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The transverse magnetoconductivity of quasi-two-dimensional layers, such as those occurring in

heterojunctions of superlattices and in metal-oxide-semiconductor field-effect transistor inversion

layers, is computed using the formalism of linear response theory, developed previously. The elec-

tron gas is considered to be quasi-two-dimensional, awhile the phonons are considered to be three di-

mensional. Explicit results for magnetophonon resonances are obtained for various kinds of phonon
scattering (acoustic, nonpolar optical, polar optical, and piezoelectric). Colhsion broadening of the
Landau levels is included to avoid divergences.

I. INTRODUCTION

Recent investigations' into the transverse magnetocon-
ductivity and quantum Hall effect of two-dimensional and
quasi-two-dimensional semiconductor layers have yielded
valuable information regarding the quantum osciHation
and the localization properties of the electrons in such
systems. The energy spectrum of the electrons confined
to semiconductor layers in the presence of a magnetic
field applied perpendicularly to the layers is completely
quantized. Therefore the density of states and the trans-
verse magnetoconductivty of such systems diverge in the
absence of scattering. At low temperatures several au-
thors calculated the transport and optical properties of
the electrons in the inversion layers of metal-oxide-
semiconductor field-effect transistors (MOSFET's) and
superlattices by assuming the scattering of the electrons to
occur by the surface roughness or the impurity ions.
Theoretical calculations based on the assumption that the
time spent by an electron near the scattering center is fi-
nite (and possibly even comparable to the mean free time
of the electrons) have yielded reasonable quantitative
agreement with the experimental data. However, at
higher temperatures the scattering of the electrons by the
lattice modes becomes important and a treatment of trans-
port properties in superlattices and heterojunctions is
called for.

The calculation of the relaxation times and mobility of
electrons in the semiconductor layers in the presence of
phonon scattering has been performed earlier by several
authors. s To our knowledge a calculation of the trans-
verse magnetoconductivity in the semiconductor layers in
the presence of phonon scattering has not yet been given.
However, the calculation of the relaxation times in high
magnetic field in the quantum-well structures in the pres-
ence of phonon scattering has been reported earlier.

The purpose of the present paper is to report on the
computation of the transverse magnetoconductivity of
quasi-two-dimensional semiconductor layers in the pres-
ence of phonon scattering. The basis of our treatment is
the formalism of linear response theory as derived recent-

ly by one of us (C.M.V.V.) and co-workers. ' The expres-
sion for the transverse magnetoconductivity is explicitly
calculated for a quasi-two-dimensional electron gas con-
fined to a square quantum-well-type structure interacting
with three-dimensional phonons. The scattering of elec-
trons with the acoustic modes, polar-optical phonons,
nonpolar-optical phonons, and the piezoelectric coupling
is considered in detail.

In order to obtain finite results for o, collision
broadening of Landau levels is introduced so that the del-
ta functions are replaced by Lorentzian shapes. For
polar-optical and nonpolar-optical phonon scattering the
magnetophonon resonance peaks occurring at cop=@co,
are calculated. The amplitudes of the magnetophonon
resonances are expressed in terms of the width of the Lan-
dau levels in the limit of high magnetic fields where the
coupling between Landau levels may be neglected. 6

The magnetic field and temperature dependence of o
for quasi-two-dimensional semiconductor layers for
acoustic and piezoelectric phonons is essentially smooth
and is given by the same dependence as that of re on 8
and T; here yz ——llew stands for the width of the Lan-
dau levels.

In Sec. II the theory of transverse magnetoconductivity
for a quasi-two-dimensional semiconductor layer is
presented; in Sec.III the calculation of cr for all four
types of phonon scattering is given and the results in the
limiting cases are derived, including collision broadening
of the Landau levels.

Results and discussions are given in Sec. IV. In the ap-
pendix we provide a discussion of Lorentzian broadening
and the detailed derivation of yz for all four types of
electron-phonon interaction.

