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Acoustical activity in the fraxnework of the rotation-gradient theory of elasticity
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The phenomenon of acoustical activity is examined within the framework of the rotation-gradient

theory of elasticity. The nonvanishing independent components of the fourth-rank pseudotensor re-

sponsible for acoustical activity are worked out and tabulated for all the crystal classes. In the con-

text of acoustic wave propagation the concept of pure mode axes is discussed when the acoustical ac-

tivity tensor has nonzero components. The point-group symmetries allowing acoustical activity are
identified, These results are compared with those based on the theory of acoustical activity due to
Portigal and Burstein.

I. INTRODUCTION

The concept of acoustical activity was introduced in
1960 independently by Andronov' and Silin. In an
acoustically active crystal the plane of polarization of a
plane-polarized transverse acoustic wave traveling along
an acoustic axis gets progressively rotated. This
phenomenon was observed in a quartz by Pine.

In literature, the phenomenon of acoustical activity has
found a variety of explanations. For example, Portigal
and Burstein4 explained it on the basis of spatial disper-
sion of an elastic stiffness tensor, in much the same way
as the optical activity has been explained by the spatial
dispersion of the dielectric constant. The rotation-
gradient theory of elasticity by Toupin also leads to this
effect. A linearized version of this theory has been
developed by Mindlin and Tiersten. We shall be primari-
ly concerned with Mindlin's approach in this paper. The
polarization-gradient theory oi elastic dielectrics by Mind-
lin and Toupin also leads to the explanation of both opti-
cal and acoustical activity in one single formulation.

Portigal and Burstein used a fifth-rank tensor d for
describing this effect, very crudely speaking, by allowing a
wave-vector dependence to the elastic stiffness tensor e:

Cijkl(rh&) =Cijkj(0~F0)+i'gmdijklm

The fifth-rank tensor d is called the acoustic gyrotropic
tensor. From considerations of causality, as well as those
of invariance of the crystal Hamiltonian under time rever-
sal, d has been shown to have the following symmetry
properties:

dij klm djiklm dij lkm (1.2)

dij klm — dklij m (1.3)

1

Gqkmn =
2 (eiIqdiklmn ) . (1.4)

Recently, we have introduced ' a fourth-rank pseudoten-
sor G which is completely equivalent to the fifth-rank
tensor d.

The above relation can be inverted to yield

dikjmn eitq Gqkmn +&kmq Gqiln (1.5)

Here, e;l is the Levi-Civeta tensor, a totally antisym-
metric tensor of rank 3. The tensor g has the following
two properties:

Gqkmn Gqmkm

g Gkkmn =0
k

for each m, n=1,2,3. Both the tensors G and d have a
maximum of only 4S independent components. In Ref. 9
we have examined the wave propagation along an acoustic
axis in terms of the tensor G and have also identified the
acoustically active crystal classes, where our results were
found to be in complete agreement with those of Portigal
and Burstein, who worked with the fifth-rank tensor d.
It would therefore be of interest to see what crystal sym-
metries would allow acoustical activity if one follows oth-
er descriptions of this phenomenon. In this paper we ex-
amine this question employing the viewpoint of the
rotation-gradient theory of linear elasticity, 6 which also
describes acoustical activity in terms of a fourth-rank
pseudotensor. The paper is organized as follows.

In Sec. II we briefiy recapitulate the basic results of the
rotation-gradient theory. The nonvanishing independent
components of the fourth-rank pseudotensor responsible
for the acoustical activity are worked out and listed in
Table I. Section III deals with the wave propagation
along an acoustic axis. We examine the validity, in the
presence of a rotation gradient, of the sufficiency condi-
tions given by Waterman' for a given propagation direc-
tion to be a pure mode axis. %e also derive an expression
for the acoustical rotatory power in terms of the com-
ponents of the pseudotensor. On the basis of these results
and Table I, the crystal symmetries allowing acoustical
activity are identified and tabulatmi (Table II). In Sec. IV,
our results are compared with earlier results based on the
use of the tensor d for describing acoustical activity ' and
conclusions are summarized in Sec. V.
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TABLE I. Nonvanishing independent components of the fourth-rank acoustic gyrotropic tensor Q. This tensor has the symmetry
expressed by Eq. {2.6a) and is subject to the constraint expressed by Eq. {2.6b). Therefore components of the form bj33 are not hsted
in this table because they can always be obtained from b~jid„k&3. The tensor P is identically equal to zero for all 11 centrosymmetric
crystal classes. For noncentrosymmetric crystal classes the zero components of this tensor are indicated by a blank. The nonzero
components b~jid are simply written as ijk1. An independent component is indicated by writing its symbol in the appropriate place,
and a dependent component is expressed in terms of other independent components. Two additional symbols are introduced: (A)
denotes b22i& —2b &~i2 and (8) denotes ~ (b»»+b~ i2i ). For the monoclinic system, the twofold axis is taken along x3 ~

