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Multichannel Landauer formula for thermoelectric transport
with application to thermopower near the mobility edge
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Various thermoelectric linear transport coefficients are defined and calculated for two reservoirs
connected with ideal multichannel leads and a segment of an arbitrary disordered system. The
reservoirs have different temperatures and chemical potentials. All of the inelastic scattering {and,
thus, the dissipation) is assumed to occur only in the reservoirs. The definitions of the chemical po-
tentials and temperature differences across the sample itself {mostly due to elastic scattering) are
presented. Subtleties of the thermoelectric effects across the sample are discussed. The associated
transport coefficients display deviations from the Onsager relations and from the Cutler-Mott for-
mula for the thermopower {although the deviations vanish for a large number of channels and/or
high resistance). The expression obtained is used to predict the critical behavior of the electronic
thermopower near the mobility edge. It is shown to satisfy a scaling form in the temperature and

separation from the mobility edge.

I. INTRODUCTION AND DISCUSSION
OF THE MODEL

In the studies of conduction in systems with strong
elastic scattering, ' or in the case of the quantum trans-
port through small devices at low temperatures, the ap-
proach due to Landauer' has been extremely useful. In
the original one-dimensional (1D) or single-channel case,
the conductance of noninteracting electrons at a zero tem-
perature, due to a barrier with transmission coefficient T
is given by (including spin degeneracy)

eG=-

The generalization of Eq. (1) to finite temperatures and
an analogous formula for the electronic thermal conduc-
tivity have been discussed by Engquist and Anderson.
The generalization to the many channel case (i.e., arbi-
trary dimensionality) has been the subject of several pa-
pers. ' Here we shall adopt the approach of Buttiker
et al. ,

' "whose results are similar to those previously ob-
tained by Azbel. 9

These considerations are especially appropriate for cal-
culating the transport coefficients of a sample due to arbi-
trary elastic scattering (the generalization including inelas-
tic scattering will be discussed elsewhere' ).

In this model, ' described in Fig. 1, the elastic scatterer
is fed by two ideal leads, each supporting N conduction
channels at the Fermi energy (due to, e.g., X different
transverse states of the ideal wire). These leads are driven
from left and right by heat (and electron) reservoirs (HR)
with chemical potentials pl, p2 and temperatures 8&,02,
respectively.

All elastic processes in the sample are represented by a
2NX2% transfer matrix S whose transmission T,J, TJ.
and refiection R,J,R 1 coefficients can mix the left-hand
side (lhs) and right-hand side (rhs) channels. [T~J (TJ} is

the probability of an electron traveling to the right (left) in
the jth channel on the Ihs (rhs) to be transmitted into the
ith channel on the rhs (lhs), and R;J (R J) the probability
of that electron to be back scattered into the ith channel
on the lhs (rhs}.]

%'e point out that in the model considered here, the
thermalization of the electrons, by inelastic scattering, and
hence the Joule energy dissipation occurs only in the out-
side HR's and not in the system itself.

We assume that the left HR maintains a Fermi distri-
bution with chemical potential lsi and temperature ei in
the right propagating states in all channels on the lhs of
the barrier. Similarly, the distribution of the left propaga-
ting states on the rhs is taken to be equal to that in the rhs
HR. A11 other distributions, namely the distributions of
left propagating electrons on the lhs and the right propa-
gating electrons on the rhs are now determined only by
the barrier properties. No interchannel scattering is taken
to occur in the leads.

