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Relative Raman intensities of the folded modes in SiC polytypes
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A theoretical model, based on the bond-polarizability concept, js presented for the calculation of
the Raman scattering intensities for crystals. The bonds in a unit cell are classified into groups in

which the individual bond Raman polarizabihties are equivalent. The Raman polarizability of the

crystals is expressed as the sum of the product of the bond Raman polarizability and the relative dis-

placement of the end atoms linked by the bond. The theory is applied to the SiC polytypes. The
calculated Raman intensity profiles reproduce qualitatively the observed Raman spectra of the fold-

ed modes which arise from TA- and TO-phonon branches along the c direction.

I. INTRODUCTION

Raman scattering has been widely used to obtain infor-
mation about the vibrational properties of solids. The
strength and nature of interatomic interactions are es-
timated from lattice-dynamical analyses of the phonon
spectra. A considerable effort has been made in the pre-
diction of the frequencies of Raman bands. However,
very little attention has been paid to their relative Raman
intensities, which should also provide information on the
structure and the nature of interatomic interactions.

Recently the Raman spectra of folded modes have been
measured by us' in various polytypes of layered crystals
CdIz in which the phonons of the basic polytype (the 2H
polytype) within the Brillouin zone and/or at the zone
edge are reduced to the I" point by zone-folding effects. It
has been found that the relative Raman intensities of these
folded modes depend strongly on the stacking arrange-
ment of polytypes. A model based on the interatomic po-
larizabihty (IAP) concept, which is an extension of the
bond polarizability (BP) model, has explained qualitative-
ly the Raman intensity profiles of CdIz polytypes. This
fact demonstrates that the relative Raman intensity can be
used to identify the polytype structures and also that the
IAP model is applicable not only to layered crystals but
also to three-dimensional polytypes such as SiC and ZnS.
It is, however, to be noted that several additional assump-
tions are required in the IAP approach to describe the Ra-
man intensity profiles of CdIz polytypes, because the in-
teratomic interactions in CdIq are dominated mainly by
ionic and van der Waals interactions.

In this work we provide a method whereby the Raman
polarizability tensors of crystals are easily calculated by
combining lattice-dynamical calculations with bond-
kbman polarizabiIity. This method is applied to Sic po-
lytypes in order to examine the Raman intensity profile of
the folded modes. The BP approach to the Raman inten-
sity which was given for the first time by Wolkenstein, z

and Eliashevich and %'olkenstein3 and developed by
Long has been successfully applied to molecules. A few
attempts have been made to interpret the Raman intensity
profiles in Si, crystals with diamond structure ' and
GaAs (Ref. 8) in terms of the bond polarizability. How-

ever, the comparison of the calculation and observation
was possible only for the two-phonon spectra, because
these crystals have only a single first-order Raman band
(except TO-LO splitting).

We chose silicon carbide as a prototype crystal for
study of the Raman intensities by means of the BP model,
because a number of different polytypes of good quality,
in which interatomic bonds are predominantly covalent,
are available and many folded modes can be observed.
Raman spectra of several SiC polytypes have been mea-
sured by Feldman et ttl. , I who have estimated the
dispersion curves of the phonons propagating along the c
direction from the frequencies of the observed folded
modes. The striking features of the spectra are as follows:
First, relative Raman intensity of the folded modes de-
pends strongly on the stacking sequence as in CdIz.
Second, there is a small splitting in the Rarnan bands
which arises from the acoustic folded modes inside the
Brillouin zone of the basic polytype (3C-SiC).

We have measured polarized Raman spectra of several
SiC polytypes (6H, 8H, 15R, 218, and 278 ) at room tem-
perature in the backscattering geometry to avoid the ob-
servation of oblique phonons. For these polytypes the rel-
ative R unan intensities have been calculated using a
linear chain model and compared with the experiment. In
general, good qualitative agreement between calculation
and experiment is achieved. The experimental results are
presented in Sec. II. In Sec. III, a theory for the calcula-
tion of the crystal Raman polarizabilities is presented and
the expression for the Raman polarizability tensors is de-
rived. Section IU gives the application of the theory to
SiC polytypes. The relative Raman intensity of the folded
modes is calculated using the bond-Raman polarizability
together with the eigenvectors of the linear chain model.
The experimental results for several polytypes are com-
pared with the calculation. A brief discussion of the con-
nection between the relative Raman intensities and
lattice-dynamical calculation is given in Sec. U.

