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A study of electronic transport in All „Ga„As/GaAs single-well structures including multisub-

band conduction at 77 and 300 K has been performed. The electronic states of the quantum well are
calculated self-consistently taking the five lowest subbands into account. The numerically obtained
wave functions and energy levels are used to obtain the major two-dimensional scattering rates in

each subband. Polar optical- and acoustic-phonon (via deformation-potential) scattering are con-
sidered including intersubband transitions. For ionized impurity scattering, the screening effects
due to the five lowest subbands are taken into account to obtain the Fourier-transformed Coulomb

potential. The steady-state and transient behavior of the electrons in the well are studied through a
Monte Carlo particle simulation. It is shown that high transient velocities [(3—8) X 10 cm/seel can
be expected at low and intermediate fields.

I. INTRODUCTION

Enhanced electron mobility in modulation-doped
Ali „Ga„As/GaAs heterostructures has been suggested
by Esaki and Tsu' and demonstrated independently by
Dingle, Stormer, Gossard, and Wiegmann. 2 Subsequently,
much attention has been focused on modulation-doped
heterostructures in order to realize ultra-high-speed field-
effect devices, such as the high-electron-mobility transis-
tor (HEMT). Among some other combinations of III-V
compound semiconductors, the largest effort has been de-
voted to study the Ali Ga„As/GaAs system. "

In this system, the Ali Ga„As layer is doped n type,
while the adjacent GaAs layer is grown as pure as possible
(not intentionally doped). The free electrons are
transferred to the high-purity GaAs layer where they pop-
ulate a narrow potential well and form a quasi-two-
dimensional electron gas (Q2D EG). Since the electrons
are spatially separated from the ionized donors, they ex-
hibit a high-electron mobility even at high carrier densi-
ties. In fact, very impressive high-mobility values have
beem reported. It has also been demonstrated that sin-

gle period heterostructures exhibit better low-field mobili-
ties than multiple heterolayers.

Not only experimental but also theoretical work has
been stimulated to understand electronic transport in
heterolayers. Investigations of quasi-two-dimensional sys-
tems have originally been performed for the inversion
layers of metal-oxide-semiconductor field-effect transis-
tors (MOSFhT's). Following the pioneering studies of
Stern and Howard for MOSFET's, 'o Ando carried out de-
tailed calculations of MOSI'hT's and Ali, Ga„As/GaAs
single-well structures. " In these studies, the subband
structure has been calculated using wave functions and
energy levels which are obtained by a self-consistent cal-
culation based upon the effective-mass approxiination.

Simultaneously, lattice scattering and impurity
scattering' ' ' for electrons in heterolayers have been
extensively investigated. Many of the above treatments

have assumed square-well potentials and approximate
wave functions to express the scattering rates analytically.
Walukiewicz, Ruda, Lagowski, and Gatos used a
triangular-well approximation to discuss the electron mo-
bility more realistically. For impurity scattering in Si in-
version layers, Mori and Ando reported formulas using
variational functions. ' However, they focused their at-
tention upon low temperatures to discuss the ultimate lim-
its of the mobility values. Their final results are not appl-
icable at high temperatures.

In all previous publications, the electron mobility values
have been calculated from a relaxation time which is
closely related to the inverse of the scattering rate. For
device applications, we need to understand the warm-
and/or hot-electron behavior of the quantum well system
at and above 77 K. To study the transport properties in
this regime, the Boltzmann transport equation must be
solved taking into account the scattering in each subband
of the Ali, Ga, As/GaAs single-well potential. A
Monte Carlo method ' can bypass the difficulties in
directly solving the complicated system of equations.
Hot-electron velocity characteristics for a strictly two-
dimensional system confined in a square well of
Al& Ga As/GaAs have already been studied previously
using the Monte Carlo method.

In this paper, we present more precise calculations of
electron transport properties for Al

& „Ga As/GaAs
single-well heterostructures including multisubband con-
duction by means of an ensemble Monte Carlo method.
In Sec. II, the electronic states of the quantum well are
calculated self-consistently taking the five lowest sub-
bands into account. The numerically obtained wave func-
tions and energy levels are used to calculate the major
two-dimensional scattering rates at 77 and 300 K in Sec.
III. Polar optical-phonon scattering and acoustic-phonon
scattering (via the deformation potential) are studied for
each subband including intersubband transitions. For ion-
ized impurity scattering, the screening effects due to the
five lowest subbands are considered to calculate the
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Fourier-transformed Coulomb potential. The squared
matrix element, which is calculated from the Fourier-
transformed Coulomb potential, accounts for both remote
and background impurity scattering. The results of Sec.
III are used to calculate the transport properties of the
electrons by using the Monte Carlo method which is
described in Sec. IV. Steady-state and transient charac-
teristics of the electron drift velocities are discussed in de-
tail together with average electron energy and population
of each subband and the subsidiary minima (I.,X).