Component

Triclinic
1

Monoclinic
7Fl 2

C, Cg

Orthorhombic
2 mt' 222

Cz~ D C4

Tetragonal
4m' 422

D4

1111
2211
3311
2311
1311
1211

1122

1111
2211
3311
2311
1311
1211

1122

2311
1311

1111
2211
3311

1211

1122

1211

1111
2211
3311

1122

1111
2211
3311

1111
2211
3311

1211 1211

2211 —2211

1211

1111 1111
2211 2211
3311 3311

—2211 2211

2222
3322

2322
1322
1222

1123
2223
3323

2323
1323
1223

1132
2232
3332

2332
1332
1232

1113
2213
3313
2313
1313
1213

1131
2231
3331

2331
1331
1231

1112
2212
3312
2312
1312
1212

1121
2221
3321

2321
1321

2222
3322

2322
1322
1222

1123
2223
3323

2323
1323
1223

1132
2232
3332

2332
1332
1232

1113
2213
3313
2313
1313
1213

1131
2231
3331

2331
1331
1231

1112
2212
3312
2312
1312
1212

1121
2221
3321

2321
1321
1221

2322
1322

1123
2223
3323

1223

1132
2232
3332

1232

1113
2213
3313

1213

1131
2231
3331

1231

2312
1312

2321
1321

2222
3322

2323
1323

2332
1332

2313
1313

2331
1331

1112
2212
3312

1212

1121
2221
3321

1323

1332

1112
2212
3312

1121
2221
3321

2222
3322

2323

2332

1313

1212

1111 —1111
3311 —3311

—1211 1211 —1211

2323
1323

2323
1323 1323

2332
1332

2332
1332 1332

—1323 1323 —1323
2323 —2323

1112
2212
3312

1112
2212
3312

1112
2212
3312

1212
—2212
—1112
—3312

1212

2212 —2212
1112 —1112
3312 —3312

1212 —1212

—1332 1332 —1332
2332 —2332

—1111 1111
—3311 3311

2323 2323

2332 2332

—2323 2323

—2332 2332

1212 1212

—1212 1212
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Component

Trigonal

32

TABLE I. (Continued).