II. EXPERIMENTAL RESULTS

Sic crystals used in this experiment were grown by the
Acheson method. Thin crystal platelets having (0001)
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TABLE I. Some of the simple SiC polytlyes with three common notations.

Ram sdell
notation

3C
2H
4H
158.
6H
218
8H

ABC notation

ABC
AB
ABAC
ABACBCACBABCBAC
ABCACB
ABCACBACABCBACBCABACB
ABACBABC

hk notation

k
(h)2
(hk)2
(hkhkk)3
(hkk)2
(hkkhkkk)3
(khkk)2

Space
group

Td
C4

C6„
C,'„
C6„

Atoms per
unit cell

2

8
10
12
14
16

faces with a typical size of square millimeters and a few
hundred micrometers thickness were examined. Polytypes
were identified from the measured Raman frequencies.
Several crystals were checked by x-ray analysis. The x-
ray analysis showed that the 8H polytype used here con-
tains 6H, partially. Table I shows the stacking sequences
of several polytypes. In Table II we list the symmetry of
normal modes. As shown in this table each of the folded
modes arising from the phonons at midzone forms a
doublet with the same symmetry. The Si-type mode is
Raman inactive.

Raman spectra were usually measured in backscattering
geometry using the 4880-A line of an Ar+ laser. Figures

1(a)—1(d) and 2(a)—2(d) show Raman spectra of the poly-
types 6H, 1M, 218, and 8H which were measured in the
backscattering configuration. The Raman bands observed
in the frequency region below 260 cm ' correspond to
folded transverse acoustic (TA) modes. The folded TO
modes (E-type mode) are observed in the region from 750
to 810 cm . The frequencies of the Raman bands agree
well with results by Feldman et al 'wit. hin the experi-
mental errors. For these polytypes the intensity of the
Raman band lying originally at the I point (797 cm
band) is relatively weak: A Raman band corresponding to
the midzone phonon is more intense. As seen in Figs. 1

and 2, the Raman intensity profiles depend strongly on

TABLE II. Symmetry of phonon modes at the I point in several polytypes. x =q/q& is the reduced
wave number of the phonon modes in the basic zone which is folded back to the I point by the zone
folding along the c axis, where qq

——m/e. (The parentheses represent acoustic modes. )

2H phonon branch

Planar acoustic
Axial acoustic
Planar optic
Axial acoustic

Planar acoustic
Axial acoustic
Planar optic
Axial optic

Planar acoustic
Axial acoustic
Planar optic
Axial optic

Planar acoustic
Axial acoustic
Planar optic
Axial optic

Planar acoustic
Axial acoustic
Planar optic
Axial optic

(E, )

(A))

A)

(E)
(A)

A

x=0
(E))
(Al)

(E)
{A)

(EI)
(AI)

Al

E2
B)

B)

x =0.33

2E2
2BI
2E2
2BI

x =0.28

x =0.25

2E2
2BI
2E2
2BI

x =0.8
2E
2A
2E
2A

x =0.66

2Ei
2A I

2EI
2AI

x =0.57

2E
2A
2E
2A

x =0.5

2El
2AI
2El
2A2

Bl

Bl

x =0.86

x =0.75

2E2
2BI
2E2
2BI

Al
El
Al
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Observation Catcutation

the polytype. For folded modes of the TA branch, fre-
quency splittings are observed when the modes correspond
to the midzone phonon. Despite the fact that the sym-
metries of doublets are the same, the intensities of two
partners are usTTssiiy quite different. No splitting was ob-
served in the doublets of the folded modes in the optical
branches even at liquid-N2 temperature. For the SH paly-
type sample, the Raman bands corresponding to those of
the 6H polytype are observed owing to the mixture of the
6H polytype.