On the above model we may define a conductance be-
tween the outside reservoirs at zero temperature as the to-
tal current I divided by the chemical potential difference

T, f) w RI f2

R)f) wT) f2

A

+2
8 f22

FIG. 1. Schematics of the model: Two HR's with chemical
potentials pl, p2 and temperatures 81,8~ are connected via ideal
leads and an arbitrary scatterer, represented by the barrier. The
ingoing channels have the distributions of the appropriate HR's,
f~ and f2. The distribution in the outgoing channels is deter-
mined by the transmission and reflection of the barrier. A and
8 are the measurement "points" for p&,p, 8&,8&.
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between them;

Gc=
I

P1 —P2

~2

ij =1

However, this is not the conductance of the sample it-
self, as G, includes possible additional contact resistances
between the reservoirs and the leads, ' " and in gen-
eral ' '" the actual voltage and temperature drop across
the scatterer will differ from p, i

—p2 and 8i —8z (although
these differences may be expected to be small, in typical
cases, when the sample's length is much larger than the
elastic mean free path). Determining these differences,
namely pq —p~ and 8& —8~ in Fig. 1, is the subtle point
of all our calculations. The distributions of electrons on
both sides of the barrier differ, due to the lack of inelastic
and interchannel scattering, from the familiar shifted Fer-
mi distributions (for example the different channels have
different chemical potentials). On the other hand, we em-
phasize that these distributions are exactly known.

At zero temperature Biittiker et al. ' defin the chemi-
cal potentials pq and pa to give the correct particle densi-
ty in the leads and obtain for the conductance of the sam-
ple when all the interchannel scattering in the leads is
neglected:

N —i

i=128

(1+R;—T; )/u;

(3)

where T; =g TJ, R; =g..R J, and u; is the Fermi veloci-

ty in the current direction in the ith channel, defined by
irik;/m (k; is the longitudinal Fermi wave vector of the
ith state}.

In the case of a finite temperature, ' the situation be-
comes more complicated. A possible solution was sug-
gested by Engquist and Anderson, ' where they introduced
two measurement reservoirs (MR) A and 8, coupled to
the leads at points A and 8, respectively, through two po-
tentiometers (thermometers in the case of temperature
measurement). By tuning, for example, the chemical po-
tential of MR A they can find a point where the net
current from the lhs lead to reservoir A is equal to the
current in the opposite direction. This chemical potential
is defined to be the effective chemical potential of the lhs,
pz. Identical procedure is performed simultaneously on
the rhs leading to a chemical potential pz. The voltage
drop is obtained as pz —p~. The temperature measure-
ment is performed similarly by tuning the respective tem-
peratures to yield zero net heat currents between the MR's
and the leads.

Apart from neglecting thermoelectric currents (that
may be corrected by simultaneous tuning of the tempera-
tures and chemical potentials}, the introduction of MR's
raises some questions about the energy dependence of
their coupling to the system. We will refer to these rather
subtle points later.

Another thermodynamic definition of the effective
chemical potentials and temperatures is presented here.
To do that, we notice that although the intensive parame-
ters in the leads are not well defined, the densities of the

extensive ones may be calculated using the known distri-

butions (in particular the particle density and the specific
entropy are well defined' ). Then, we define the effective
chemical potential and effective temperature as the pa-
rameters that should be assigned to an equilibrium distri-
bution in order to get the same particle density and specif-
ic entropy. It turns out that these two conditions (or any
other independent pair) determine consistently all other
extensive quantities (such as the specific energy). For zero
temperature difference, the first condition is actually a
manifestation of the Einstein relation between the dif-
fusion coefflcient and the conductivity. The conditions
for equivalence of the above two definitions of pq —p~
and 8& —8& will be discussed in Sec. III.

In the next section and Sec. III, we derive and discuss
all transport coefficients measured on both the sample it-
self and between the reservoirs. In particular, we obtain
expressions for the thermoelectric coefficients and the
thermoelectric power. We show that although the On-

sager relation holds among the thermoelectric coefficients
defined on the entire system, it breaks down when we con-
sider the differences across the sample itself [a similar re-
sult was found in Ref. 14 for the relation o(H) =o( —H)].
In the final section we use these results to construct a
scaling theory for the thermoelectric power near the
metal-insulator localization transition in the metallic
phase, ' for bulk systems. The results are briefly summa-
rized in the concluding section.

—f2(k)k; g T~J(k; )

where fi and f2 are the Fermi distributions on the left-
and right-hand side HR's, respectively, and Rk; the longi-
tudinal momentum of an electron in the ith channel.