Hexagonal
6 6m 2

C6 D3h

23
T

Cubic
42m

Tg

432

1111
2211
3311

2311
1311
1211

1122
2222
3322

2322
1322
1222

1123
2223
3323

(A)
2211
3311

2311
1311

—(8)
2211

(A)
3311

—2311
—1311

(8)
1123

—1123

(A)
2211
3311

2311

2211
(A)
3311

—2311—2311

(8)
1123 1123

—1123 —1123

2311
1311

—2311
—1311

1123
—1123

(A)
2211
3311

—(8)
2211

(A)
3311

2311

—2311

1123
—1123

(A)
2211
3311

2211
(A)
3311

1111
2211
3311

3311
1111
2211

1111
2211 2211

—2211 2211

—2211 2211
1111

2211 2211

2323
1323
1223

2323
1323
1223

1323
2323

1223

2323
1323 1323

2323 2323 2323 2323

1132
2232
3332

1132
—1132

1132 1132
—1132 —1132

1132
—1132

1132
—1132

2332
1332
1232

1113
2213
3313

2313
1313
1213

1131
2231
3331

2331
1331
1231

1112
2212
3312

2312
1312
1212

1121
2221
3321

2321
1321
1221

2332
1332
1232

—1223
1223

—1323
2323
1123

—1232
1232

—1332
2332
1132

1112
2212
3312

—1311
2311
1212

—2212
—1112
—3312

—1311
2311
1212

1332

—1323

1123

—1332

1132

1112
2212
3312

2311

—2212
—1112
—3312

2332

2323
1123

2332
1132

2311
1212

2311
1212

1232

—1223
1223

1123

—1232
1232

1132

—1311
2311

—1311
2311

2332
1332

—1323
2323

—1332
2332

1112
2212
3312

—2212
—1112
—3312

1123

1132

2311

1332

—1323

—1332

1112
2212
3312

—2212
—1112
—3312

2323

2332

1212

2332 —2232 2323

2332 —2323 2323

2323 2323 2323

2323 2323 2323

2332 —2332 2323

II. BASIC FORMUI. ATION

In the rotation gradient theory of elasticity * one
represents elastic deformation by two tensors, the usual

strain tensor e and the rotation gradient X. To first order
in the displacement u, its gradient Vu and the second gra-
dient VVu, one has the following expressions for e and X:



K. V. SHAG%AT AND R. SUBRAMANIAN 33

TABLE II. Classification with regard to acoustical activity of noncentrosymmetric crystal classes
containing a proper axis of threefold or higher rotational symmetry. All the centrosymmetric classes
are acoustically inactive. The cubic systems 23 ( T) and 432 (0) allo~ acoustical activity along both the
threefold and fourfold symmetry axes.

Active
Inactive

Tetragonal

4, 422
4mm, 4, 42m

Trigonal

3 32
3m

Hexagonal

6, 622
6mm, 6, 6m2

Cubic

23, 432
42m

e= —,
' (Vu+uV), (2.1a)

X= —,
' V(VXu) . (2.1b)

8' ——Xa X+eb X+—ec e1 1 (2.2)

The elastic energy density W in the presence of strain and
the rotation gradient can be expressed as

Bilk i Ban
P i ijkl ~ ~

+ 2 ijkl Imn ~xj x ) xj xk xm

8 ilk
+ 2bklj"imn

g . gx~ xl x~

1
i} Qp

2

+""'j""-"'ip a a a axj xk x~ xp
(2.8)

and the constitutive relations for ~r, the symmetric part of
the stress, and p D, the nonscalar part of the couple stress,
take the form

The nonvanishing independent components of the tensor
b for all of the crystallographic point groups are listed in
Table I. A similar exercise has been carried out for the
tensor a, but we do not give a detailed table. However,
the relevant results are quoted in the text.

Zs =c:e+bX, (2.3a) III. WAVE PROPAGATION ALONG
A PURE MODE AXIS

=e:b+X:a . (2.3b)
We shall now seek a wavelike solution of Eq. (2.8} in

the form of plane waves

(3.1)

The equation of motion for small displacement u is given substituting the solution (3.1) in (2.8) we get a system of
algebraic equations for the polarization amplitudes U;:

u=V r, + , V X(V' pD) .— (2.4)
2, —..pal Ui =cijkl'qj ql "k +(i /2)bijklelmnqj'qkqmUn

~ijkl ~klij (2.5a)

jkk'
k

(2.5b)

bijkl bjikl s (2.6a)

It should be noted that the tensors a and c are polar ten-
sors while b is a pseudotensor. Furthermore, they have
the following symmetry properties:6

+ (i /2) bkijn eimn qjqm ql Uk

1—( 4 )akljne;mneip, qjqmqkqpUp (3.2)

cosa cosp sina cosp —sinp
—sina cosa 0 U2 . (3.3)

It is advantageous to transform to a new coordinate
frame such that the z axis (axis 3) is along the direction of
propagation q. We shall denote the transformed com-
ponents as U;, c;jkl, etc. If q, P, a are the spherical polar
coordinates of the wave vector q with respect to the stan-
dard crystal frame of reference, " the transformation rela-
tion for (U;) is

U)

Q bijkk =O
k

(2.6b)
U3

cosa sinp sina sinp cosp U3

Under the above transformation Eq. (3.2} simplifies into

Cij kl ~jikl =~klij (2.7)