II. THE ELECTRONIC STATES
OF SINGLE-QUANTUM-WELL STRUCTURES

In the triangular-well approximation, the quantized en-

ergy levels are proportional to the inverse cubic root of
the effective mass. Since the effective masses in the subsi-

diary valleys are larger than in the I valley, size quantiza-
tion effects are small in the l. or X valleys. Therefore, we
account for size quantization effects only in the I valley.

Self-consistent numerical calculations are performed to
obtain the quantized energy levels and the corresponding
wave functions for an actual single-well heterostructure
following Ref. 23. These numerically obtained results are
used to calculate the major two-dimensional scattering
rates in each subband, as described in the next section.

The wave function parallel to the heterointerface (xy-
plane) is assumed to be a plane wave. The envelope func-
tion normal to the layer interface (z direction), F (z) for
the mth subband, satisfies the following Schrodinger
equation:

d F (z)
+V(z)F~(z)=E~F (z) .

251 dz

The effective potential V(z) is given by

V(z) = —eg, (z)+ Vi, (z)+ V„,(z) „

where (|),(z) is the electrostatic potential given by the solu-
tion of Eq. (3) below, V), (z) is the step function describing
the interface barrier, and V„,(z} is the local exchange
correlation potential. We take into account the five
lowest subbands. Then, Poisson's equatjon reads

TABLE I. Assumed parameters of A1~ „Ga„As/GaAs
structure.

Layer

I
II
III

Material

GaAs
Ala 3Gao 7As

A)0 3Gao 7As

{cm )

0
0

5~10"

Ng
(cm )

1 + 1015

1X10'"
1 ~ 1014

Thickness
(nm)

1000
10
40

V(n+l)(z) V(n) +y(n+1)IV(n)(z) (5a)

10-2—
0)

sumed abrupt interfaces, and a barrier height of 0.3 eV.
All of these approximations are very reasonable according
to the results reported by Stern and Das Sarma. i More-
over, the Al), Ga, As layer is assumed to be depleted o
mobile charge except for the penetration of the wave func-
tion of electrons from the GaAs. Owing to the above-
mentioned assumptions, the problem is greatly simplified
and we can use the Numerov method to solve the
Schrodinger equation. This algorithm is efficient to ob-
tain the pairs of eigenvalues and eigenfunctions accurately
within short computational times.

The parameters of the computation are summarized in
Table I. In the calculation the origin of the z coordinate
is chosen at the heterointerface between regions I and II
and the inversion carrier density N, is taken to be 5 X 10"
cm . The Poisson's equation is solved for the three re-
gions shown in Fig. 2. Since quantization is only impor-
tant at the well region, Eq. (1) is solved from z = —20 to
100 nm to save computational time and memory space.
An iterative scheme is used to solve the above described
system of Eqs. (1)—(4). The initial conditions of the bind-
ing energies and the corresponding wave functions are cal-
culated analytically under the triangular potential approx-
imation, where the wave functions are expressed by Airy
functions. The effective potential calculated from Eq. (2)
is updated as

d $, (z}

dz
(3)

5

g N;F; (z)+N„(z) ND(z)—
EQE 1

where N; represents the number of electrons in subband i
and is given in equilibrium by

m*kg T
ln 1+exp (4)

1rfii 8

Nz (z) and ND(z) are the position-dependent acceptor and
donor concentrations, and E~ is the Fermi energy.

We use an effective mass m*=0.067mQ and a dielec-
tric constant @=12.9 in both GaAs and Al& „Ga As.
This approximation may be inappropriate under certain
circumstances which include a high Al content and a deep
penetration of the wave function into the Ali „Ga„As.
The uniform dielectric constant is equivalent to the
neglect of the image force in Eq. (2). We have also as-

E
E
O~ xo-~-

4 6
Number of Iterations

i i I

8 ~0

FIG. 1. Illustration of convergence process for calculating
the self-consistent solutions assuming the deceleration factor
f= 1 in Eq. {5a}.The signs in the figure indicate the sign of Eq.
(5b).
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TABLE II. Binding energies and electron population.
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where the subscript indicates the iteration number. The
artifical deceleration factor f is generally introduced to
obtain the solution safely.

Figure 1 shows the convergence process for the self-
consistent calculation at 77 and 300 K assuming f= l.
Although the sign of the maximum value of Eq. (5a) is
changing every iteration step, convergence is excellent.

FIG. 2. Ca1culated effective potential defined by Eq. (2) and
electron density distribution at (a) 77 K and (b) 300 K. The
numbers in the figure indicate the quantized energy levels of the
five lowest subbands.