Since the folded modes arise from the phonon modes at
certain q paints in the basic zone, the measured frequen-
cies of five polytypes are plotted in the form of dispersion
curves in the basic zone in Fig. 3. The phonon mode at q
in the basic zone is denoted as the q(x) mode hereafter,
where x=q/qs, q~

——m/c, and c is the unit-cell length
along the [II I] directian of the 3C polytype (zinc blende).

We tried to observe the folded modes of the LA branch
at the backscattering configuration Z(X'F'+X'X')Z,
where Z is parallel to the c axis. Some folded modes of
the A branch (LO modes) are also Raman allowed at this
scattering geometry. We could observe these Ra~an ac-
tive modes, but their intensities were much weaker than
those of the TA branch. Our measurements showed that
the q(0) mode was intense and other modes were very
weak.

To probe xz and yz components of the Raman tensors,
we measured Raman spectra using the backscattering

Observation Calrulation
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(a)
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FIG. 2. Comparison of the observed Raman spectra of the

folded TO modes with the calculation for four polytypes: (a)
15R, (b) 6H, (c) 21R, and (d) SH. The dashed line shows the
spectra measured with a p-polarized laser beam incident at an
angle of -60'.
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FEG. 1. Observed Raman spectra of the folded TA modes are
compared with the calculation for four polytypes: (a) 158, (b)
6H, (c) 218, and (d} 88. In the calculation, the bandwidth is
chosen so as to fit the observed bands and a Bose-factor correc-
tion is made.

0 0.5 1.0

FIG. 3. Phonon dispersion curves in the basic zone using
data from five polytypes. The solid lines show the linear-chain-
model calculation. See text.
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geometry, with a p-polarized laser beam incident at an an-

gle of about 60'. The spectral features did not change ex-

cept for the q(0) optic mode at 797 cm '. As shown in

Fig. 2(b) this band was not observed in the s polarization
for the 6H polytype, but was clearly observed in the p po-
larization for which xz or yz components can be detected.
For SH, 15R, and 21R polytypes, the intensity of the q(0)
optic mode relative to other bands was also enhanced in
the p polarization.

III. RAMAN POI.ARIZASII. ITY TENSORS

In the BP model '" electrons of a crystal are divided
into a number of groups which are assumed to be indepen-
dent of one another. The bond polarizability is then addi-
tive with respect to groups of electrons

QJ,
J

where aJ is the polarizability of the jth group of elec-
trons. The crystal polarizability a takes the form

The second assumption is that the bond polarizability ten-
sor does not change in magnitude with a change of the
bond orientation, but the total tensor components are al-
tered because of the direction cosine involved in a sum of
Eq. (5), so that

Baf
~

Bai =0. (7)
&(Ip) &(&p)

The Raman scattering intensity of the A,th mode is related
to the polarizability derivative with respect to the phonon
normal coordinate Q~, i.e., the Raman polarizability ten-
sor,

a~{A,) =
i,

This quantity is expressed using the so-called intensity
coordinate system which contains the Xq bond stretch-
ings and 3N& changes of direction cosines, 2' of which
are independent. The intensity coordinates are related to
the Cartesian displacements x by the 3Hz y, 3m matrix T,

a= gaj~+ gaic,
J J

where labels 8 and C refer to bonds
ly. The g; and a jc are symmetrical
ially symmetric bonds we get

aJj 0 0 ~C

0.a 0 (xJ 0 (xc 0—J j. J

0 0 a]i 0

0 0
c

Q,J 0

0 aJ

(2)

and cores, respective-
3)&3 tensors. For ax-

I=Tx =TM 'u (9)

where M ~ x; =u;, M=[(M;)'~ 5,&], and M; is the mass
of the ith atom, and m is the number of atoms in the unit
cell. The matrix T is partitioned into submatrices, if we
arrange the elements of the intensity coordinates related to
respective bonds. Equation (9}is then written as

where a tensors are expressed in the principal-axis system
of each bond and J. and

~ ~

refer to directions perpendicu-
lar and parallel to the bond, respectively. Transformation
of this polarizability into that in the fixed crystal coordi-
nate system is given by

I= b, (nX)
b(n Y)

Z]

3'p

(10)

1 80'J ——8 J aJR J, (3) Zp

where R i is the rotation matrix. From the orthogonality
relations for direction cosines, we get

[aJ 1I =[a[~ ai~)(JP)(J~—)+ai~pn (4)

a~= X I [af~ —aij(jp)(ja)+ah&~1+ g a;,

where Xii and Nc are the number of chemical bonds and
atomic cores in the unit cell, respectively.