II. QUASI- TWO-DIMENSIONAL
SEMICONDUCTOR LAYERS: THEORY

The Hamiltonian of an electron-phonon system in the
presence of a magnetic field applied perpendicularly (z
direction) to the surface layers (x-y plane) is given by
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H = g E~ aN „aN + g iricoQ(bQbQ+ —,
' )+H, ph,

H, p„y—— y y V(Q)(N', x', p'~ e ' '~X,x,p)
N, x,p W', X ',p' g

)&aN, „,p.aN, p(bQ+b Q), (2)

where E~ (N——+ —,
'

)%co, +p Eo, N, x, and p are the
Landau quantum number, center of the cyclotron orbit,
and the subband quantum number, respectively;

Eo =Pi m /2m'L„where L, is the separation between the
layers, co, =eB!m c, m' being the spherical effective
mass of the electrons assumed to be the same in all direc-
tions, Q(q„,q», q, ) is the phonon's propagation vector,

az and a&~ „are the armihilation and creationX,g,p
operators for the electrons in the state

~
N, x,p ); similar-

ly, b~ and b~ are the creation and annihilation operators
for the phonons in the state

~ Ng ); finally, V(Q) is the
electron-phonon perturbation potential. The vector poten-
tial of the constant magnetic field 8 in the Landau gauge
is given by A=(O, Bx,O}. The wave functions of the free
electrons are given by

(r)=(r
~
N, x,p)=, exp

1

(2"X! ~X)'" e sin z,—axy p'x2 1 I ~
I.,

where A, =(film 'co, )'~, HN(x) is the Hermite polynomial of the ¹hdegree, and x = —A, k» is the center of the cyclot-
ron orbit. NQ stands for the distribution function of the phonons in the mode Q,

Act)q
N~ ——exp + 1

B

The expression for the transverse magnetoconductivity derived earlier by one of us (C.M.V.V.) and co-workers may
easily be written for the present system and is given by

2 2

X 2 g X
I
V(&) I' IINN(X) I' IFpp(q. ) I'

N, N' k„p,p', Q

&&fNp( l fN'p'}t +0—(Q@(ENp EN'p'+EQ)+ [&o(Q)+ l ]@ENp EN p
E—Q) I, —

where X = —,
'

A, qi, EQ —ficoQ is the en—ergy of a phonon of frequency coQ, ENp ——E¹p,
pf

iiNN(X) i
= X [L (X)] E' E

e xXN' N[L N' N(X—)]2——

2 L. ~q,z. P~ . P'~
(q, )= e * sin z sin z dzpp z

L o

and where V(Q) depends on the nature of the electron-phonon interactions. The functions LN(X) are the associated
Laguerre polynomials given by

~X~—M
LM(X) e

(
—xXN+M) .

fNp denotes the Fermi-Dirac distribution function

fNp=f «Np)=[exP«Np/kaT)+1] '

Equation (7}was evaluated earlier for an infinite barrier by Ridley, and the result is given for p =p, by

sin(q, L, /2)

(q L /2)
sin[(q, 2pmlL, )(L,/2)] — sin[(q, +2pirlL, )(L,/2)]

(q, 2p7r/L, )(L, /2) — (q, +2p~/L. }(L,/2}
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and for p&p' by

sin I [q, +(m/L, )(p'+p)](L, /2) )
( F~~ (q, )

4 [q, +(m./L, )(p'+p)](L, /2)

(10)

In the following we shall evaluate Eq. (5) for the trans-

verse magnetoconductivity for different interactions. The
sum over Q will be replaced by

f (AL, /8n )d'Q= I (AL, /8ni)2mqi dqidq, ,

where A is the area of the layer. Also, we note gk gives

1/2irA, .

