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Defect-mediated hydrogen-bond instability of poly(do)-poly(dC)
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A modified self-consistent phonon theory based on the complex Green*s function is developed for
a DNA polymer poly(dG)-poly(dC) which contains a defect (dG refers to repeating guanine bases on

one strand and dC the repeating cytosine bases on the other strand). The defect simulates a fluctua-

tion in which the hydrogen bonds which bridge the guanine and cytosine in one cell are broken. The
theory is then used to analyze the possible instabilities that can arise in neighboring cells as a func-

tion of the temperature. A melting or hydrogen-bond instability does occur in the neighboring cells

at 350 K. %'e find a directional effect around the defect when the instability begins to occur. This
calculation has no parameters adjusted to fit melting data and is based on the potentials which are
adjusted to fit data of the vibrational modes of the DNA homopolymer at room temperature (293
K).

I. INTRODUCTION

Recently, we have developed a modified self-consistent
theory' (MSPA) based on phonon Green's functions. '

We have applied it to the perfect infinite DNA polymer
poly(dG)-poly(dC) to study the melting of the hydrogen
bonds. This melting is inferred from an instability in the
hydrogen bonds which makes it impossible to find a self-
consistent solution. Although the earlier paper predicted
a melting temperature' reasonably close to the experimen-
tal melting temperature, it was a mean-field theory
which retained helical symmetry. This required, for in-
stance, that every set of hydrogen bonds melt simultane-
ously. The actual melting can be expected to involve nu-
cleation sites, and these fluctuations are outside the scope
of a mean-Geld approach. In this paper we apply the
self-consistent method to the case where a nucleation de-
fect is assumed present in an otherwise perfect helix. In
any real polymer there should be a terminus and local de
fects which could arise for various reasons as well. If
there is a defect in the homopolymer, the fluctuations of
the hydrogen bonds would be different around this defect
from the fluctuations of the perfect helix. It is therefore
likely that the physical melting of the polymer is deter-
mined by when such defects grow rather than by the con-
ditions which would bring about mean-field melting. Bio-
logically, it is also very important to study the fluctua-
tions around defects, because the presence of the enzyme
certainly introduces a defect.

Putnam et al. have studied the fluctuation of hydro-
gen bonds around the terminus interpreting the terminus
as a defect. However„ they have not included the anhar-
monic effects of the hydrogen-bond fluctuations, and so
they could not study the temperature instability of hydro-
gen bonds near the terminus and how the hydrogen bonds
behave near the melting temperature. In this paper we
want to study the hydrogen-bond instability around a sim-
ple but physically and biologically meaningful defect as a
first attempt to study the role of nucleation site defects.
The defect we consider here is as follows. We cut the

three hydrogen bonds of the base pair of the cell (0) of the
perfect helix. (See Fig. 1.) Mathematically, this means we
set the three internal force constants for the hydrogen-
bond stretches of the cell (0) to be zero. We want to see
how this affects the instability of the hydrogen bonds of
the cells (1) and ( —1) and what changes in temperature
dependence occur.

In a perfect helix, the helical symmetry of the homo-
polymer factors the vibrational equation of motion into a
block diagonal form, thus a relative phase variable 8
which is equivalent to Bloch momentum k in a lattice
with translational symmetry is a good quantum number.
In applying MSPA (Refs. 1—3) to the melting of the per-
fect helix we need the Green's function only in the 8 coor-
dinate. However, around the defect there is no helical
symmetry and thus everything should be done in configu-
rational coordinates. This is the principal reason to do
the problem using Green's functions. One can then do
calculations in which very localized phenomena are im-
portant. This requires integration over bands, and such
integrations gives rise to singularities in the Green s func-
tions. To avoid these singularities we must introduce the
complex Green's function. We think this may be the first
theoretical study of a defect for lattice vibration which in-
clude the anharmonic effects through the complex
Green's function. We call this method a self-consistent
phonon approach based on the complex Green's functions.
All the calculations are done using the internal coordinate
of the hydrogen-bond stretches, ' since in our model the
melting of hydrogen bonds is physically due to the insta-
bility of the hydrogen bonds resulting from the fluctua-
tion of the hydrogen-bond stretch. This coordinate set in-
volves fewer coordinates in the internal coordinate set.