The total tensor components a~ are a function of each
bond length and also of bond orientation. Here we as-
sume first that if a given bond is stretched, the com-
ponents of that bond's polarizability tensor are altered but
not those of any other bond,

Baf~ Ba~j =0 for l~j .
8ri Bri

where (jp) is the direction cosine of the jth bond with the
pth crystal axis. Assuming the bond polarizabilities to be
additive, we obtain the tensor component of total polari-
zability of a unit cell in the crystal:

lN pN

Br„

Bx)

B(nX)
Bx;

B(n Y)
Xi

Br„

By;

B(nX)
~A

B(n Y)
~3'~

Br„

az

B(nX)
8zg

B(n Y)
Bz.

The phonon normal coordinates are related to the Carte-
sian displacement coordinates,

where A=RM ' and R '=R. From Eqs. (9) and (12)
we get

where r„, (nX), and (nY) are elements of the intensity
coordinates associated with the nth bond, and the sub-
scripts i and p refer to the end atoms of the nth bond.
The submatrices T,'„and Tp„are 3 X 3 matrices expressed
by
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The matrix A is constructed from eigenvectors of the
equations of motion. We then have

aa~ aa~
aQ»

(14)

Using Eqs. (11),(14), and (15), we have

aa~ "~ a[a„]~
n

where aa /aQ» represents a column vector and

au~/aS, is a row containing elements an~/aS, which

can be evaluated with the aid of Eq. (5). Nonvanishing
elements of aa /aS, are given in the Appendix of Ref. 5.

We may write the row matrix aa /aS„as follows:

a~ " a[a„] a[a„] a[a„]
ar,

' ' ar„' a(nx) a(nr) '

0, . . ., . (15}

A similar relation holds for y; and z;. Since A»

represents the displacement amplitude of the ith atom
along the x direction for the eigenfrequency co», we see
from Eq. (16) that the Raman tensors are dependent on
the relative displacement between the neighboring atoms
relevant to a bond.

In the framework of the BP model the first-order Ra-
man spectra depend on the bond polarizabilities, their first
derivatives with respect to the bond stretching coordi-
nates, and the amplitudes of atomic vibrations (eigenvec-
tors}. Since the bond polarizabilities and their derivatives
are not known a priori, we will start with the assumption
that the bond polarizabilities and their derivatives are
given and discuss only the relative intensities of different
Raman bands.

Raman scattering efficiency is proportional to the
square of the Raman polarizability tensor. '~ The Raman
intensity for the A.th mode is given by

(18}

af&»]p
(A», —A», )

az;
(16)

where S is a constant of proportionality which is indepen-
dent of A, , n„ is the Bose factor, and a'(A, } is the Raman
tensor whose component is given by Eq. (16). The sum-
mation in Eq. (18) is taken for degenerate modes.

(17)

where i and p refer to the end atoms of the n th bond and

a[~„]~ a[~„]~ ar„a[~„]~ a(„x)
ax; ar„ax; a(nx) ax;

+ a[+n]pr a(n Y)
a(nr) a»,

IV. APPI ICATION TO SiC POLYTYPES

A. Calcu1ation of the Raman polarizability tensors

The structures of several SiC polytypes are shown in
Fig. 4(a). The position of C is represented by Latin letters
and Si atoms by Greek letters. The building units of all

"
@i'T. a

2H 3C

K~ c,"
c[ $i,' a

8

(wur tzite) ( z incblende)

8 CA

ot 8Ã

4L

CAB
ill

'z cia W

Ill
ABC

Group(i} Group( ii } Group(iii}
FIG. 4. (a) Several polytypes of SiC. Si and C atoms are sho~n by large open circles and small solid circles, respectively. (b)