The convergence criterion used in our study is that the
largest absolute value of Eq. (5a) must be less than 10
eV. By assuming a smaller value of f, it is possible to
conserve the sign of Eq. (5a) during the iteration. The
more sophisticated method is to guess a suitable f in every
iteration, which is efficient for ill-conditioned problems.
The use of f&1 has been necessary for high carrier con-
centrations.

Figure 2 shows the effective potential calculated from
Eq. (2) together with the five lowest subband energy levels
at 77 and 300 K. The dashed line indicates the electron
concentration which is derived from the first term in the
large parentheses of Eq. (3). The corresponding wave
functions for the first to the fifth subbands at 77 K are
shown in Fig. 3. It can be seen from Figs. 2(a) and 2(b)
that the electron density at 300 K is extending somewhat
deeper into the substrate compared with the extension at
77 K. This means, of course, that the electrons at 300 K
have higher probabilities to stay in the upper subbands
than those at 77 K, as shown in Table II. Table II also
shows the obtained energy eigenvalues for the five lowest
subbands and the Fermi energy. The subband separations
Ez Ei for 77—and 300 K are 28.7 and 35.6 meV which
are considerably greater than k&T. It is evident from
Table II that more than 85% of electrons are in the two
lowest subbands in equilibrium. The results compare well
with those reported by Vinter at room temperature.
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III. MULTISUBBAND SCA I I'ERING MODELS

The dominant scattering mechanisms for three-
dimensional III-V compound semiconductors have been
studied in detail. ' Among various kinds of scattering
mechamsms, phonon scattering and ionized impurity
scattering play important roles to determine the transport
properties. I.attice scattering and impurity scattering in
heterolayers have also been extensively studied. 'z '9 In
this section, results for these quasi-two-dimensional
scattering rates are derived using the self-consistent re-
sults for the potential well.

A. Phonon scattering

The square of the matrix element for scattering between
the mth and nth subbands is'

FIG. 3. Calculated wave functions for the five lowest sub-
bands at 77 K corresponding to Fig. 2{a). l~ ~ I

= f i~(ae) I II (e)l'dq (6)



KIYOYUKI YOKOYAMA AND KARL BESS 33

with

0
N» = exp

B
(10)

Here e„and e, are the optical and static dielectric con-
stant, N» is the phonon occupation number, and fuuo is
the polar optical-phonon energy. The values used for e„
and e, are 10.92 and 12.90, respectively, and %coo is taken
to be 35.4 meV. The + signs stand for phonon absorption
and emission, respectively. E(k, ) and E(kz) denote the
initial- and final-state energy. In the calculation, the total
energy is measured from the bottom of the first subband.
The energy levels listed in Table II are used to calculate
the intersubband transitions. The integration over all fi-
nal two-dimensional states kz is performed in polar coor-
dinates (using Q and the angle 8 between Q and ki). Fi-
nally, the numerical integration is carried out and during
this procedure the Q value, which satisfies the delta func-
tion in Eq. (9), is used to look up the H~„(Q). The results
of the numerical integration are finally built into a lookup
table. To calculate the angular distribution, the rejection
technique of von Neumann is employed by using a ran-
dom number and the value of H „(Q)/Q, which is also
obtained from our tabulation.

where M(Q, q) is the corresponding three-dimensional
matrix element, and Q=+(k, —k2) and q are the phonon
wave-vector components parallel and perpendicular to the
layer interfaces. ki and kz denote the initial- and final-
state wave vectors and Q =

~ Q ~. The overlap integral
can be expressed as'

I „(q)= f F (z)F„(z)exp(iqz)dz, (7)

where F~(z) is the normalized envelope function which is
given by the solution of Eq. (1) as shown in Fig. 3.

For polar optical- honon scattering, ~M(Q, q)
~

is
proportional to 1/(Q +q2). Accordingly, the scattering
rate is proportional to H „(Q)/Q, where the multisub-
band coupling coefficients are given by'

H.„(g)=f i dzidzgF „(zi)E „(z2)

X exp( —Q I
z i

—z2 I
)

Here F „(z)=F (z)F„(z).
We have studied previously the difference of the cou-

pling coefficient between the analytical approximation
and the precise numerical approach both for intrasubband
and intersubband transitions. %e also have sho~n that
the wave functions are not too sensitive to temperature
and the inversion carrier density. Therefore, the tabulated
values of H „(Q) as given in Ref. 30 have been used in
the present calculation.

