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Calculation of three-body dispersive energies: Extrapolation method
and application to crystals of isotropic and anisotropic bodies

E. Burgos and H. Bonadeo

(Received 19 June 1985)

A fast and accurate extrapolation method for the calculation of three-body dispersive forces in

crystals is presented. The method is checked against high-precision results for the fcc, bcc, sc, and

hcp lattices, and results for the diamond lattice are presented. The effects of anisotropy and molec-

ular orientation are studied using the Pa3 and Cmca structures as examples, and it is found that the
three-body energy is not very sensitive to these parameters. Calculations for the crystals of chlorine,
nitrogen, and a- and P-acetylene are performed, and it is found that in some cases the three-body

dispersive energy amounts to nearly 15% of the packing energy.

I. INTRODUCTION II. THEORY

It has been well established that the three-body disper-
sive energy gives an important contribution to the total
energy of rare-gas crystals. ' The leading term (dipole-
dipole-dipole interaction} has been calculated with great
accuracy for the fcc, bcc, sc, and hcp structures 3' most
published calculations deal with thermodynamical and
elastic properties of the rare gases, both in the solid~ and
liquid state, 6 and of mixtures of them, that is, the in-
teracting bodies have spherical symmetry and therefore
isotropic polarizabilities.

In contrast, very few calculations of the three-body en-

ergy of anisotropic bodies have been performed. Stogryn, '
for instance, studied the effect of anisotropy and relative
orientation for one triplet of a particular geometry, and
Monson and Rigby performed calculations on a fcc lat-
tice containing axially symmetric molecules, using the re-
sults to estimate the associated nonadditive energy of
a-N2 and CO2.

The calculation is, in general, cumbersome: The
method commonly used, which consists in taking into ac-
count triplet interactions within a sufficiently large
sphere, shows a very slow convergence and it is necessary
to take account of a very large number of terms to achieve
reasonable accuracy. ' For anisotropic bodies, moreover,
the corresponding expressions become quite more compli-
cated than the well-known Axilrod-Teller'c formula for
interactions between spherical bodies.

Io the present work me propose a method which allows
the fast and accurate calculation of the three-body disper-
sive energy for isotropic and anisotropic bodies. The ap-
proximation is checked against high-accuracy available re-
sults for the fcc, bcc, sc, and hcp lattices and extended to
the diamond structure. The effect of anisotropy and
molecular orientation is evaluated on two structures with
underlying fcc lattice, Cmca and Pa3. Finally, calcula-
tions on the real crystals Clz, u-Nz, and a- and P-
acetylene are performed.

The energy of a system of N bodies due to pairwise in-

teractions W,b between bodies a and b is

a=1 b=1
(la)

where the prime indicates that a+b. In a crystal, use of
translational symmetry and periodic boundary conditions
leads to the expression of the energy associated with an
arbitrary origin body 1:

N

IV2" ———, g Wii, .
b)1

(lb)

Similarly, the nonadditive three-body energy between
bodies a, b, c, and the corresponding energy associated
with body 1 is written as

N X N
wp'=-, ' g g'g" w.„,

a=1 b=lc=l
N

w', "=-,' g g'w»
b)1 c&1

N —1 N

bg1 c()b)

(2a)

(2b)

where the primes in (2a} indicate that a&b&c, and in (2b)
that b&c

A. Dipolar dispersive energies

We are interested, in particular, in the calculation of di-
polar dispersive energies. General expressions may be
worked out using the Rayleigh-Schrodinger perturbation
theory up to third order (see Refs. 1 and 11); however
these "exact" expressions cannot be used directly because
of our incomplete knowledge of the transition moments
and self-energies involved. A usual approximation, pro-
posed by Buckingham, ' is to write
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1~~ = —
6 C.bg.b

1~m=Tvaa g~
If a, b, and c are identical bodies,

(2) (2)
gab —a, ab Tab Tab

(2) (2) (2)
gabe a +b c Tab Tbc ca

Cab ——C= 4 Uo,'
3 2

vabc =v= 4 AC,3

(3a)

(4a)

(4c)

(4d)

tween bodies a and b, and U is a "characteristic energy"
of the body.