Lorentzians (for a detailed discussion of Lorentzian
broadening and the results for y~, see the Appendix),

1 &Xww
5(Eppes E~—p ) =- —

2 2 . (11)
«xp E—up ) ++rNN

y~~ ——1/r~N is the inverse relaxation time of the elec-
trons, which, in general, depends on the temperature,
magnetic field, and the Landau-level index N and N'. 4

We also haveI0{2 ——uoQ, uc being the velocity of sound
and

~
V(Q) (

=(C /2puo)Q, where p is the density of the
material and C is the deformation-potential constant. We
may also simplify the calculations further by making the
high-temperature approximation for No(Q),

III. CALCULATION
ksT AT

No(Q) =No(Q)+1=
Q 0

(12)

A. Acoustic-phonon scattering

In this section we consider the elastic scattering of the
electrons by acoustic phonons. In this limit we have

Eq-0; therefore the arguments of the delta functions in

Eq. (5) contain terms like

E E„=(—N N)lcd, +—[p —(p ) ]Eo

and thus the transverse magnetoconductivity diverges for
intra-Landau-level and intrasubb'md transitions

(Ez~ E~~——) Follo. wing the collision-broadening model,
which has been successfully applied for electron-impurity
scattering, 2 we shall replace the delta function by

q, q, — 2+

and the integral over q& is given by5

N'~N'

0 (N!)

(13)

(14)

Substituting the values of the above integrals, the equation
for the transverse magnetoconductivity takes the form

In the above approximation, the integral over q, as given

by Ridley yields

o~ = g i
'

(3N N'+1)[(—2N —N'). ](2+5~ )f»( 1 f~~ ) —
q 2

. (15)
L, ~~ 2 2puo (N!) ' (E» E', )'+ r-N~

P~P

For the case of p =p'=1 and N =N', we have

g (2N+1) (16)

or

C 3 g (2N+1)fw(1 fw)rx 1'x ——1—/rw
2pQ o 2&L g

Thus the behavior of o~ is determined essentially by the behavior of r~, which varies smoothly with temperature and
magnetic field.

S. Nonpolar-optical phonon scattering

In this case

E~ %coo and
~

V—(—Q) ~2= =D',
2QpN

(18)

0 being the volume of the quasi-two-dimensional layer (Q=AL, ). Thus E~ and V(Q) are independent of Q and the
transverse magnetoconductivity diverges at the energy given by Ez~ E&~+fuuo, where——coo is the constant frequency of
the optical phonon. In order to overcome this divergence the collision-broadening treatment is adopted and the q, and
qj integrals are performed in a way similar to that in the previous case. Equation (5) then takes the following form:
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o~ = g f~p(1 —f~ p ) z (3N N—'+1)(2N —N')(2+5pp )

P~P

&rm
X &(ohio), +[&(ohio)+ ll

«~ p
E—xp ~o)'++ym (E~p Ex—p+~o) ++ym

where the collision-broadening parameter y~~ is assumed to be the same for the emission and absorption processes.
In the single-level approximation N =E', p =p'=1, Eq (1.9) simplifies to

o~ = g fN(1 f~)(2—%+1)[2N(cop)+1]ne 3P D' VN

R(pip+ y~ )
(20)

From Eq. (19) we note that cr~ has peaks at the magnetophonon resonances coo ——pro„where p is an integer; we note that
Eq. (19) gives a quantitative measure of the amplitudes of the magnetophonon oscillations.

The perturbing interaction is given by

C. Polar-optical phonon scattering

(21)

where g is a constant independent of Q. Substituting the above potential in Eq. (S) and performing the q, integral, we
have

nePo = &' g ggfxp(1 tv'p )[&(oi—o)+ z+T]~% E E +~ z y z
EN'p' E&p —~p + ylvH'

where

(22)

Wy„'.(Z) = J; dx X
~
I„„(X)

~

' &+ PP j.

[X+—,Az(p p') Eo] —[X+—,A, (p+p') Eo]
(23)

Equation (22) is the two-dimensional analog of magneto-
phonon resonance in three dimensions, containing reso-
nance peaks at the phonon frequencies given by ozp=pN„
where p is an integer. Such magnetophonon resonances in
GaAs/Ga~Ali, As superlattice systems seem to have
been observed earlier. It is interesting to note that o is
finite for p =p'=1, whereas the relaxation times diverge
as noted earlier. According to Eqs. (22} and (23) the
main features of the magnetophonon resonance are deter-
mined by the function Pg~ and the I.orentzian factors of
width y~~, which, in turn, are determined from a number
of scattering mechanisms. For the extreme quantum limit
N =N'=0 and p =p'= 1, we have

netophonon resonant peaks. These amplitudes vanish
when fo i

——0, fo i ——1, or 3 —ae Ei(a) =0, which deter-
mines a critical value of the magnetic field at which the
localization of the electron occurs.