Using the expression (2.2) for W, the constitutive relations
(2.3), the definitions (2.1}, and the symmetry properties
(2.5)—(2.7), we can write the equation of motion (2A) ex-
plicitly in the component form:

pai U' q c 3k3Uk+(iq '/2)b 33lel3'
+(lq /2+k33 e'3 Uk

(q /4)a3l3nei3nel3pUp-

When written out explicitly, Eq. (3.4) reads as

(3.4)
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po3 U]
——q c]3k3Uk —(lq /2)(&]33]+b2333)U2

+ (q /4 ) (a 3232 u 1 a 3132u 2 )

pcu U2=q c23k3Uk+(lq /2}(b]331+b2332)U]

+(lq /2)b333]U3

(3.5a)

En summary, pure mode axes continue to be pure mode
axes even in the presence of rotation gradients if they are
along axes of twofold or higher rotational symmetry. But
if the pure mode axis in the absence of rotation gradients
is normal to a mirror plane or normal to a sixfold axis, it
may not remain a pure mode axis when rotation gradients
are explicitly taken into account.

/4)(a 323]u 1 a 313]U2 )

p& U3 =q C33k3Uk +(iq /2)(b3332U] —b333]U3) .

(3.5b)

(3.5c}

If a given propagation direction x3 is to be a pure mode
axis, the longitudinal-polarization component U3 must not
depend on the transverse-polarization components U] and
uz, and vice versa. This requires that the crystal symme-
try be such that certain components of the tensor c and b
in Eq. (3.5) vanish identically. It is easily seen that this
leads to the following conditions:

C ]333 (CO) =C2333(a])=C33]3(CO) =C3323(&)=0
&

b3331() b3332(~)

(3.6a)

(3.6b)

We shall now examine the compatibility of conditions
(3.6) with those given by Waterman. ' He derived the fol-
lowing sufficient conditions for a propagation direction
x3 in a crystal to be a pure mode axis (in the absence of
rotation gradients).

(1) x3 should be a proper axis of twofold or higher rota-
tional symmetry.

(ii) x3 should be normal to a mirror plane, or normal to
a proper axis of sixfold symmetry.

When the wave propagation is along a twofold axis, the
minimum point symmetry of the crystal must be mono-
clinic (C2). It is straightforward to verify (cf. Ref. 11)
that Eqs. (3.6a) are compatible with both of Waterman's
sufficiency requirements.

In the presence of rotation gradients, Eqs. (3.6b)
represent the additional requirements for a propagation
direction to be a pure mode axis. Referring to Table I for
the crystal class 2 ( C2), we find that Eqs. (3.6b) are satis-
fied under Waterman's condition (i). We now examine
condition (ii}.

If a propagation direction is normal to a mirror plane,
the minimum symmetry of the crystal must be m (C ).
Table I shows that b3331 (=b333]) and b3332 ( —b3333) are
not zero for this crystal class. Similarly, when an acoustic
wave is propagating normal to an axis of sixfold symme-
try, it is implied that the minimum symmetry of the crys-
tal is 6 (C6). Suppose a wave is propagating in a crystal
with this symmetry along the negative x axis of the stan-
dard crystallographic frame of reference;" that is x3 is
along —x. Then a=m and P=n. /2 in Eq. (3.3) and the
component b»]2 (which is nonzero according to Table I)
transforms to —b,332. Therefore b3332&0 for this situa-
tion. [However, the component b]1]3 which goes into
6 3331 under the transformation of Eq. (3.3), does happen
to be zero for C6 and higher symmetries. ]

c»33(~) =C3»3(~)=0 (3.7)

Furthermore, the two pure, completely uncoupled, trans-
verse waves would have the same velocity V =co/q if

(3.8)

The conditions (3.7) and (3.8) are satisfied if the direction
of propagation is a proper axis of threefold or higher rota-
tional symmetry. " This is in agreement with the analysis
of Waterman. ' For such a situation, i.e., if the minimum
point symmetry is a proper axis of threefold or higher ro-
tational symmetry, (i} the components a3132 and a3$3]
vanish identically so that the tensor a does not introduce
any coupling between the two transverse waves, and (ii)
the components a»» and a3232 are equal. The tensor b,
however, introduces a coupling between the transverse
components. Thus if the direction of wave propagation is
an acoustic axis, Eq. (3.5) leads to the conclusion that the
two uncoupled transverse waves are circularly polarized
and travel with speeds V+ ( V ) given by

