed uniform mag-
netization, no eddy-current contribution, and many other
factors may be thought of as responsible for only qualita-
tive agreement between theory and experiment. We still
hope that the presented model may bring in some new
features for the nonperpendicular configuration.

For example, the usually claimed to be expected value
of the critical angle 5, is 45 . In the SWM model when
Eqs. (38}and (40) still hold for any angle 5, I=0 requires
that k=nm, and therefore p&+@2——0 according to Eq.
(38). With no variation of the static magnetization in the
presurface region, B„M=0, we obtain from Eq. (37)

p —cos25, and so 0, =45'. However, the observed values
of 8, (Refs. 21—23) are different from 45'. It was then
concluded 3 that B„M+0. Such a conclusion is not fully
justified since the exact calculations indicate that 8,&45'
even if B„M=0.

It also should be noted that the p~ +@2——0 condition al-
ways predicts a k-independent value. However, there is
firm experimental evidence ' that 0, decreases with in-
creasing k. This also results from our exact calculations.
The angular dependence of 5, was also obtained by Jir-
sa' ' from his model based on a similar two-wave-mode
assumption.

The rigorous model predicts the presence of odd modes
for antisymmetrical pinning while these modes were
prohibited in the SWM approximation (for a uniform
driving rf field}. The same was also found in Ref. 14.

Two different types of critical angles are expected: the
angle 80 above which a pair of modes cease to exist and
angle 8, at which the intensity is zero, yet for 8& 8, the
mode is still present. The latter takes place when the in-
tegral of m(z) changes its sign with increasing 8. Then
we expect I-(8 8, ) near the c—ritical angle 8, . This can
be seen, for example, for modes 6, 8, and 10 shown in Fig.
1 of Ref. 22. Different behavior is expected near 80. The
intensities of the two adjacent modes should be equal
when approaching Ho and not necessarily as I~0. Also, a
rapid change ~ in the separation of the resonance fields
between the two modes is predicted, bH-(80 —8)'~ .
This requires a very fine experiment with large angular
resolution. Also, the two modes nearly overlap before
they disappear. For these reasons it may be difficult to
trace experimentally the region of 8 close to Ho. Yet, it is
a well-known fact that higher-order modes vanish with in-
creasing H. In more recent papers ' the authors ob-
served as many as 11 lines for H=O in a single-crystal
nickel film. With increasing H higher-order modes disap-
peared. Modes 11 and 10 vanished, then the 9 and 8 pair
was missed, and at 8=5' only the first 7 lines were visible.
Further increase in H made the 7 and 6 pair vanish, and,
finally, only two lines were left for the parallel resonance.
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In these calculations we ignored the (B„M)/M contri-
bution to the pinning parameters for simplicity. However,
rough estimation indicates that this term may be signifi-
cant and should be, as rule, included. Also, the common-
ly postulated surface-energy term K, sin 0 does not refiect
the symmetry at the surface for monocrystalline samples
and perhaps higher-order y-dependent terms's as cos+ or
cos4p should be accounted for in I'(y, 5). A more realis-

tic model must also take into account imperfections and
conduction in the samples.
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