~
V(Q) (

=—=
z z, , K=const.E j'

Q (qf+q,')'" ' (26)

D. Piezoelectric phonon scattering

For the sake of simplicity we consider the following
spherically symmetric form of the elytron piezoelectric
phonon interaction rather than the commonly used aniso-
tropy form:

Wp'o ——3 —ae Ei(a), a=2K, Ep

Ei(a}=I dx .

(24)

Following the same approximation as for acoustic-phonon
scattering [Eq. (12)], the q, and qj integrals occurring in
Eq. (S) are similarly performed and the result for cr

takes the form

Introducing Eq. (24) into Eq. (22), we have

ufo, i(1—fo, i)P(~o)+ 2+ z ]
S +

X[3—ae Ei(a)] z z .
ohio+ yo

(2S)

Equation (2S) thus determines the amplitudes of the mag-

yNN'

«Np Ew'p }'++yxx—(27}

me E
fop(1 f~ p )(2+&,p}-

~L. ~~ 4
PP

pf pt

X (2X —%')!
(&!)'
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Foi N =N' and p =p'= 1 we have APPENDIX

3e K +N
zg «y %1 %1

vrl. g4m

Thus the behavior of cr is essentially determined by the
behavior of ~~=1/rz for piezoelectric phonon scatter-
ing. It may be noted that unlike polar-optical and
nonpolar-optical phonon scattering, no resonances are ex-

pected for the present case.

IV. RESULTS AND DISCUSSION

In the limit of high magnetic fields, where the coupling
between Landau levels is neglected, o is inversely pro-
portional to the thickness of the layers for all types of
phonon scattering. For a quantum-well-type structure, as
realized in superlattices, o is directly proportional to the
relaxation time of the electrons in the ¹hLandau level in
the elastic scattering approximation and in the high-
temperature limit, for acoustic phonons, employing col-
lision broadening.

Collision broadening of the Landau levels is also neces-
sary to obtain finite results for o for nonpolar-optical
and polar-optical phonon scattering. Including collision
broadening in the manner of replacing a delta function by
Lorentzians, two-dimensional magnetophonon resonances
at F00——@co, (y, is an integer) are predicted. The amplitude
of the magnetophonon resonances for polar-optical pho-
nons is obtained in closed form, by use of Eqs. (22} and
(25). Equation (25) is valid only in the extreme quantum
limit. For nonpolar-optical phonon scattering a closed ex-
pression for o~ is obtained without making any approxi-
mation for the phonon distribution function [see Eq. (19)].

For piezoelectric phonon scattering with inclusion of
collision broadening, o follows the same type of depen-
dence on the relaxation time as that for the acoustic-
phonon scattering, but with a different dependence on N
and N'.

In conclusion, we have presented a quantum-transport
theory of transverse magnetoconductivity in quasi-two-
dimensional semiconductor layers in the presence of pho-
non scattering. Two-dimensional magnetophonon reso-
nances are calculated by a straightforward application of
the collision broadening of Landau levels. The amplitude
of such resonances are calculated in terms of the width of
the Landau levels. Other applications of the present
theory will be presented in a later publication.
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Here we discuss the Lorentzian broadening and derive
explicit expressions for the half-width rz occurring in the
expressions for the transverse conductivity o~ for all four
types of electron-phonon interaction in the quasi-two-
dimensional semiconductor layers. A delta function is ex-

pressed in terms of the unperturbed Green function
Gi(E), A, =(N, x,p), as

5(E —Ei )=(1/n )ImGi (E),
Gi(E)=(A, ~(E —Ho) '~A, )=(E—Ei)

(Al)

(A2)

However, if we use the full retarded Green function
Gi(E)=(k

~

(E —H) '
~

A, ) instead of Goi(E} in Eq. (Al),
we have

Xg——hg+iyg,

(A3)

X
I

V(Q) I

'
I Iwv(X} I

'
I ~ii(es) I

'

where all the symbols are defined in Sec. II.