Using the matrix elements, the scattering rate is ob-
tained from the golden rule:

28 Cgp
Sg„t'= ——(N»+ , + ,)--

87T60 E~

Hmn(Q)
X f 5(E(kz) —E(ki)+tripp)dkg,

Equation (6) describes the interaction of quasi-two-
dimensional electrons with bulk-mode phonons. That is,
both contributions due to a half-space slab mode and
surface-mode optical phonons ' are approximated by the
bulk-mode phonon. This treatment greatly simplifies the
actual problem. Plausible as it may be, it is necessary to
confirm this assumption for the given quantum well
structure by estimating the contributions of surface opti-
cal phonons. The matrix element is proportional to
Q

' f exp( —Q I
z 1)F (z)F (z)dz, and a method

analogous to the method reported by Hess and Vogl for
the Si-Si02 system can be applied to GaAs-Al~ „Ga„As
structures to calculate the scattering rate. The detailed
procedure will be reported in a forthcoming paper. The
results for our structure can be summarized as follows.
The intrasubband scattering rate for the surface mode is
of the same order of magnitude as that for a slab mode.
The scattering rate for the intersubband transitions is gen-
erally smaller than that for the intrasubband transitions
due to the small value of the overlap integral. Therefore,
for our material parameters, surface modes do not play
any special role to cause specific intersubband transitions
and our approximation of scattering by bulk phonons is
fairly well justified.

Deformation-potential acoustic-phonon scattering is
treated similar to the optical-phonon scattering. The
problem is, however, simpler in this case, because the ma-
trix element in Eq. (6) is independent of Q. The scattering
rate is given by

m 'kB TDz
S"„~= F' zr2z z. (1 1)

fi'pSt

The GaAs material parameters used in the calculation are
deformation potential D =7.0 eV, density p=5. 36 g/cm,
and the longitudinal sound velocity S&

—5.24 && 10
cm/sec. Equation (11) is valid for E &E E„,where E—
is measured from the bottom of the mth subband. Notice
that the acoustic-phonon scattering rates are independent
of energy in the allowed energy range. Compared with
the polar optical-phonon scattering rates, the acoustic-
phonon scattering rates are very small. Therefore, we
only take into account intrasubband transitions. In this
case, the numerical integral, i.e., 2 f F (z)dz =1/b
represents the inverse of the effective well width for the
mth subband. i4 Then, the scattering rates are inversely
proportional to the well width. ' ' ' In the simulation of
transport, a uniform angular distribution is generated us-
ing random numbers. Notice that we have neglected
piezoelectric coupling and screening of the interaction
with acoustic phonons. We have also chosen a conserva-
tive value for D. These points are at present subject to
some debate. ' At any rate, additional studies are need-
ed for nonlinear (and Ohmic) transport at very low tem-
peratures (much below 77 K) and our present model is
probably not very good in this temperature range.

The calculated phonon scattering rates for 77 and 300
K correspondin~ to Table I are summarized in Figs. 4 and
5, respectively. Figures 4(a) and 5(a) show the scattering
rates for the lowest subband together with the three-
dimensional scattering rates, and Figs. 4(b) and 5(b) indi-
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originally hxn proposed for MOSFET's by Stern and
Howard. ' The potential (It of a point charge located at
r=(0,zo) is determined by the Poisson equation

V P(r, z) —2+S;g;(z) f P(r, z&)g;(z~)dz&

position at which g;(z) assumes its maximum value, 9 and
Eq. (15}is written as

S

P(g,z)= ——g exp( —g ~z —z;
~
)S;

with

e'
S;=

2&ops Ed»

Ed; AT 1+——exp
ksT

EF
Xln 1+exp

5(r)5(z —zo ), (12)
OCs

(13a)

X exp( —Q iz; —zo i
)

2ece, (Q +S;)

+ exp( —Q i
z —zo i ) .

2eoE~ Q
(16)

Here we have assumed that exp( —Q ~z —z„~ }-0 for
In&n T.he approximation of Eq. (16) offers very good
initial values especially for large Q. Using these initial
values, Eq. (15}is solved iteratively.

The matrix element M~„(g) for the electron-impurity
interaction is obtained by

~

M „(g) i
= J M„'„(zo)Ã1(zo)dzo, (17)

with

where M~„(zo)= f eg(g, z)F (z)F„(z)dz, (18)

g;(z}=F; (z), (13c)

N, is the two-dimensional carrier density expressed by Eq.
(4), and E; is the energy level for the ith subband. Here
S& is the screening constant, E~; is called the diffusion en-

ergy, and g~(z) is the electron density function. The quan-
tities represented by Eqs. (13) can be evaluated by using
the results described in Sec. II. The second term of Eq.
(12) shows the effects of screening on the impurity charge
by the free carriers.