It can be seen that the dispersive energies are the prod-
uct of an "intensity factor" (C,v) and a "geometrical fac-
tor" (g). Strictly speaking, g also contains, besides the in-
formation on relative positions and orientations of the
bodies, information about their symmetry and shape, via
the tensors a'. In the case of spherical bodies, however,
(a ),z

——5;j, and g,b and g,b, are strictly geometrical fac-
tors, as defined by Bell. '

B. Geometrical factors
where a, is the static dipolar polarizability;
a, = —,Tr(a, ), a, =a, /a„T, b is the second-order in-

teraction tensor —V (1/R,b), with R,b the distance be-
Writing out explicitly T,'b', the geometrical factors

[Eqs. (4a) and (4b)] may be written as

gab =[9(aa )ij(ab )klr; rj rk rl 6(aa )ij(ab)jkri rk +(aa )ij(ab )ji ]Rab
r

gab, = —27«a)ij«b)kl(aa)marj rk ri rmr"r" 9g—[(aa)ij(ab)ik(aa)imrk ri r"rJ']
P

+3+[(a.')j(ab)«(a,')jiri"rk'] —(a.');,.(ab)jk(a.')k; Rab'Rb. 'Raa
P

(6)

where i,j, . . . , label Cartesian components, and g indi-

cates the sum of the three terms obtained by cyclic per-
mutation of a, b, and c. For cylindrical symmetry it is
useful to define a~~ and az as the diagonal polarizability
tensor components, parallel and perpendicular to the
unique axis of the body, n; in this case it is easy to verify
that

I

with

G2= &gib
b&1
N —1 N

b&1 c(&b)

(10a)

(10b)

(a')j ——(1—K)5j+3Kn;nj,
with

('7a)

(7b)

g~ —[27c,cbc, +9(c,+cb+c, ) 6]R,b Rb, R,—,

K =(aii —az)/Tr(a),

and Eq. (5) reduces to the form used by de Boer. '~

For spherical bodies, (a );j=5,j and g,b 6R,b, and-—
the well-known form W,b

—— C,bR,b for—the induced-
dipole —induced-dipole interaction is obtained.

Also for spherical bodies, the geometrical factor for the
three-body interaction [Eq. (6)] is

In this section we deal with two problems connected
with the numerical calculation of the geometrical factors
of a crystal, the practical limits for the evaluation of the
sums in Eqs. (10) and the corresponding extrapolation
methods to take account of the infinite crystal, and the
use of symmetry considerations to reduce the computa-
tional work.

A. Extrapolation method and triplet selection

In the simple case of pairwise interactions a straightfor-
ward extrapolation method has been shown to be extreme-
ly efficient. ' In short, we take an "interaction radius" R;
which defines a sphere around the central body, and write

=3(1+3cacbc, )R~ Rb, R,a
where c„cb, and c„are the cosines of the internal angles
of the triangle with vertices at the bodies a, b, and c.
Equation (8) is identical with that reported by Bell, ' and
leads to the well-known Axilrod-Teller' and Muto' ex-
preSSiOn fOr Nab, .

III. CALCULATION METHOD

G2 ——G2( ao )=Gi(R; ) +bG2 (R;),
where

RIb( gR;)

G2(Ri)= g gib(R, b) .
R lb( & R;)

(1 la)

(11b)

(1 lc)

8'2 ———
I2 CG2,(1)

8'3"———,vG3,

(9a)

(9b)

According to Eqs. (1)—(4), for a crystal of identical bo-
dies the two- and three-body dispersive energy per body is
written as

Equation (lla) is exact by definition, whereas Gz(R;)
yields an approximate value of 62( 0o ), obtained by con-
sidering N2(R;) interactions; %2(R;) is proportional to

3

The simplest estimation of b,G2(R; ) consists in suppos-
ing a uniform distribution of bodies b over the space de-
&»ed by Rib&R;:
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ICGz()I;)= fff pg„(X„)dIpI,
(R)ggR;)

(12)

where p is the "body density" in the crystal [Z/(cell
volume)]. In the case of disp&u3ive energies of isotropic

odles~ g1b 6~1b & an

aG, (R, )=87rpR; '. (13)

GPR)=z g' gi = g gis,
b,c(g1) b,c(c pbp1)