Bonding portions of Si-C are divided into three groups.
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SiC polytypes are hexagonal double layers of Si-C. These
are stacked together in such a ~ay that each silicon atom
is surrounded tetrahedrally by four carbon atoms and vice
versa. For the configuration of the second neighbors,
there are two types of configuration: a hexagonal config-
uration h like that of atom B in the sequence ABA and a
cubic configuration like that of atom B in the sequence
ABC. Spacings between Si-C planes along the (.' axis
which are linked by A-a- and A-P-type bonds are —,

' c and
—,'c, respectively. We assume, throughout this paper, that
these spacings are independent of polytype structure.
From the viewpoint of the contribution to the Raman po-
larizability, the bonds in the SiC polytypes are classified
into three groups as shown in Fig. 4(b). The configura-
tions of these bonding portions are (i) aB, PC, and yA, (ii)
aC, PA, and yB, and (iii) Aa, BP, and Cy.

Using Eqs. (15) and (17), we have calculated the bond
Raman polarizabilities B[a„]~/Bx;, B[a„]~/By;, and

B[a„]~/Bz; for three types of the bonds, the result of
which is shown in Table III, where for the groups (i) and
(ii) the sum of the contributions from three bonds is con-
sidered. For the planar type displacements (E-type
modes), each of the tensor components a~, a~, and a,'~
in Table III has the same magnitude but is different in its
sign for groups (i) and (ii). The bonds in group (iii) do not
contribute to these tensor components.

As described in Sec. II, our scattering geometry em-
ployed for the observation of the E-type modes allows

only the components a~(A, ), a~(A, ), and a~(A, ). Since
these three components are given by a parameter c as
shown in Table III, Eq. (16) can be rewritten as

a~(E) =c g+(A@„—Ax, ), (19)

for the x polarization, where AE —Az represents the
X)

relative displacement amplitude of neighboring atomic
planes linked by the bonds in groups (i) and (ii), and the
contributions from three bonds in groups (i) and (ii) are
taken into account. The signs in Eq. (19) depend on the
group to which the relevant bond belongs. From Eq. (19)
we see that the calculation of the relative Raman intensi-
ties is now reduced to the determination of displacement
amplitudes for respective atomic planes. An expression
similar to Eq. (19) has been derived in Ref. 1 in order to
explain the relative Raman intensities of the folded modes
in CdI2 polytypes.

The relative Raman intensities of the folded modes in
the TA and TO branches can be calculated' by use of Eqs.
(18) and (19), if we determine the displacement amplitudes
of the atomic planes from the equation of motion. It fol-
lows from Eq. (19) that the sign of all the tensor com-
ponents a~(A, ) is opposite for 180' out-of-phase displace-
ments of the end atoms linked by a bond, e.g.,

a~(atBI) = —a~(atBt),
a~(A tat) = a~(A la t), —

TABLE III. Raman polarizability tensors of three groups of bonds for axial (A-type) and planar (E-
type) vibrations. Symbols in parentheses indicate the direction of polarization of the phonons. r is the
bond distance.

a& —B) a 0 0
Pi —Ct 0 a 0
y& —Ay 0 0 b

A{z)

0 c d

c 0 0
d 0 0

E(x )

c 0 0
0 —c d
0 d 0

E(y)

a& —Cf a 0 0
Pi —At 0 a 0
y~ —By 0 0 b

A(z)

0 —c d
—c 0 0
d 0 0

E{x)

—c 0 0
0 c d
0 d 0

E(y)

Ag —a& e 0 0
8 i —Pi 0 e 0
C& —yt 0 0 f

A{z)

0 0 g
0 0 0
g 0 0

E(x)

0 0 0
0 0 g
0 g 0

E(y)8, 4V 2, , 8~2a = —
9 (a~~ —a&) ——

{a~~—aj ) —a~, c = (a~~ —a&)— (a~~ —a~),9r '
9 9r16, 4, , 16 9 (a[] aJ } (a(] ag } a[jy d 9 (a)[ aJ ) (a)( aJ )9r 9r

1e=a, , f=aII, g= —(+II-a,).
r
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Thus, it is predicted that the tensor components a' (A, },
u~(A, ), and a~(A, ) of the bond in a hexagonal stacking are
zero for the planar vibration such as A la tB tptA l, if the
amplitudes of the relative displacements, atB1 and PtA 5,
are equal.