II. PURE LOCALIZED STATES
AND COMPLEX GREEN'S FUNCTION

We introduce the defect at a particular cell, cell (0).
(See Fig. 1.) For inelting to occur this defect must spread
throughout the helix. To determine this spread of the
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broken bonds we examine the stability of the neighboring
cells, cell (—1) and cell (1). To do this we calculate the vi-
brational fluctuations of the hydrogen bonds of the cells
(1) and ( —1). The vibration equation of motion of the
helix with the defect is

(F—co +C)q =0, (1)

where F is the force-constant matrix' of the perfect helix
in mass-weighted Cartesian (MWC) coordinates, C is the
perturbation for the cut of the three hydrogen bonds of
the cell (0), and co is the agenfrequencies of the system.
The Green's function of the perfect helix is written as

Re I qg(8)[qj"(8)]'exp[18(n —n') ] I
g~ (oI;n, n')=[(co F)—']~" =— d8

eo —o)j~(8)

where q~ (8)exp(in8) is the eigenfunction of the ath coor-
dinate of the cell (n) of the eigenfrequency oij(8} of the
band jwith relative phase 8. Here the variable 8 is a good
quantum number of a system with helical symmetry. '

If there is a defect in the system, new eigenfrcquencies
which are so-called "pure localized" states may occur
which lie within the branch gaps of the perfect helix
dispersion curves. Within the branch gaps, the denomina-
tor for the perfect helix Green's function (2) involves no
singularities and g may be easily calculated. Therefore
from (1) the equation of motion can be rewritten as

where Qj(8) is the numerator of the integrand of Eq. (2},

g„ is the sum over the bands in which oI lies, 8o satisfies

ro=co„(8o) and P stands for the principal part of the in-
tegration. (For the detailed derivation of this equation,
see Ref. 8.} Thus the singularities appear as an imaginary
part of Green's function. As will be seen in the next sec-
tion, the imaginary part of the diagonal Green's function
is very important for the calculation of the fluctuation of
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From Eq. (3), the eigenfunctions for the coordinates
directly affected by the defect are entirely determined by
the solving "small" system of equations

(1—g„C )q, =0 .

Eigenfunctions of the pure localized states for the coordi-
nates not directly affected by the defect are given by
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In Eqs. (4} and (5), subscripts a and b refer to those coor-
dinates directly and not directly affected by the cut,
respectively. The new frequencies for the localized modes
are found by searching for zeros of the determinant

D(co )=det[1 —g~(oi )C„] .

Using Eqs. (4) and (6), we first find the localized eigen-
state frequencies and then calculate the eigenfunctions of
the hydrogen-bond stretches of the cells (1) and ( —1) for
the localized states.

If ap lies within one or more dispersion bands of perfect
helix, then the denominator of Eq. (2) involves one or
more singularities. Using the identity,

lim . =P — i m5(x), — .1 1
(7)
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QJ (8)d 8
g(co +i@)=gP I a) —coj~(8)

Ol

l
I

cell (- I )
C5

I

l

i~ g [d~~(8o) I—d8] Q~(8o) FIG. l. Portion of three unit cells of poly(dCx)-poly(dC)
which shows the defect in hydrogen bonds of ce11 (0).
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a bond stretch. From the complex Green's function of the
perfect helix, i.e., from Eq. (8), we can easily calculate the
defect Green's function 6(c0 ). From Eq. (2) we see that
6 (co }satisfies the following equation:

6 =(co I' ——C) '=(1—gC) 'g

=g+g&g ~

where T is the so-called t matrix or scattering matrix
which for our defect is written as

T =C(1—gC)

In numerical calculation we first calculate the complex
Green's function of the perfect helix through Eq. (8) and
then calculate the r matrix using Eq. (10). We then cal-
culate the defect complex Green's function through Eq.
(9).