With E; describing the transverse energy associated
with the ith channel the dispersion becomes

(e,')'
E, =E,~+ (5)

2m

The total current on the lhs is calculated by summing
over all channels,

J'= —g f T (E —E; )[fi(E)—fi(E)]dE,
t'=1 i

with

(6)

T, = g T,', (E,'),
j=1

(7)

where the velocity and the density of states [(m5u;) ']
factors canceled.

In the last step we also employed the unitarity of S:

II. MULTICHANNEL DERIVATION OF
THE THERMOELECTRIC COEFFICIENTS

The net particle current in the ith channel on the lhs is
given by

N

J~ ——g f, (k)k, 1 —g R,J(k; )~ k&=o
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A

g RJ+ g Tj=1,
(8)

current conservation yield two symmetries:

N

gT;=gT;
1V X

j=1 j=1
In the linear transport regime

~ p& —p2 ~

and
( Hi —82

~

are arbitrarily small («ktiH) and if in addition k&8 is
small, then one may assume that no transverse level falls
in the range of few k&8 around pi+ p2/2, thus

fi(E)—fz(E)=0 for all E &Et' and Eq. (6) may be
rewritten as

J =—f g T (E —E; )[fi(E)—f2(E)]dE .
h

(The above condition also guarantees a constant number
of channels in both leads. )

Similar calculations for the rhs and the condition of
I

and (10)

Next, we calculate the heat current due to chemical po-
tential and temperature gradients. The entropy current
going to the right in the ith channel on the lhs is given by

CO

(J»)a ———„ f [filnfi+(1 fi)ln—(1 fi)]d—E, (11)

where the velocity and density of states factors canceled.
Notice that the expression in the square bracket is the en-

tropy density of noninteracting electrons, distributed ac-
cording to an arbitrary nonequilibriurn fi.' The entropy
current to the left, in linear transport approximation is

kg
(»)I, = —

k
[(R;fi+T f2)ln(Rtfi+Tt fi)+(1 R;fi —T—,"fi)ln(i R~f, T—,'f )]dE. (12)

X [f,(E)—f2(E}]dE, (13)

Subtracting Eq. (12) from Eq. (11), summing over all
channels and using Eqs. (10), we finally obtain for the
heat current

N

U=HJ, =—f g T;(E E; )(E ——p)
i=1

I

tial}. It turns out then, that in linear transport regime, the
substitution of Hds for the heat transfer is justified. We
emphasize however, that the entropy production occurs
only in the outer HR's and not in the leads nor in the sam-
ple. This is an important feature of the approach present-
ed here.

In linear transport it is convenient to cast Eqs. (9) and
(13) into a matrix form,

where 8 and p can be taken, in linear-transport approxi-
mation, to be the average temperature and chemical po-
tential.

The justification for extending the usual relation
U=HJ„used in linear-transport theory, to the present
case where the distribution of electrons in the leads is dif-
ferent from the conventional one, is as follows. The two
HR s are by definition in equilibrium and satisfy the ther-
modynamic identity,

dS; = dE; — dn; —(i =1,2),1 PI'

with

1~ Hi —82
1 28

v=0, 1,2 .

I.„=— g T~(E E; )(E p, )" — —dE, —

(15)

(16)

1 JE—
02

(14)

while the entropy current beaten the reservoirs,
J, =JE/8 Jp/8 is linear in the differ—ences (8 and p can
be taken as the average temperature and chemical poten-

where dE; and dn; are the energy and number of electrons
entering the ith reservoir, respectively. The only changes
in energy and number of particles in the HR's are due to
the energy and particle currents between them. Thus,

dEi —— dEi, dni ———dn—i .

The net entropy production in the whole system is then
found to be quadratic in the differences:

For later reference we point out that Eq. (15) satisfies
the Onsager relation for the transport coefficients between
two heat reservoirs (i.e., those defined with p, —pz and

8i —82).
As discussed in the Introduction, the subtle point of all

transport calculations in this configuration is the defini-
tion of the chemical potential and temperature differences
across the sample. We choose to define them through the
differences in the particle density and the specific entropy,
which are well defined. One may view this approach as a
generalization of the Einstein relation.