R)b( CRf) R)b( 5R
cl ~ i cl ~ E

(15)

that is, all triplets containing the central body, within a
sphere of radius R„are taken into account. Although for
the limiting case R;~ca the result will be obviously
correct, the convergence of G3 (R;) to its limit Gi( (N),
which has been well studied for the fcc and hcp struc-
tures, ' is extremely slow, with the additional problem that
the number of triplets grows as R;. This slow conver-
gence is partly due, in our opinion, to the fact that the cal-
culation of Gi (R;) as described above is, to a certain ex-
tent, inconsistent. In Fig. 1 we show some examples of
this inconsistency. Of the six triangles with one vertex at

In Eq. (11a) it can be seen that b,G&(R&) varies continu-
ously with R;, while G2(R;) changes stepwise each time
Rl reaches a shell of bodies; in truth, to be consistent, the
density of bodies within the interaction sphere should be
that of the crystal. Therefore we define R; by

, 7rpR;—=%7(RI)+1, (14)

which gives one solution R; for each possible value of
ftf 2(RI ).

The same formula [Eq. (13)] may be used for anisotro-
pic bodies: In this case, however, the additional assump-
tion of a uniform distribution of the orientations of the
bodies is made, and for large anisotropies the approxima-
tion is expected to be somewhat less accurate. Numerical
examples will be given in Sec. IV B.

Things are more complicated for three-body interac-
tions. Usually, by similarity with the two-lldy case, the
geometrical factor is approximated by

+GFFF(RI ) (16)

The different regions of space thus defined are depicted in
Fig. 2. Figure 2(a) corresponds to the case Sis ——T and
Fig. 2(b) to Sib F. Note th——at the region El'T disappears
if Rib) 2R;.

It can be seen that

3 (Rl) Gill( I)+G7P7(RI) (17)

However, by translational symmetry, every term
gis, GG7~ will give rise to identical terms in G~~ and
Gpl l' (see Fig. 1). Therefore

(b)
X X IC X

the center of the circle of radius R;, only the isosceles tri-
angle shown in full lines is included in Gs (R;). The oth-
er two isosceles triangles, which are identical by transla-
tional symmetry, will only be counted when 8; is in-
creased from about 4.5 to 6 nearest-neighbor distances.
Furthermore, in the isotropic case [Eq. (8)], the other
three triangles, also omitted in G& (R;), each contribute
-76 times more to Gi( c)c) ) than the isosceles triangle. In
conclusion, by summing triplets over a sphere many weak
interactions are calculated, and many large ones are omit-
ted for finite values of R;. The optimal way of perform-
ing the sum would be to take equipotential surfaces de-
fined by Eq. (8), but this is complicated by the presence of
the angular factor A =1+3c,chic, . However, A varies be-
tween the limits —2 and —", , and a practical approxima-
tion to the problem is to take into account the largely
varying factor R ib Rs, R, i .

For a given R;, the set of values of (Rib, Ra„R,i) may
be decomposed in eight disjoint subsets (Sis,Sb„S,&) de-
fined as Sk ——T if Rk &R;; Sk F if Rk )R;
(k,m = l, b,c) Equa. tion (10b) may then be written as

G~ =Gs( ~)=Gl-la (RI )

+[G77r(RI. )+G7SV (R )+GF77 (R )]

+ [G7FP(RI )+G77F(RI )+Gi~(RI )]
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FIG. 1. Triangles indicate triplet interactions in a square lat-
tice. Only the triangle drawn in solid lines lies within the circle,
and is counted in 63 (see text).
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G3( 00 ) = Gi(R; )+&G3(R' )

with

G3(R;)=Giis(Ri)+3Gr~(Rt) ~

b G3(R; ) =3GrFp(R; ) +Gyp'(Ri ) .

(18a}

(18b)

(18c)

In the regions TTT and TET, every body in a triplet
lies at a distance smaller than R; of at least one other
body. On the contrary, in the regions TFF and FFI' at
least one body lies at distances larger than R; from the
other two components of the triplet. For a given value of
R;, there are a finite number of terms in G;-;-,—and GrFr,
these are evaluated explicitly. GrF+ and GF~F contain an
infinite number of terms, and must be approximated.