2=- q
2

p V+ C2323()+ a3232 — (b]331+b2332)4 2
(3.9)

Thus acoustical activity along an acoustic axis is possible
only if b]33]+b2332+0 for the crystal. When such is the
case, the plane of polarization of a plane-polarized trans-
verse acoustic wave will be rotated, on traversing a length
1 along the acoustic axis, by an angle P, given by"

p= —,'jul( V —V+')

which on using Eq. (3.9}becomes

~'1p(&»» +»332)
4~»»

(3.10)

(3.11)

B. Occurrence of acoustical activity

%'e shall consider the acoustical activity along a degen-
erate pure mode axis (i.e., an acoustic axis). It can occur
only in crystal classes with a threefold or higher rotational
symmetry provided that (b, 331+b2332)&0. For the uniax-
ial systems, viz. , tetragonal, trigonal, and hexagonal, the z
axis (x3 axis) of the standard crystallographic frame coin-

A. Degenerate pure mode axis

A pure mode axis is called a degenerate pure mode axis
if the pure transverse-acoustic waves traveling along this
axis are not only completely decoupled from the pure
longitudinal mode but also have the same phase velocity
in the absence of rotation-gradient effects. It is clear that,
if we neglect the rotation gradient, the transverse modes
u] and u3 would be uncoupled if
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cides with the acoustic axis (which is also the direction of
wave propagation under consideration), we have b =b and
c=c etc. For the cubic system, for wave propagation
along the x3 axis which is a fourfold axis of symmetry,
we again have b=b, etc. There are also four threefold
axes along the (111)directions, and in this case, for the
[111)direction, for example,

1 2
bl331+b2332 T(b1331+b2332)+Yb 111

Referring to Table I we find that, in addition to the 11
centrosymmetric crystal classes, the following eight
classes cannot exhibit acoustical activity along an acoustic
axis: 4 (S4), 4mm ( C4„), 42m (D2d), 3m ( C31 ), 6 ( C3s),
6mm ( Cs„},6m2 (D3h ), and 43m ( Te ). The following set
of eight point groups can exhibit pure acoustical activity:
4 (C4)„422 (D4}, 3 (C3), 32 (D3), 6 (Cs), 622 (Ds), 23
( T), and 432 (0). These results are summarized in Table
II.

IV. COMPARISON %KITH EARLIER RESULTS

The tensor b describing the acoustical activity in the ro-
tation gradient theory has symmetry different from that
of the tensor G of the earlier theory based on spatial
dispersion of the elastic stiffness tensor. The maximum
number of nonvanishing independent components is also
different in the two cases, viz. , 48 in the case of the tensor
b and 45 for the tensor g. However, there is no differ-
ence in the prediction with regard to the acoustically ac-
tive crystal classes. The crystal classes allowing acoustical
activity with respect to the tensor b are precisely those

listed earlier on the basis of the theory which employs the
tensor G (Ref. 9) or equivalently the fifth-rank tensor d
(Ref. 4). Even the sufficiency condition for a direction of
propagation to be a pure mode axis is the same in both the
descriptions of acoustical activity.

V. CONCLUSIONS

In the linearized rotation-gradient theory of elasticity,
the energy density is specified in terins of three tensors c,
b, and a, representing the interactions between strain-
strain, strain-rotation gradient, and the rotation gradient
with itself. As far as the wave propagation along a pure
mode axis is concerned, the tensor a does not play any
significant role. But the tensor b gives rise to acoustical
activity for the following eight crystal symmetries: 4
(C4), 422 (D4), 3 (C3}, 32 (D3), 6 (Cs), 622 (Ds), 23
( T), and 432 (0). The acoustical activity tensor b of the
rotation-gradient theory cannot be directly compared with
the tensor G of the theory of spatial dispersion even
though both are pseudotensors of rank 4. The final re-
sults, regarding the possible pure mode axes as well as the
occurrence of acoustical activity in a given crystal class,
are identical in both the cases.
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