The particle density on the lhs is given by

nL ———, f g (n, );[(1+R;)fi +T f2]dE, (17)
i=1
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where (n, }; is the density of states in the ith channel

[(+AU; } '].
We thus define implicitly the effective chemical poten-

tial, pz and effective temperature 8& to satisfy two condi-
tions; the first of which is

f g (n, };fzdE
i=1

N

n, ; 1+8; 1+T 2 E, 18
i=1

where

f~ =
I 1+exp[« —]u~ }/'4~~]]

Similarly, we define the effective chemical potential pz

and effective temperature 6]& to give the correct density on
the rhs:

f g (n, );fzdE
i=1

N
= —,

' f g (n, };[Tf]+(1+R )f&]dE. (19)
i=1

Subtracting Eq. (19) from Eq. (18) we find an implicit re-
lation between f„,fi] and f],fi..

N N

~s i A 8 E 4 i~i 1 2
i=1 i=1

(20)
where R;=(R;+R )/2.

A second relation needed to uniquely determine pq, pq
and 8„,ea emerges from the conditions on the entropy:

N

k~ f g (n, );[f„infra+(1 f„)ln(1—fz)]dE—=kz f g (n, );[f]lnf]+(1 f, )ln(1—f])]dE—
i=1 i=1

+kg n, ; 8; 1+7 2lnR; 1+7,
i=1

and
+(1 R;f] —T—)'f2)ln(1 —R;f]—T f2)]dE, (21)

N N

kz f g (a, );[fp(nfl q(1 f~) n(1 )fq)]dE—=kg f —g (n, );[/&in/2+() fz h()1 f—z)]dE—
i=1 i=1

N

+kg fp g ( n);[(R f)2+ Tf] )»(R f2+ T fi )
i=1

+(1—R f, Tf, )ln(1 ——R f& —T f])]dE. (22}

Subtracting Eq. (22) from Eq. (21) we obtain in the
linear-transport approximation:

N

E—p
i=1

N g.
B„=

p (E ET)1/2
V

az "
v=0, 1,2 . (26)

~s l~
i=1

which together with Eq. (20) uniquely determines ]u„—pz
and 8g —Hg.

It is again convenient, in linear transport, to east Eqs.
(20}and (23) into a matrix form:

Substituting Eq. (24) into Eq. (15}we finally obtain the
transport matrix of the barrier, with the coefficients given
by Eqs. (16), (25), and (26):

1

J Eo —El0 Pa —Pa
~ —a (27)

1

1
Ao —Al8 Pa —Pa

1 8g —Og
1 28

1
8o —81

1
81 —82

Pl —P2
(24)

with

Lp(82A p 8]A ] )+L i(A ]Bp——ApB] )
o —— (28a)

Bo82 —81
where A „and 8„are given by

v=0, 1,2 (25)

and

Lp(BiA ] 8]Ai)+L ](BpA2 ——8]A ] )
sc, = (28b)

Bo82 —8',

L ] (82Ap —BiA ] )+L2(A ]Bp A[]8] )
Kl —— z, (28c)

Bo82 —81
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L, (B2A i
—BiAz)+Lp(BOA2 —BiA i )

K2 —— (28d)
BoB2—B )

III. DISCUSSION OF THE RESULTS
AT LO%' TEMPERATURES

In this section we discuss the temperature dependence
of the electrical, thermal, and thermoelectric coefficients
at low temperatures, for the case where T;(E), etc., are
smooth functions of the energy.

Expanding Eq. (28a) in a Sommerfeld series we repro-
duce the many channel formula for the conductivity,
presented recently by Buttiker et al. ,

' with small correc-
tion due to a finite temperature:

Hg —Hti ——8 (lnR)(pq —p,s ), (33)

and by Eq. (27)

find in lowest order

dR
8~ —Ha =8

dE

Thus, even if we set Hi ——82 it follows that for any finite
temperature 8, Hq&8~ (as long as dR/dE&0). To obtain
the correction to Eq. (31) due to thermoelectric effects, we
solve Eq. (24) for 8„—Hii in terms of pq —pti, assuming
8j ——82.

