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Ab initio calculation of the low-frequency Raman cross section in silicon
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The macroscopic polarizability of silicon is calculated from first principles as a function of the lattice dis-
tortion induced by a zone-center optical phonon. The electronic response to the electric field is dealt with
by dielectric matrices, and the lattice distortion is treated by frozen-phonon techniques. Our results com-
pare quite well with the most recent measurements of the one-phonon Raman cross section.

I. INTRODUCTION

The one-phonon Raman cross section of a solid is directly
related to the derivative of its macroscopic electronic polari-
zability with respect to the atomic displacements from equi-
librium.!

Although Raman spectroscopy is a standard tool now-
adays in many areas of solid-state physics, accurate mea-
surement of the absolute one-phonon cross section in sil-
icon has been carried out only recently.?

On the theoretical side, the calculation of the Raman effi-
ciency of Si has been the subject of several studies,’ none of
which, however, has been performed from first principles.
In particular, all of them have completely neglected local-
field and exchange-correlation effects, whose crucial role in
phonon physics is well known.*-® The experience gathered
in recent years has proved that the local-density approxima-
tion (LDA) to the density-functional theory (DFT)’ pro-
vides a powerful tool to calculate completely ab initio a
number of properties of the electronic ground state of real
materials.® In particular, the LDA calculations of structural,
lattice-dynamical, and elastic properties of covalent semicon-
ductors have been very successful.’

The purpose of the present paper is twofold: On one
hand, we demonstrate that such a quantity as the derivative
of the macroscopic polarizability with respect to some exter-
nal parameter can be successfully calculated completely
from first principles. On the other hand, our calculation,
which includes all the state-of-art ingredients of modern
DFT calculations, provides a useful test of the LDA beyond
its traditional field of application.

II. CALCULATIONS

Let AXqg be the variation of the macroscopic polarizability
tensor due to the presence of an optical phonon at the zone
center; then to the first order in the atomic displacements
we have

Axaﬁ = c(.l =

(i 3. 3 Pagottu(s) 1)

where u(s) is the displacement of the sth atom in the unit
cell, . is the unit-cell volume, and the third-rank tensor
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P,g, is by definition the Raman tensor. We have omitted in
Eq. (1) any dependence on the energy of the incident light,
and we are assuming throughout that such energy is much
smaller than the direct energy gap of the material. In fact,
the present calculation is performed within the framework
of DFT, which applies to the electronic ground state only.’
In the diamond structure the s index in Eq. (1) runs over
two values; let us indicate them as + and —. Because of
symmetry, for the zone-center optical mode one has
u(+)= —u(-); furthermore, it can be proved that the
Raman tensor has only one independent component P:

Py (s) = leqs, | Psgn(s) , )

where €45, is the Levi-Civita tensor. According to Eq. (2),
if the macroscopic electric field is parallel to x and the pho-
non is polarized along y, the macroscopic electric polariza-
tion is parallel to z It turns out that, for computational
reasons, a more suitable geometry is one with the phonon
polarization along (1,1,1). In this case, the macroscopic
field and polarization are parallel to each other when the
field is chosen either parallel or perpendicular to (1,1,1).
Let us define the dimensionless amplitude  through

u( +)= tua(l,1,1) , 3)

where a is the lattice constant. Replacement of Egs. (2) and
(3) in Eq. (1) yields

XP = (1-8,4)8Pu/a? . @)

We calculate the electronic polarizability tensor for the
crystal with phononlike distortions of several amplitudes.
Because of symmetry, for any value of u there are only two
independent elements:

AXag(u) =7 ()8 + () (1—Beg) (5)

To leading order, % is quadratic in « and v is linear, whence
we extract the value of P according to Eq. (4). A typical
value of wu, providing good linearity and still giving no can-
cellation problems, is u =10"*%.

We now. wish to discuss how the macroscopic polarizabili-
ty tensor Xmacro» Whose elements we have indicated with Xgg,
is obtained from the microscopic theory of dielectric
response.* It proves better to switch to the macroscopic

5969 ©1986 The American Physical Society



RAPID COMMUNICATIONS

5970 S. BARONI AND R. RESTA 33

dielectric tensor €macro, simply related to Xmacro bY

?macro =T+ 47T;<.macro . (6

The most basic microscopic linear-response operator in a
periodic medium is the inverse dielectric matrix e~!(q+G,
q+G’); this is a matrix in the indices G and G’ (reciprocal
lattice vectors), and depends parametrically on q in the first
Brillouin zone. The matrix €~! has nonvanishing off-

J

Xo(q+G,q+G') = —

(k+q,cle!a*9 1|k, ) (k, vle 9*S" [k +q,c)

diagonal elements—due to lattice periodicity—which gen-
erate ‘“‘umklapp’’ effects in the electronic response. These
are generally referred to as local-field effects.’

Within DFT, as well as in any self-consistent scheme, the
response function which is most directly accessible to calcu-
lations is the independent-electron polarizability Xo. This is
defined as the density response to a given change in the
self-consistent (Kohn-Sham) potential; its expression is

4
27)3 .,22 BZ

where Ey(k) and |k,b) are, respectively, the eigenvalues
and eigenvectors (either valence or conduction) of the one-
electron Hamiltonian. In terms of Xy, the exact expression
for the direct dielectric matrix reads (in shorthand notation
for matrices)

e=1—-ve(Xg'=fi) 7!, (8)

where vc is the Coulomb potential (diagonal) matrix and
fx is the functional derivative of the exchange-correlation
(xc) potential with respect to the electron density.