Multiplying Eq. (12) by exp( iver) a—nd integrating
over r, one can obtain

IO
77K

I I

t I, I ) (2,2)

where Nl(zo) represents the impurity concentration at
Z Zo ~

Figure 6 shows the calculated
~

M „(zo)
~

as a func-

2
—Q 4'(Q, z) —2 g S,g;(z) f dz&$(g, z&)g;(zr}z' i=1

5(z —zo ), (14)
&0&s

where the summation is taken over the five lowest sub-
bands. Using the method of Green's functions, the
Fourier-transformed Coulomb potential P(g,z) is written
as"

(()( Q,z) = —f dz ~ exp( —Q—~

z —z ( ~
)

X g S;g;(z~}f dzzg(g, z2)g;(z2)

e+ exp( —Q ~z —zo~) .
2E'06' Q

(15)

Two approaches have been reported to solve Eq. (15) only
for the lowest subband. One is that g;(z) is approximated
by the delta function. ' In the other approach, g;(z) is ap-
proximated by a sine function assuming a square-weal po-
tential. ' In the present study, self-consistently calculated
envelope wave functions are used to solve Eq. (15).

To estimate the initial value (for the numerical iterative
procedure) of $(g,z), g;(z) is approximated by the delta
function such that g;(z)-5(z —z;), where z; shows the

0 20
Position, zo ( nm }

40

IO
30

-2a
IO

4P
29

cu IO

-sc
10

E

IO -20 0 20
Position, zo (nm}

FIG. 6. Calculated values of
I
M „(zo) I

vs point-charge lo-
cation zo for Q =2X10 cm ' at (a) 77 K and (b) 300 K. The
pair of numbers in the parentheses labels the initial and final
subband. Symbols in the figure show the results obtained by us-
ing the analytical expression of Eq. (16) for the three lowest in-
trasubband transitions and the most important intersubband
transition from the first to the second.
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tion of the point-charge location zo for Q =2X10 cm
at 77 and 300 K. The screening constants for the three
lowest subbands in equilibrium (zero electrical field) are
1.81&10, 24.5 &(10, and 19.9X 10 cm ' at 77 K, and
7.16X10,2.36X10, and 1.03X10 cm ' at 300K. The
sohd lines in Fig. 6 represent the scattering rate of in-
trasubband transitions, and the dashed line shows the
values for the most dominant intersubband transitions be-
tween the first and the second subband. The peak loca-
tions for the intrasubband transition coincide with the
z s. The symbols illustrated in these figures correspond
to the initial values which are derived from Eq. (16). It
can be seen from Fig. 6 that Eq. {16)gives very good ap-
proximations for large Q values. The agreement is espe-
cially good for subbands higher than the second. In
equilibrium, the electron population in the first subband is
dominant, as shown in Table II. Therefore, Eq. (18) must
be solved especially carefully for the first subband. More-
over, the contribution of more than the lowest eigenstates
must be considered for small Q values. Since we have
performed the integration of Eq. (18) numerically using
the Fourier-transformed Coulomb potential, which is ob-
tained as the exact solution of Eq. (15), the two important
requirements described above are fulfilled in our calcula-
tion.

Using Eq. (18) and the impurity density Nz(zo) listed in
Table I, the integration of Eq. (17) is also performed nu-
merically. In this integration, the contributions due to re-
mote impurity scattering (zo & 0) and background impuri-
ty scattering (zo&0) are taken into account. Figure 7
shows the calculated values of

~
M {Q)

~
at 300 K.

With the decrease of the Q value, the values of
~
M (Q)

~

increase. However, the increase is weaker in
regions of small Q.

s.'g=, f M (Q)'de. (20a)

—Id-
CP

ICi

77K

Finally, the impurity scattering rate is obtained from

~m™n'= ~ f 1~m. (Q) I'@«ki)—«ki))de788

The scattering rate and the angle distribution are calculat-
ed by looking up the prepared computer tables similar to
the calculation described above for polar optical-phonon
scattering.

The numerical results for scattering from the lowest
subband to itself and other subbands are summarized in
Fig. 8 for T =77 and 300 K. In bulk material, ionized
impurity scattering is one of the more important scatter-
ing mechanisms limiting the electron mobility. Due to
modulation doping with a nonintentionally doped spacer
layer, the scattering rates are very small, as shown in Fig.
8. Since most electrons are in the first subband, scattering
in this subband is very important. It can be seen from
Fig. 8(b) that the intersubband scattering rate is much
smaller than the intrasubband scattering rate in the first
subband. Notice that the absolute intersubband scattering
rate due to ionized impurities is always small compared
with other scattering mechanisms (especially phonon
scattering). Therefore, we include below only intrasub-
band transitions due to ionized impurity scattering which
gives
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for
intrasubband transition at 77 K. The numbers in the figure cor-
respond to the subscript m.

FIG. 8. Ionized impurity scattering rates for scattering in
and out of the 1o~est subband (subband number 1) at (a) 77 K
and (b) 300 K. The numbers in the figure show the final sub-
band.
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with

Q =2k i cos8, (20b)

where k, is the absolute value of k, , and 8 is the angle be-
tween Q and ki.