Each diagonal tensor component of groups (i) and (ii) is
equal for the axial vibrations (A-type modes}. According-
ly, a~(A, ) for the axial vibrations is expressed as

0 ~

M—JXJ (E——
g 1+i+KJJ i)XJ —KJ J+iXJ ~i K—J q i'

DJ J +IIXj+II (21)

the c axis move as rigid units and hence a linear chain
model is applicable. '

The equation of motion of the normal vibration can be
written as

a~(A, )=a~'g (A i A—i, )
j

=a for p=x or y,
Q =b for p=z,

(20)

Kj I+i K,„——b+~q J ~i . (22)

where KJ 1+ i is the nearest-neighbor plane force and MJ is
the mass of jth atomic plane. The force constant between
the planes separated by —,'c is taken as I', which is as-
sumed to be equal for any polytype. The force constant
between the planes separated by —,c has a small polytype
dependence. Following Hodges' we write

=e for p=x or y,
=f for p=z,

and a, b, e, and f represent the bond-Raman polarizabili-
ty components in Table III. The relative displacements
along the z direction, A~ —A~, and A~ —A~.)+& i+I
refer to the neighboring atomic planes linked by the bonds
in groups (i) and (ii) and group (iii}, respectively. In Eq.
(20) the contributions from three bonds in groups (i) and
(ii) are taken into account.

We see that for the displacement pattern of the q(x+0}
mode, there is always a set of relative displacement of the
neighboring atoms which are 180' out of phase from each
other. As a result, the summation in Eq. (20) becomes
zero. Such cancellation also occurs for the Raman-tensor
components a~(A, ) and a~(A, ) of the planar vibrations.
This result means that except for q(0} modes the Raman
intensities of folded modes are negligibly small at any ex-
perimental geometries to probe diagonal components of
the A-type modes and xz and yz components of the E-
type modes.

For the 2H polytype the atomic displacement patterns
of the Ei and Ez modes are described as A latB LPGA and
A LalBtPt, respectively. Raman tensors for the Rmnan
active modes Ai, Ei, and Ez are derived easily from
Table 111. The resulting Rainan-tensor forms are identical
with the expressions already derived. ' The calculated re-
sults reflect the selection rule: All the tensor components
of the Raman inactive modes B, which are the modes
folded from the zone-edge phonons in the LA and LO
branches, v~&sh.

%'e will extend the calculation described above to nor-
mal modes in polytype crystals. The next step to which
we have to proceed is then to calculate the eigenvectors on
which the Raman tensors depend substantially.

8. Linear chain model

The phonons propagating along the c direction are clas-
sified into the two groups: planar vibrations (E-type
mode) and axial vibrations (A-type mode). For both types
of vibrations atomic planes of C and Si perpendicular to

If the double plane A-a occurs in a hexagonal environ-
ment, ~~J+i K=Ki„„——K„b is n—ot zero. Since the
primitive unit cell of the nH and 3nR polytypes contains
2n atomic planes, we get 2n equations of motion for the
polyty pea.

We look for the running wave solutions of the form

X~ =A~ exp[i(cot —qx~)],

where x =jc for C atoms and xj =(j'+ —,
'

)c for Si atoms.
Substitution of Eq. (23) in Eq. (21) leads to the following
equations:

g f5&MIco DJ(q)]A~ =—0 . (24)

This set of equations does not have trivial solutions if

(5()Mrna) D,J(q) i
=0 .— (25)

The frequencies of folded modes at the I point are calcu-
lated numerically from Eq. (25) by taking force constants
F, K,„b, and ~ as fitting parameters. We have deter-
mined these force constants so that the experimental fre-
quencies coincide with the calculated frequencies for the
zone-center TO phonon and the folded mode correspond-
ing to the zone-edge TA phonon in the basic zone and so
that the calculated splitting of the q( —,