Assuming fo.=0, Eq. (8) yields the standard random-
phase approximation (RPA),!® which corresponds to com-
plete neglect of xc effects in the dielectric response. Within
LDA, the operator f,. is local in r space and can be easily
expressed in terms of the electronic density.!!12

For the purposes of this work, the relevant local-field ef-
fect concerns the G=G'=0 elements of the matrices €~!
and €:

e 1(q,q)=1/e(q,q) . 9)

The link to the macroscopic response is given by the long-
wavelength limit (q— 0) of €~!(q,q), which is related to
the inverse of the tensor €,,,,. Because of the long-range
nature of the Coulomb interaction, € '(q, q) is, in general,
nonanalytic at q=0; its leading term in q gives 'E‘,;alm
through the relationship

f“(q.q)=;12—(q-?;§m-q) . (10)

For each of the lattice distortions considered here, the self-
consistent electronic charge density and energy bands in-
volved in the evaluation of dielectric matrices, Eqs. (7) and
(8), have been calculated using norm-conserving pseudopo-
tentials!>» 14 and plane-wave basis sets corresponding to a
kinetic energy cutoff of 14 Ry (i.e., about 250 plane waves).
The electron-gas data used as input for the LDA are those
of Ceperley and Alder," as interpolated by Perdew and
Zunger.! We first calculate Eq. (8), and then we account
for local-field effects considering the G=G’'=0 element of
its inverse. We find full convergence using a dielectric ma-
trix of order 181. The main problems occurring in the prac-
tical evaluation of X, are the same as for undistorted crys-
tals, namely, the summation of slowly convergent perturba-
tion series and Brillouin-zone integration. Convergence in
the sum over conduction states has been found using 210 of
them. The Brillouin-zone integration is performed using
the special-point technique.!” We use the (8.8,8)
Monkhorst-Pack!® integration mesh which, for the undis-
torted crystal, reduces to the 10-point Chadi-Cohen!’ set,

E.(k+q)—E,(k)

d’k 0]

r
while, for the distorted geometry considered here, it gives
30 inequivalent points in the irreducible wedge of the Bril-
louin zone.

We have recently performed!® analogous calculations for
the unperturbed crystal, where—taking advantage of
symmetry—Ilarger meshes have been used. We found that
the integration mesh used here is very accurate for the
“body”” of the matrix (G and G'=0), while for the
“wings” (G=0 or G'=0) and the head (G=G’'=0), the
error is rather small but not negligible. Based upon this ex-
perience, we estimate that a larger special-point set for
Brillouin-zone integration would yield a value of P smaller
by 5%-10% than the one calculated here. Given that the
present experimental error bar for the absolute Raman cross
section? is of the order of 15%, we decided not to perform
time-consuming integrations over larger special-point sets.

Finally, the G=G’'=0 element of the inverse microscopic
dielectric matrix, Eq. (10), has been calculated for both q
parallel and perpendicular to the (1,1,1) phonon polariza-
tion. From this, the values of y(u) and n(u) are straight-
forwardly obtained using Egs. (5) and (6).

III. RESULTS AND DISCUSSION

The term in y(u) which is linear in u is proportional to
the Raman cross section, as discussed in Sec. II. We display
in Table I our calculated values for y(u)/u for several
values of the phonon amplitude u. Inspection of Table I
shows, first of all, that the values of u used in the calcula-
tions ensure a very good linearity, without giving cancella-
tion problems. The quadratic behavior of m(u) has also
been checked.

The final results are shown in the last column of Table I;

TABLE 1. Calculated values of y(u)/u, Eq. (5), for several
values of the lattice distortion.
LFE neglected LFE included
u RPA LDA RPA LDA
0.0001 7.06 8.08 6.57 7.15
—0.0001 6.95 7.94 6.49 7.06
Average 7.00 8.01 6.53 7.10
0.0002 7.12 8.16 6.61 7.20
—-0.0002 6.90 7.86 6.44 7.01
Average 7.01 8.01 6.53 7.11
Expt. 6.2+1
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these correspond to the use of the response matrix which is,
in principle, exact at the LDA level and can only be affected
by numerical roundoff errors, most of which come from the
finite-mesh Brillouin-zone integration. Our result agrees
with the experiment, being, however, at the upper limit of
the experimental error bar. According to our previous dis-
cussion, the use of a more accurate integration scheme
would yield a calculated value lower by 5%-10%, in even
better agreement with the experiment.

The first three columns of Table I are reported to display
separately the effects of neglecting, in the calculation of the
dielectric response, either xc effects (column 3), local-field
effects (LFE) (column 2), or both (column 1). Some calcu-
lations of the Raman tensor exist in the literature;’ all of
them are performed within the RPA and completely neglect

local-field effects: i.e., they are at the same level of approx-
imation as in column 1 of Table I. Furthermore, none of
the existing calculations uses a first-principles band struc-
ture.

An interesting feature emerging from this work is that the
errors due to neglect of xc effects and local-field effects are
of the order of 15% but opposite in sign, thus nearly cancel-
ing each other.

To the best of our knowledge, macroscopic dielectric
properties were never attacked before within the framework
of modern DFT. We have shown in this work that even a
ticklish quantity like the Raman tensor—which is the
derivative of the macroscopic electronic response with
respect to an external parameter—can be predicted with re-
markable accuracy.
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