1. Electron —acoustic-phonon interaction

Making use of the electron-phonon interaction V(Q)
and the dispersion relation given in Sec. III along with the
approximation implied by Eq. (12), Eq. (A6) is easily
evaluated to yield the following result:

rN=riv =rN= I«'/2p&a)fksT/(2~)']

&& (3~/L, )(1/I') j
'~' (A7)

where we used the integral

J i I~N(X) i
dX = 1 .

From Eq. (A7} we thus find that rz is proportional to the
square root of temperature and the square root of the
magnetic field in the high-magnetic-field approximation.

(AS)

2. Nonpolar phonon scattering

For the electron-nonpolar-phonon interaction, V(Q)
and coq are independent of Q. Assuming cog=coo, Eq.
(A6) is reduced to

where Xi is the electron self-energy and we have neglected
the phonon self-energy. Equations (A3) and (A4) yield

ImGi. «) =ri./l« Ei.—~i,)'+rB (A5)

where ri and bi represent the half-width and the energy
shift of the Lorentzian centered at the energy E=Ei.
Therefore, under the approximation of replacing Gi, (E)
by Gi (E), the delta function is replaced by the Lorentzian
given by Eq. (A5).

In the limit of strong electron-phonon interaction, as is
the usual case for the system under consideration, with
the assumption of a high magnetic field near resonance,
coo ——@co„r~is found to be given by the following expres-
sion:

3
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y~= I[a'/(2M) ](3ir/L, )

X[Np(a)p)+ —,'+ —,
' ](1/1 ) I' ' . (A9)

3. Electron —polar-phonon interaction

Making use of V(Q) given by Eq. (21) and replacing

cog by cop we llave, from Eq. (A6),

(y~) =(fi /2)[A'/(2n) ][Np(cop)+ —, + —,] f dX f dq, I
I~~(X)

~

12q2
X+

I
~i i(q. )

I

' . (A10)

If we use Ridley's momentum-conservation approxima-
tion (MCA) to perform the q, integral in the above equa-
tion, the X integral diverges and, thus, yy diverges in the
MCA. If the MCA is not made, it implies a broadening
mechanism. Therefore we do not use the MCA, implying
b,q, =2m /L, n„n, =0, +1,+2, . . . , and the above in-
tegral is reduced to

(yf ) =[3'/(2iri}l) j(n /2Lg )[Np(pip) + —,
' + —,

'
]

X f dx
~
I„„(X)

~

'/(X+ap), (All)

where ap=-1 /L . The above integral cannot be evaluated
for arbitrary N. Therefore we evaluate expression (A 1 1)

for the case of the ultraquantum limit (N=O), yielding
the following formula:

yQ = I [A'/(21rR) ][Np(alp)+ + ]

X(1/2L, )[e 'Ei(ap)]) ' (A12)

where Ei(ap) is an exponential integral and is defined by
Eq. (24).

4. Piezoelectric phonon coupling

Making use of the electron —piezoelectric-phonon in-
teraction given by Eq. (26), and the approximation im-
plied by the Eq. (12), we have

(A13)(yi)' () jv) ()=~) (k=s&l(2~=) ](&I2~o)f d& f dq*lb~(x)
(

(+»(q*)
(

I(&+( q*&2).

The above integral is identical to that occurring in subsection 3 above. Following the same discussion as in subsection 3
for the ultraquantum limit, the integral in Eq. (A13) is reduced to the following form:

yp ——yp
——yp

——[ksT/(2m%) ]' (nK/Ru L )'~i[e 'Ei(ap)]'

It may be noted that the magnetic field dependence of yp in the above equation is contained in the factor e E& (ap).

(A14)
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