IV. TRANSPORT PROPERTIES

A. Outline of Monte Carlo calculation

In our Monte Carlo study of electronic transport in
single-quantum well structures, a uniform fiel is as-
sumed along the heterointerface (y direction), and the five
lowest subbands around the I point of GaAs are con-
sidered. Complete I -L-X band structures are included for
both GaAs and Ali, Ga„As layers. Some of the material
parameters have already been discussed in the previous
two sections. Other necessary parameters are listed in
Table 1 of Ref. 40, which are obtained either from experi-
mental results or from pseudopotential calculations.

Two types of simulation are made to study steady-state
and transient behavior. In the case of the steady-state
analysis, the trajo:tory of one-particle motion is followed
for a long period of time, and the steady-state transport
properties such as average drift velocity and population of
each subband and each valley are calculated from the his-
tory of electron motion. In this case, we do not need to
specify initial conditions. The steady-state calculation is
typically continued until the scattering events excaxi
20000 to obtain a good convergence in the estimation of
average drift velocities and the like.

For the analysis of transient transport phenomena,
many electrons must be simulated at the same time. The
initial distribution of electrons plays an important role.
We have generated the initial subband population and en-

ergy ( k-vector values) in each subband based upon the re-
sults in Sec. II using the rejection technique of von Neu-
mann. We have chosen 10000 electrons for the simula-
tion and a constant time step (10 sec ) discretization
scheme. This scheine allows us to track the time evolu-
tion of the electron transport, and is also advantageous to
updating the self-consistent calculation of electron states
as the distribution function changes at a given instance of
time.

The electrons in the I valley of the GaAs layer are
treated including the size quantization effects described in
the above two sections, and those in the I. and X valleys
of the GaAs layer and those in the Ali Ga As layer are
treated as three dimensional. For an electron in each sub-
band of the GaAs layer, 16 possible scattering mecha-
nisms, which include ten polar optical-phonon scattering
processes for emission and absorption (intersubband and
intrasubband transitions), intrasubband acoustic-phonon
transitions, intrasubband ionized impurity scattering, and
intervalley scattering to the I. and the X valleys, are tabu-
lated. For a specific scattering event, one of the above
described 16 mechanisms is chosen (proportional to each
scattering probability at the given energy) by a generated
random number.

As can be seen from Eqs. (3) and (4) as well as Eq.
(13b), the distribution function infiuences both the form

of the well potential [Eq. (2)] and the screening constant
[Eq. (13a)]. Therefore, it is necessary in principle to up-
date well potential and screening as the energy distribu-
tion evolves in high electric fields. It is clear that a solu-
tion of Schrodinger equation for each Monte Carlo step
(which is necessary in principle) requires enormous com-
putational resources. We have therefore ignored the
changes of potential well and screening in our calculation
below. We are currently working on a simplified ap-
proach using an electron temperature (which is obtained
from the average electron energy calculated by the Monte
Carlo method) in Eqs. (4} and (13b}. These more exact
(but qualitatively very similar) results will be presented in
a forthcoming publication.

The used models for nonequivalent intervalley scatter-
ing between the L and the X valleys, and equivalent inter-
valley scattering in the L and the X valleys are the same
as those reported by Fawcett et al. However, we have
modified their approach for the transitions from the sub-
bands in the I valley to the subsidiary valleys (or vice ver-
sa). %Rile we have used the same coupling constants (de-
formation potential scattering) as usually used in bulk
GaAs, we have included the subband structure in the
necessary summations over the density of final states (to-
tal scattering rate) and in the determination of the final
states of a given scattering process. We have always prop-
erly accounted for the subband energy E of the mth sub-
band of the I valley. The final-state subband is chosen
(for the L —+I, X~I' scattering process) randomly
among all the subbands which are eligible by energy and
momentum conservation rules.

These transitions between the size-qu;uitized I states
and the X and L minima present a nontrivial problem
even from a conceptual viewpoint because of the nonlocal
character of the L and X states. Of course, size quantiza-
tion also influences these states. However, the spacing of
the energy levels (due to size quantization) is much small-
er than at I and the collision broadening (intervalley
scattering) is much larger than at I' so that the three-
dimensional approximation seems appropriate for these
states. Electrons in the X and L valleys can then move
away from the heterolayer interface against the self-
consistent interface electric field. Our calculation ignores
this effect as each X and L electron which is scattered
back to I ends up in any subband with equal probability
as long as energy conservation permits.