'
) modes of the TA

branch fits the observed splitting in the 6H polytype. The
fitting values of the force constants are F=2.69&(10',
K=4.3X10, and ~=5)&103 dyn/cm. The calculated
eigenfrequencies are hsted in Table IV. Letting ~=0,
we have calculated the dispersion curves in the basic zone,
the result of which is shown in Fig. 3. The calculated fre-
quencies of the TA branch are slightly smaller than the
observed values. A slightly larger deviation from the ex-
perimental values, as much as 20 cm ', is found in the
TO branch at around the zone edge. It is possible to fit
the calculated values to the experimental result if we take
into account the force constants between second neighbor
planes. In this case, however, we are forced to use a un-
real model where the second-neighbor forces are larger
than the nearest-neighbor forces.
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TABLE IV. Raman frequencies and relative Raman intensities measured at the Z(X'X'+X'F')Z geometry are compared with
calculated ones. The Raman intensity is normalized in such a way that the intensity of the strongest band of each branch is unity.
Bose-factor correction is made for the calculated values.

Polytype Expt.

Frequency (cm ')
Optic Acoustic

Calc. Expt. Calc. Expt.

Relative intensity {I/I )

Optic Acoustic
Calc. Expt. Calc.

15R

21R

0.4

0.8

0.33

0.66

1.0

0.28

0.86

0.25

0.5

0.75

1.0

770

796

767

797

784
781

754
753

0
786
785

763
761

748

798

791
788

770
769

752
751

798

793
791

777
774

758
756

749

0
140
150

266

0
126
131

217
220

0
112
117

248
251

266

0
152
157

258
261

0
129
133

230
238

276

0
112
115

208
212

268
269

0
99
101

186
191

249
256

277

0. 12—0.095

1.0

1.0

O. 3—0.28

0.045

1.0

0.065

0.30

1.0

0.35'

0.14

1.0
0.08

0.06
0.12

0
1.0
0.04

0
0

0.23

O.Q7

1.0
0.035

0.013
0.048

0.04
0.12

0
1.0
0.015

0
0

0.07
0.09

0

O. 13—0.18
1.0
0.12
0.13

0. 17—0.15
1.0
0

-0.014
0.047—0.06

0.26—0.23
1.0

0.05—0.04
0.04—0.01

0.083
0.055

0,3
1.0
0
0

0.076
0.19

0.238

0.08
1.0
0.038
0.034

0.04
1.0

0
0

0.05

0.035
1.Q

0.04
0.011
0.03
0.015

0.03
1.0

0
0

0.042
0.05

0

'Due to the 6H-polytype component.

C. A comparison with the observed spectra

The relative amplitudes of displacements Aij. are ob-
tained for respective eigenfrequencies coi. Using Eqs.
(18) and (19) and calculated 2 if, we calculate the relative
Raman intensity of the E-type folded modes. The result
is described in Table IV. In Figs. 1 and 2 we compare the
calculation with the observed Raman profiles for four po-
lytypes. The intensity of the Raman bands is normalized
in such a way that the intensity of the strongest band in
each branch of the polytypes is unity. As seen in Figs. 1

and 2, the calculation reproduces well the observed inten-
sity profiles except for some modes. Our calculation
predicts that the Raman intensities are zero for the q( —', )

modes of the TO and TA branches in the 6H polytype
and for the q( —,

'
) and q(1) modes in the SH polytype.

This prediction is consistent with the result of group-
theory analysis. Although the q(0) mode of the TO
branch is also expected to be missing for both polytypes, a
very weak shoulder is observed at about 797 cm ' for the
SH polytype. For the 88 and 218 polytypes a remarkable
discrepancy is seen for the low-frequency partner of the
q( —, ) and q( —, ) modes, respectively, in the TA branch:

The calculated intensity ratio of the low-frequency
partner to the high-frequency one is one order of magni-
tude smaller than the observed ratio. Regardless of the
quantitative discrepancy found in some folded modes,
general features of the Raman spectra for the planar-type
folded modes are interpreted satisfactorily by the present
model. It is to be noted that in this model we do not need
to determine the four parameters a~~, ai, at~, and ai as we
are concerned with the relative Raman intensity of the
folded modes for each phonon branch.