Among all the force constants of DNA we assume that
the six force constants for the hydrogen-bond stretches of
cells (1) and ( —1) change significantly and the other force
constants of the cells are assumed not to change signifi-
cantly. Thus for the self-consistent calculation, to exam-
ine the stability of the hydrogen bonds of cells (1) and
( —1), we do every calculation in the subspace of the six
hydrogen-bond-stretch coordinates of cells (1) and (—1) of
the DNA helix internal coordinates. Even though every-
thing is derived in this section using the M%C coordinate,
it also can be shown to hold for the internal coordinates.
In a previous paper' we calculated the eigenfrequencies
and the eigenfunctions for the three internal coordinates
for the hydrogen-bond stretches of the perfect helix for
temperatures below 380 K. We use this information to
calculate the eigenfunctions for the six coordinates and
the frequencies for the pure localized states from Eqs. (5)
and (6) for this case with defect present. For inband
modes we calculate the defect complex Green's function
through Eqs. (8), (9), and (10). Among the 123 bands of
the perfect helix, the "high"-frequency bands numbers 28
and to 123 are essentially dispersionless, '0 thus we assume
these can be treated in the Einstein approximation. The
other bands whose frequencies are lower than 220 cm
are treated exactly. This assumption is the same as that
for the calculation of the melting of the perfect helix. '

III. SELF-CONSISTENT PHONON APPROACH
AND COMPLEX GREEN'S FUNCTION

In this section, using the result of the preceding section,
we show how the modified self-consistent phonon ap-
proach' (MSPA} is easily formulated through the com-
plex Green's function. In MSPA there are three steps in
each iteration to include the anharmonic effects. This is
explained in detail in Ref. 1. Here we briefly describe
each step so as to include the defect effect.

A. Step I: Calculation of correlation tensor
for the hydrogen-bond stretch

In Ref. 1 the correlation tensor for a hydrogen-bond
stretch is shown to be

D; =(s's') =—g f d8 coth[Pco (8)/2]
l

2coj.(8) J

x&j(8)[~j(8)]',

where ( ) means the thermal average and sj'(8) is the
component of the eigenfunction of the ith hydrogen-bond
stretch of band jof the perfect helix. Thus the correlation
tensor for a hydrogen-bond stretch is the thermal average
of the fluctuation of the hydrogen-bond stretch. Using
the relation

d8+ sJ(sj)'=do) +5(co ri)J(—8))
J

xsj (sj )*[de) /d8] (12)

and Eqs. (2) and (8), the correlation tensor D; is reduced
to

D; =—f da) Img;(co )coth(Pa)/2), (13)

where Img; means the imaginary part of the diagonal
Green's function of the perfect helix for ith hydrogen

bond and f means integration over co for all the bands of
the perfect helix. It is easy to show that this holds for the
general case if there are continuous frequency bands. In-
cluding the effects of pure localized states in each itera-
tion, the correlation tensor for the ith hydrogen bond with
the defect is calculated from the equation

D;=— ascot m 2 Irn; co
1

+ g s'i (s'i )'coth(Proi /2),
2Ng

(14)

where 6; is the defect complex Green's function in each
iteration and si is the eigenfunction for the A,th pure lo-
calized states with eigenfrequency coi. First, using the re-
sult for the defect complex Green's function for inband
modes and the pure localized states of the preceding sec-
tion, we calculate D; for the hydrogen-bond stretches of
cells (1) and (—1). Then in each iteration we calculate D;
using the result of step 3.

B.Step 2: Force-constant calculation
for the hydrogen-bond stretch

Using a Morse potential for each hydrogen-bond stretch
from the result of Ref. 1 and D; of step 1, we calculate
the new force constant for the six hydrogen-bond
stretches. The Morse potential parameters' for the hydro-
gen bonds are determined from fitting the experimentally
observed dynamic behavior, especially for the hydrogen-
bond-stretch mode observed around 85 cm '." ' This
step is essentially the same calculation as that in Ref. 1.
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C. Step 3: Calculation of new complex Green's function
and localized states

C;=P; —P; (t =1 2, . . . , 6), (15)

Using the given force constants and the calculated re-
sults of step 2, we define the force-constants change C
where C is a 6X6 diagonal matrix in the subspace of the
hydrogen-bond stretches of cells (1) and ( —1) in the inter-
nal coordinates of the DNA molecule. The diagonal ele-
ment of Cis