An alternative procedure ~ould be to view the X and I.
electrons as narrow wave packets. Our computation
shows that the mean free path of these electrons is of the
order of SO A. It seems therefore appropriate to trace the
X and L, electrons in real space and to permit only scatter-
ing to those subbands at I' whose wave function still
shows significant overlap with the wave packet (overlap
integral approximated by 1) and to put the transition
probability equal to zero otherwise. As an example, we
have performed a simulation assuming that the I -electron
wave functions do not overlap with the X and L wave
functions beyond the intersection of subband minima and
potential well. The result of this way of calculation agrees
for all cases discussed in this paper with the simplified
method described above (within typically (10%). We



33 MONTE CARLO STUDY OF ELECTRONIC TRANSPORT IN. . . 5603

B. Numerical results

Calculated results for the steady-state behavior of the
Q2D EG, which is confined in the potential well illustrat-
ed in Figs. 2(a) and 2(b), are shown in Figs. 9(a) and 9(b),
for 77 and 300 K, respectively. These figures show that a
large number of electrons populates the first subband at
low electric fields. With the increase of the applied fields,

3x 107

77K
/ ~ z Velocity

~ j
/

(p 2 —100
eE ~ P a ~. L-Valley so

/ t7- 7
—60

O

I

10 15 20
Field (kV/cm)

(a)

Q2DEG——Bulk (ND=lx10' crn ~)

3x10

Q2DEG——Bulk (ND=1x10' cm ~)

500K

—100Qp 2
Vl

E
O

'q 0
~ Velocity L-Valley

~ +j ~ ~--7-
l g ~o —60

O
~ --- O

C)~l +~+——~— ~ —40, ~

0 I

—20

i l a0
0 5 10 15 20

Field (k't/'/cm )

(b)

FIG. 9. Steady-state velocity and population vs field charac-
teristics at (a) 77 K and (b) 300 K. The dashed-dotted curve
represents the calculated velocity characteristics of Ref. 29 for
three-dimensional transport.

conclude, therefore, that our simplified model can be used
with confidence.

All of the scattering mechanisms in the Alo iGaa 7As
are assumed to be three dimensional including polar
optical-phonon and nonequivalent and equivalent interval-

ley scattering. In the calculation, the electrons are refiect-
ed or transmitted depending upon their kinetic and poten-
tial energy at the heterointerface. As described in Sec.
G, the structures and the operating conditions have been
chosen in a way that there are virtually no mobile elec-
trons in the Ali Ga~As layer. Therefore, the scattering
mechanisms used in the Ali, Ga„As layer are not too
important in the present study.

the population of electrons in the first subband decreases
and that in higher subbands increases. At still higher
field, electron excitation to the subsidiary minima (at first
I. valleys and then X valleys) begins. The scattering rate
in these upper valleys is larger than that in the I valley,
as is well known. In addition, the effective masses in the
higher valleys are large. Therefore, the population in the
I valley, which is given by the sum over all subbands, and
the drift velocity decrease with increasing electric field.
Consequently, the steady-state characteristics for the Q2D
EG are very similar to those for the three-dimensional

gas 29

The peak carrier concentrations in the present calcula-
tion are 5.4&(10' and 4.3X10' cm at 77 and 300 K,
respectively, as shown in Fig. 2. Therefore, the velocity
characteristics for the Q2D EG are compared in Fig. 9
with those for bulk GaAs with Nn ——1.0X10' cm
(Ref. 29) which are shown by the dashed-dotted line. Al-
though the parameters of the calculation for the bulk are
different from ours (since we used a more precise band
structure), the agreement of the velocity values is quite
close at high electric fields. The critical field where the
peak velocity is observed for the Q2D EG is shifted to
lower fields compared with that for bulk GaAs. This
shift is caused by the reduced impurity scattering for the
Q2D EG. Furthermore, Fig. 9 clearly demonstrates that
we can expect high velocity values for Q2D EG at low
fields which is significant for device applications.

In our calculation, mobilities at 500 V/cm are 2.5X 10"
and 8. 1X10' cm2/Vsec at 77 and 300 K, respectively.
The value at 77 K is smaller than some of the measured
values, s which deserves discussion. One of the reasons
is the difference in the structures and induced carrier den-
sity. Furthermore, the low-field mobility at low tempera-
ture depends very strongly on the applied field, which is
illustrated by the very steep nonlinear increase of the
curve in Fig. z/a). According to the experimental reports
we can expect 4—5 times larger mobility values as the
field approaches zero. Finally, as mentioned in Sec. III A,
our small mobility values at 77 K may also be caused by
our neglect of screening effects for polar optical-phonon
scattering and the effects of the degeneracy. However,
further investigations, including coupled plasmon-phonon
scattering and the possibility of a perturbed phonon distri-
bution, are necessary to obtain a clear understanding of
this low-field —low-temperature region.