For Gz-~~ we may assume that the c bodies are uni-
formly distributed in space, by analogy with the case of
pairwise interactions. With this approximation

G-F(~;~ ,
' X=-Jf J I~ ~'V.

R&~( gR~) (R~'Rc)+~i

=(np/8Rg ) g ( 6R;~R,b 1) .—
g, b( gg,. )

(19)

Similarly, G~FF may be approximated by assuming uni-
form distributions of both bodies b and c in the corre-
sponding region, and we may write

=5m p /2R; . (20)

Again, the value of R; is chosen as in the pairwise in-
teraction, Eq. (14). The approximations (19) and (20) may
be used also for the anisotropic case, with the same limita-
tions as in the two-body case. In Sec. III A we will show
numerical results of this approximation.

B. Symmetry considerations

In addition to the reduction in computing time and the
corresponding increase in accuracy which can be obtained
by the use of the extrapolation formulas, symmetry con-
siderations allow further simplification of the calcula-
tions. The sphere R &R; defines a finite atomic cluster;
the symmetry of the finite cluster is identical with the site
symmetry of the central atom of the sphere in the (infin-
ite} crystal; in many cases it coincides with the full factor
group symmetry.

The position of one atom in the cluster defines geome-
trically a pairwise interaction with the central atom.
Likewise the positions of two atoms defme a triplet with
the central atom for a three-body interaction; the cluster
will in almost all cases have other atoms (pairs of atoms}

Gzyz'(R& )=Grip(Rj ) =Gpi g(R-j )

and similarly

GrpF(R;) =G~p(R;) =GF~(R; )

Therefore, the exact value 63 given by Eq. (16) may be
expressed in the form

which are equivalent by symmetry, and it is obviously ad-
vantageous to perform each calculation only on pairs and
triplets which are not equivalent by symmetry. It is
straightforward to see that this problem is fully equivalent
to that of finding the nonequivalent configurations of fin-
ite clusters containing one and two substitutional impuri-
ties, respectively. The general case of clusters with substi-
tutional impurities has been dealt with in a recent paper. '

The one-impurity problem is very simple, and the two-
impurity problem may be solved by using a method based
on a double coset decomposition of the group of the clus-
ter with respect to its subgroups. This use of symmetry
properties allows a sizable reduction of the computing
time. The number of equivalent configurations is given
by the ratio of the dimension of the group of the cluster,

~

G ~, and that of the subgroup of the configuration; since
most configurations in relatively large clusters have trivial
(Ci) symmetry, this factor is not far from

~

G ~. There-
fore the method is most useful for high-symmetry struc-
tures.

IV. RESULTS

A. Isotropic bodies: fcc, bcc,
sc, hcp, and diamond structures

For these structures, Gz and G3 depend only on one
lattice parameter. In order to study the convergence of
the proposed approximation method, we have calculated
G2 and G3 for different values of R;=xRO, where Ro is
the nearest-neighbor distance, in the range 1 &x & 3; these
calculations may be then compared with the "limiting
value, " obtained from a calculation with x =5. Table I
contains the limiting values obtained, the corresponding
numbers of pairs Nz and triplets N& ——N2 (N2 —1)/2 in-
cluded in the calculation of Gi(R; ) and G3(R;), the num-
bers of symmetry independent pairs and triplets ~q and
~q (as described in Sec. IIIB) and the partial contribu-
tloils Gz(R(), b,G2(Rg), G;-, -, (R;), GrFr(R; ), G, (R;), and
b,G3(Ri).

Let us analyze the result for the fcc structure in some
detail. The limiting value of the three-body interaction of
7.633928 may be compared with that reported by Bell
he used N3 ——4661931, obtaining G& ——7.62056. Bell
also reports an extrapolated value of 7.62933, and a
high-precision calculation by Huller yields 7.629 965. On
the other hand, our values for Gi differ from those re-
ported by Hirschfelder' by less than 1 in 106.

The advantages of the use of symmetry are also clearly
seen. The ratio Ni/~2 is about 24, since many single
bodies lie at sites of high symmetry; however, N3/Mi is
about 44, close to

~

G
~
=48, because most triplets (or

pairs of bodies excluding the central one) have C& symme-
try. The reduction is also apparent for the other struc-
tuf es N3 /~3 is about 41 for the bcc and sc structures,
whereas for diamond (~ G

~

=24) it is about 21. Of
course, these numbers depend in each case on the value of
x employed in the calculation.