V. DISCUSSION AND CONCLUSION

Our model calculation reveals that the Raman-tensor
components of the axial vibration (A-type mode) vanish
for all the folded modes except the q(0) modes. However,
Raman active folded modes of the I.A branch have been
observed, though their intensity is very weak. The reasons
for this discrepancy would be that (1) the presence of un-
equal spacings' between the Si and C planes along the c
axis in higher polytypes causes incomplete cancellations in
the Raman polarizability, and (2) the electro-optic effect,
which is not considered in the present model, contributes
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to the intensity of longitudinal phonons. '

As mentioned in Sec. IV, the disagreement between the
calculated and experimental frequencies of the folded
modes can be removed if the second-neighbor plane forces
are included in the linear chain model. However, the Ra-
man intensity calculated by this model gives rise to a large
discrepancy between the experimental results and calcula-
tion, especially for the doublets of the folded modes.
Another shortcoming in the use of the linear chain model
is that although the theory explains the relative Raman
intensity of the folded modes in each branch, the calculat-
ed intensity ratio of the folded TO modes to folded TA
modes is larger than the observed ratio. This is due to the
fact that the linear chain model yields a rather large force
constant for the bond between the Si and C planes
separated by —,'c. More refined models including long-

range forces will be needed to reproduce both relative Ra-
man intensities and frequencies of the folded modes,
simultaneously. Since Raman scattering intensity is more

sensitive than eigenfrequencies to the eigenvectors of
relevant phonon modes, the analysis of the Raman inten-
sities will provide a rigorous check on the validity of the
lattice-dynamical model employed. With some modifica-
tions of the approximations in the model, our model based
on the bond-polarizabi1ity concept is applicable not only
to covalent crystals but also to partially ionic crystals.

From the viewpoint of application, the measurement of
Raman frequencies and intensities is a useful technique
for identifying the structure of the SiC polytypes and
determining the amount of the mixture in composites of
different polytypes.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Z. Inoue of the Institute
of Inorganic Materials for the x-ray analyses of the poly-
type used in this experiment. We wish to thank Professor
R. F. Wallis for his careful reading of the manuscript.

'Present address: Central Research Laboratory, Sumitomo Met-
al Industries, Ltd. , 1-3 Nishinagasu-Hondori, Amagasaki,
Hyogo 660, Japan.

~S. Nakashima, H. Katahama, Y. Nakakura, A. Mitsuishi, and
B.Pal osz, Phys. Rev. 8 31, 6531 (1985).

2M. Wolkenstein, C. R. (Dokl. ) Acad. Sci. URSS 30, 791 (1941).
3M. Eliashevich and M. Wolkenstein, J. Phys. (Moscow) 9, 101

(1945); 9, 326 (1945).
4D. A. Long, Proc. R. Soc. London Ser. A 217, 203 (1953).
5R. Tubino and L. Piseri, Phys. Rev. 8 11, 5145 (1975).
S. Go, H. Bilz, and M. Cardona, Phys. Rev. Lett. 34, 580

(1975).
~A. A. Maradudin and E. Burstein, Phys. Rev. 164, 1081 (1967).

sS. Go, H. Bilz, and M. Cardona, Proceedings of the Third In-
ternational Conference on Light Scattering in Solids, Campi
nas, Brazil (1975), edited by M. Balkanski, R. C. C. Leite,
and S. P. S. Porto (Wiley, New York, 1975), p. 377.

~D. W. Feldman, J. H. Parker, Jr., W. J. Choyke, and L. Pa-
trick, Phys. Rev. 170, 698 (1968).
D. W. Feldman, J. H. Parker, Jr., %. J. Choyke, and L. Pa-
trick, Phys, Rev. 173, 787 (1968).
R. E. Hester, Neman Spectroscopy, edited by H. A. Szymanski
(Plenum, New York, 1967), p. 101.

2R. Loudon, Adv. Phys. 13, 423 (1964).
C. H. Hodges, Phys. Rev. 187, 994 (1969).

~~A. H. Gomes de Mesquita, Acta Crystallogr. 23, 610 (1967).