The transient drift velocity response at 77 and 300 K is
shown in Figs. 10(a) and 10(b), respectively. The velocity
for the Q2D EG exhibits the peak value after a time
period which is nearly equal to that of bulk GaAs
(ND ——1.0X 10' cm ) (Ref. 22) at an electric field of 10
kV/cm and for 77 K. The peak value for the QZD EG is
higher than for the bulk. Notice also that there is a
steeper velocity response compared with the equivalent
bulk material, which is due to the reduction in ionized im-
purity scattering. %ith increasing electric field, the tran-
sient behavior for the Q2D EG also comes very close to
that for the three-dimensional gas. This is confirmed by a
transient population study for each subband and valley.
Therefore, it is concluded that the velocity advantages for
the Q2D EG are significant compared with bulk material
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only at low and intermediate fields.
Interesting overshoot phenomena are observed even in

the low-field case at 77 K, as shown in Fig. 10(a). The
overshoot for a field of 1 kV/cm and the shoulders ob-
servtxi at early times at 3 and 5 kV/cm arise from the step
in the scattering rate at the threshold of spontaneous pho-
non emission. ' In this near-ballistic regime, electrons are
heated up by the applied field, and are scattered by emit-
ting optical phonons after they reach the optical-phonon
energy fmo Th. en they lose momentum and energy, and
approach the steady state. The time to reach the velocity
maximum, which corresponds to the required time to heat
up the electron gas, dcereases with increase in the field.

The velocity response at 300 K in low fields is different
from that at 77 K. The reason is that the electrons at 300
K have sufficient thermal energy to populate higher sub-
bands, and to emit phonons without much energy gain
from the field. This is clearly demonstrated for the re-
sults at 1 kV/cm in Fig. 10(b).

At longer times, the heated electrons begin to be excited
to higher subbands, as shown in Fig. 11(a) for 77 K. At
the beginning of this stage, the population of electrons in
the first subband decreases and that in higher subbands
increases gradually. Initially, the velocity is still increas-
ing, as shown in Fig. 11(a) for 3 and 5 kV/cm, because
most of the electrons are still in the I valley. At 300 K
the population dynamics is somewhat different. The
number of electrons in the first subband increases and
that in higher subbands decreases at the beginning of the
time response, as shown in Fig. 11(b). To understand this
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effect remember the second subband polar optical-phonon
scattering rate as illustrated in Figs. 4(b) and 5(b). In the
low energy region, the intersubband scattering rate from
the second to the first subband is large. At 300 K, about
18% of electrons are in the second subband at zero field,
as shown in Table II. The number at 77 K is much small-
er than that at 300 K. Therefore, some electrons in the
second subband are scattered to the first subband by emit-
ting polar-optical phonons at 300 K after the field is ap-
plied.

As time progresses, electron excitation to the subsidiary
minima begins to be important, as shown in Fig. 11.
Then, the velocity decreases further. This causes the
second velocity response peak for 3 kV/cm at 77 K and
the main peaks for 5 kV/cm and above at both tempera-
tures [Figs. 10(a) and 10(b)]. At t =5 psec and 3 kV/cm,
the population for the three lowest subbands for the I
valley and for I. valleys are 70.1%, 11.3%, 4.9/o, and
7.3 /o at 77 K, and 74.3%%uo, 8.2%, 5.1%, and 6.7%%uo at 300
K, respectively.

%'e have also calculated the average electron energy in
each subband and valley during the time transient. Figure
12 shows the average electron energy in the first subband
at 77 K. Notice the curve for 1 kV/cm. This curve cor-
responds to the velocity response in Fig. 10(a). It can be
seen that the above-described velocity overshoot in the ini-
tial near-ba11istic region conforms to the energy response
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FIG. 12. Energy response in the first subband at 77 K.

shown in Fig. 12. Figure 12 also shows that the electrons
in the first subband move to high energies almost instan-
taneously with the increase of the field. Subsequently,
they are excited to the upper subbands and to the upper
valleys, as shown in Fig. 9(a). The enhanced fluctuation
of the average energy response in Fig. 12 at high fields is
due to the reduction of the population in the first sub-
band, because the average value becomes erroneous with
decreasing the sampling numbers.

deformation potential, and ionized impurity scattering.
Both intersubband and intrasubband transitions have been
studied. In contrast to a strictly two-dimensional system,
the obtained polar optical-phonon interaction in the quan-
tum well is smaller than that for the corresponding three-
dimensional system in the high-energy region. The calcu-
lated ionized impurity scattering rates, taking into ac-
count screening effects, are very small due to the modula-
tion doping.

The steady-state and transient behavior of the electrons
in the well has been investigated by a newly developed
particle Monte Carlo simulator, which includes multisub-
band conduction. It has been confirmed that for the Q2D
EG a drift-velocity response higher than in the bulk can
be expected in the low-field region. In the high-field re-
gion, the velocity characteristics for the two-dimensional
electron gas are very similar to those for the three-
dimensional gas. However, the velocity responds more in-
stantaneously after applying the field. Novel overshoot
effects have been shown to occur, which are related to the
population of the subbands and the subsidiary valleys.
These velocity characteristics for the two-dimensional
electron gas are advantageous for the realizatian of ultra-
high-speed devices.
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