Figure 3 shows the convergence of G2(R; ), Gi,
G3 (R; ), and G3 to their limiting values, as a function of
x and N2, for the structures under consideration. For the
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TABLE I. "Limiting values" of the geometrical factors 62 and 63 for lattices with isotropic bodies.

In all cases, R; has been chosen to include atoms up to SRO, the corresponding nearest-neighbor dis-

tance, and the unit length is defined as do ——Ro/V 2. Also included are the number of pairs aud triplets,

Xq and N3, and of symmetry independent pairs and triplets, ~2 and M3, and the partial contributions

to G2 and G3.

G2(R;)
EG2(R;)
G2

N3

GrFT-(R; )

G3(R()
6,63(R;)
G3

fcc
R; =7.1545

766
31
10.806046
0.034314

10.840 360

292 995
6649

7.604 568
—0.013464

7.564175
0.069 749
7.633928

7.630+0.003

bcc
R; =7.1425

700
33
9.158498
0.031 678
9.190 176

244650
5811

5.857 522
—0.011 611

5.822 689
0.058 950
5.881 639

5.875+0.008

sc
R; =7.0321

5.14
26
6.275 868
0.025 552
6.301 421

131 841
3244

2.618 794
—0.006994

2.597 811
0.036234
2.634045

2.632+0.001

Diamond
R; =7.1864

356
28

3.822070
0.015 SS1
3.837 621

63 190
2935

0.657 838
—0.002 884

0.649 185
0.014 197
0.663 383

'High precision values from Ref. 4.

sake of completeness, we have also included hcp, taking
the limiting values Gi(ao)=10.S41167 (Ref. 17) and
Gs(ao)=7.631879 (Ref. 3). It can be seen that the pro-
posed approximation works extremely well: The error in
the extrapolated values of G2 and G3 is less than 1% al-

ready for N2 &50, N3 &1000 (x &2).

B. Bodies with cylindrical symmetry:
Pa3 and Cmca structures

In order to study the effect of anisotropy on the three-

body interactions, we have taken as examples the two
structures Cmca and Pa3. Many crystals of small linear
molecules crystalize in these structures (Nz, halogens, ace-
tylene) for which different types of two-body interactions
have been extensively studied. '

The direct sums G2(R;} and G3(R;) have been per-

formed using the general expressions, Eqs. (5} and (6); the
extrapolations were made using the spherical approxima-
tions [Eqs. (13) and (18)—(20)]. Pa3 has an underlying fcc
structure; the molecules are aligned along the cube diago-
nals. We have used an idealized form of Cmca with
a =b =c, which has the same underlying point lattice as
Pa3. In this case, the molecules are stacked in layers
parallel to the bc plane. Several sets of calculations for
different molecular orientations, 0, have been performed.
The orientation is defined by the two polar angles, such
that

cos8=z.a, tang =z c/2 b .

In this way cos8=0 corresponds to the Cmca structure,
and cos8=1/ 3, tan({}=1 to the Pa3 structure. A value
of x =2 (Nq =54) was used in all cases. In order to esti-

TABLE II. Lattices parameters, polarizabilities, geometrical factors, and ratios of two- and three-
body dispersive energies of chlorine, a- and P-acetylene, and nitrogen.

a (A)
b (A)
c (A)
a(A )'
K
62 (A )

63 (A )

~

~(1)/pr(1)
~

'Reference 23.
Reference 24.

'Reference 25.
dReference 26.
'Reference 19.

C12

6.207'
4.441
8.117
4.606
0.188
0.014 811
0.000 358
0.1114

P {Cmca}

6.188b

6.002
5.547
3.490
0.177
0.016099
0.000433
0.0938

Acetylene
u (Pa3)

6.091'

0.013267
0.000 321
0.0845

5.644'

1.767
0.131
0.021 187
0.000652
0.0544
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~ ~

0, 90

30, 60

45

Pa3

reported by Monson and Rigby, who used x =5

(N3 ——292995) and corrected their results by supposing
that for x ~ 5 the summation could be approximated us-

ing the contribution found in the isotropic case. If we
change the isotropic term in Eq. (21a) from 7.684 to the
high precision value 7.63, both results differ by less than
0.3%.