V. DISCUSSIONS

As we expected, the fluctuation of the hydrogen bonds
around a hydrogen-bond defect is much larger than those
of the perfect helix at a given temperature. Since fluctua-
tions are expected to occur in the helix the actual observed
melting is expected to occur when such fiuctuation can
grow rather than when the entire helix undergoes mean-
field melting. In this calculation we show that growth of
a particular fiuctuation should occur around 350 K when

where (7); is the calculated force constant from step 2 and

P; is the initially given force constant for the ith hydrogen
bond in each iteration. Using C instead of C, we can cal-
culate the new complex Green's function and the new lo-
calized states for the hydrogen bonds of cells (1) and ( —1)

by the method described in Sec. II.

( g) 2.950—

2.920—

cell ( I )

IV. RESULTS

In the iteration scheme we define a divergence b, at
each temperature, and using the given information of Sec.
II, continue iteration of steps 1, 2, and 3 of the preceding
section until

6

2.890—
o+

K
2.860—

i=1
b, =abs

6 g 0.0001, (16)
2.830—

where C; is from Eq. (15) and (t; is the force constant for
the ith hydrogen bond from the previous iteration. We
also compared the current b, with the b.o of the previous
iteration and watched for the instability b, /b, o&1. At
each temperature, using the eigenfrequencies and eigen-
functions of Ref. 1, we first calculate the defect complex
Green's function and the pure localized states. Then the
iteration of the preceding section is repeated until the
self-consistency is established. All the parameters for the
Morse potentials for the hydrogen bonds are taken from
Ref. 1 and no parameters are altered during the calcula-
tions. Starting from 293 K, this procedure is repeated at
every 10'. At 350 K no self-consistency is found.

The results of this calculation are displayed in Figs.
2—4. Figure 2 shows the thermal expanded heavy-
atom —heavy-atom bond length of the three hydrogen
bonds of cells (1) and ( —1). It shows that the instability
occurs around 350 K. Around the hydrogen-bond defect
the instability occurs 30' lower than the case of the perfect
helix. ' In cell (1) as in the case of the perfect helix the
hydrogen-bond adjacent to the major groove melts first
followed by the other two bonds. [See Fig. 2(a).) Howev-
er, in cell ( —1) the hydrogen bond near the minor groove
first shows the instability followed by the other bonds.
[See Fig. 2(b).] There is a directional effect around defect.
The values for the force constants around the defect are
shown in Fig. 3. Here you can also see the directional ef-
fect. Figure 4 shows the correlation tensor of the
hydrogen-bond stretch as a function of temperature. The
correlation tensor which represents the fiuctuation of the
bond stretch gets very large around 350 K, and it also
shows the directional effect.
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FIG. 2. The mean distance between heavy atoms (thermal ex-
pansion) for the hydrogen bonds around the defect as a function
of the temperature. The solid line is for the central or N(1}—
H—N(3) bond, the long dash line is the O{6)—H—N(4) bond
adjacent to the major groove and the short-dashed line is the
N(2}—H—(2) bond adjacent to the minor groove. The curve is
plotted as succession of the straight segments between calculated
points. The kinks are simply the position of the calculated
points. (a) The mean distance for cell (1). (b) The mean distance
for cell (—1). By comparing (a) and (b), you can see the direc-
tional effect around the defect.
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culation is the appearance of the dynamical asymmetry in
the melting behavior. For the material poly(dG)-poly(dC),
melting proceeds in the +z direction (3'~5' in the G
backbone) by opening first the hydrogen bond adjacent the
major groove. (See Fig. 1.) Melting proceixis in the —z
direction (3'—+5' in the C backbone) by first opening the
hydrogen bond adjacent the minor groove. This asym-
metry can only result from the small asymmetry inherent
in this sample. It, however, raises the interesting question
as to how directional the dynamics can be as a result of

specific sequences. It appears that specific base sequences
can determine a direction which is easier to melt and
which can cause melting in a particular way, i.e., opening
to an enzyme interacting in one groove rather than anoth-
er.
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