It is important to note that both 62 and 63 are positive
for all structures and possible values of E, and therefore
always 8'2 ~0 and 8'3 &0. For most real molecules E
ranges between ——,

'
and —,', ' and in this interval both G&

and G3 are little dependent on the value of E and on the
molecular orientation.

-0$ 0.0 0.5

0, 90

30

C. Crystals of acetylene, chlorine, and nitrogen

%e have calculated the two- and three-body dispersive
energies of the crystals of C12 (Cmca), a-nitrogen (Pa3),
and both known phases of acetylene (Pa3 and Cmca). For
the geometrical factors of the Pa3 structures we have used
the results of the preceding section; those for the real
Cmca structures were calculated using N2-60. From
Eqs. (9) and (4) we get

0, 90

60
3D
15 60

45

Pa3

0.0
W V

0.5 1.0

FIG. 4. Geometrical factors for the Pa3 and Cmec struc-
tures, as a function of the polarizabi1ity anisotropy E, for dif-
ferent molecular orientations in be plane. (a) 62,'(1) 63.

Table II shows the corresponding results, and the parame-
ters used in the calculations. It is to be noted that in gen-

~
& ( W~,« ~

„ the total lattice energy, since the
latter includes the short-range repulsive energy; therefore
the values of

~

W'i" /Wz" in the table are a lower bound
to the contribution of Wi' to W~,«. For chlorine, for in-
stance,

~

Wi" /W2"
~

=11%, using C=38000 kJ/mol,
W2" ———46.9 kJ/mol; but Wi,« ———32 kJ/mol, and
therefore Wq" gives a repulsive contribution of about
16% of Wht, .

62 ——10.848 —8. 103E

6 7 68/ ]2 930+2 6 533~3

G2 ——10.848 —6.409E

G, =7.684—10.371E'+5.906E'

(21a)

(21b)

Our results for the Pa3 structure, which were obtained
for x =2 (Nq ——1431) are less than 1% higher than those

mate the accuracy of the approximation, in one particular
case (8=0) of very high molecular anisotropy (E =0.5)
we extended the direct sum to N2 ——380. The differences
between the two cases were -0.33% in G2 and -1.9%
in Gi.

Figure 4 shows the results of the calculation for several
values of P in the Cmca structure, and for the Pa3 struc-
ture, as a function of the polarizability anisotropy E, be-
tween its extreme values —0.5 &E &1. Calculations for
P =n /4 and 6) varying between 0 and ir/2 lie between the
extreme curves in Fig. 4. From Eqs. (5)—(7) it is clear
that G2 and G3 are quadratic and cubic functions, respec-
tively, of the anisotropy E. For our calculations, this
dependence results as

V. CONCLUSIONS

The extrapolation method presented in this work is ex-
tremely efficient and simple. It allows the calculation of
Gi, even for anisotropic bodies, with an accuracy of
-2% summing the interactions of as little as —10 trip-
lets. Although we have dealt with the most important
case of dispersive interactions, the model can be easily
adapted to other forms of the interaction potential. In ad-
dition, for high-symmetry crystals, the symmetry con-
siderations of Sec. IIIB allow a very large reduction of the
amount of computational work. The extrapolation, more-
over, may be used with only slight modifications for the
calculation of the three-body interactions in disordered
solids, liquids, and two-component systems.

The results for the real molecular crystals show some
points of interest. The magnitude of the three-body in-
teractions is indeed non-negligible. If, as usual, it is
neglected, its effect is somehow included in a reparametri-
zation of the two-body dispersion forces; its magnitude is
of the order of entropic contributions to the free energy at
room temperature. ' Even more important, calculations
of packing energies of competitive structures in the pair-
wise approximation often differ by less than 5%.

The relative insensitivity of Wi to the polarizability an-
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isotropy, and therefore to molecular orientation, indicates

that it will probably affect librational motions of the mol-

ecules only slightly; but its magnitude suggests that in the

case of translational motions, elastic constants, etc, its
contribution could be comparable to that of anharmonic
effects. 22
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