Expanding the results in Sommerfeld series we obtain
in lowest order

2

Ko —— 1+ (kii 8) az' „
dJ= Ko —Ki (lnR) (p, q —ps) . (34)

N

gT;
i=1

X —*

h

y I/(F. —E, )' '

g [R;/(E —E )' ]

8 1 T
Ko —— 1+ (kg 8)

6 ggi h R '

In the single-channel case, Eq. (29) reduces to

(29)

(30)

The expression in the large parentheses is the conduc-
tance, 1/R, i defined in Ref. 5. It is a straightforward
matter to check that the term-Ki(d/dE)(lnR), where Ki
is given by Eq. (36) below, is indeed the difference be-
tween Eqs. (30) and (31). Note that this difference is of
the same order [(ksH) ] as the lowest temperature correc-
tion to the conductance. We emphasize that although Eq.
(30) looks similar to the Sommerfeld expansion of

which is different from the finite-temperature conduc-
tance formula given first by Engquist and Anderson [Eq.
(9) in Ref. 5]:

( R EA
)
—i (31)

(A similar formula, with velocity corrections, has been re-
cently derived and discussed by Buttiker et al. '0}

The discrepancy between Eqs. (30) and (31) results from
different definitions of the conductance G. In order to
perform a conductance measurement, one might set
Hi ——82 ——8 and define G =J/(p, z —ps), which would
yield the conductance given by Eq. (31}(with small veloci-
ty corrections' ). However, it turns out that in this case a
finite-temperature difference will be generated, leading to
a thermoelectric component in the measured current J [cf.
Eq. (27)]. The proper definition of a pure conductance is
G —=Eo, which might be measured in principle by arrang-
ing 8„=8& (by selecting the appropriate values of 8,,8i
and p, „LM2). To demonstrate that this is indeed the differ-
ence between Eqs. (30) and {31),we compute below the
thermoelectric contribution for the case Hi ——Hi. Substi-
tuting Hi ——Hq into Eq. (24) we obtain for the temperature
difference across the sample

B&Ao —BoA
Og —Og ——0 (32}

APA2 —A )

where A„,B„(v=0,1,2) are given by Eqs. (25) and (26),
respectively. Expanding Eq. {32)in Sommerfeld series we

this is valid only to order (k&8) and not to the next order,
(keH) .

Expanding Eq. (28d) we obtain for the heat conductivi-
ty:

2

Kp —— (ktiH)~KO+O((ksH) ) .
3

(35)

and

Ki —— (AH) [(Ko)e o]„+O((ksH) ),2a 4

3 BE
(36)

Ki Ki+C(ksH)—— (37)

where the coefficient C (which depends on the variation
of T~, R;, and u; with energy) is in general nonzero. The
result is thus, that although we found in Eq. (15) that the
Onsager relation holds for the thermoelectric coefficients
between the HR's, it breaks down when we consider the
actual voltage and temperature drop across the barrier.
We believe this to be due to the purely elastic nature of
the scattering in the system itself, i.e., from the lack of
any mechanism driving it towards thermal equilibrium

Comparing Eqs. (29) and (35) we find that Wiedemann-
Franz relation, namely

Ki —— (keH) Ko,2

3

holds only in the lowest order.
An even more interesting result emerges upon calculat-

ing the thermoelectric coefficients:
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except for those in the HR's. This is similar to the effect
found in Ref. 14. Notice however, that in many practical
systems, the transmittance can be very small, causing the
gradients across the barrier to be practically equal to
p1 —p2 and 01—82.

Looking at Eq. (36), we see that to obtain large ther-
moelectric coefficients (and hence a large thermoelectric
power), one needs a zero-temperature conductivity which
varies rapidly with energy. One interesting case with such
variations is quasi-1D systems, ' where the transmission
exhibits rapid resonance type fluctuations. In this case,
while the general expressions of Sec. II are valid, the low-
temperature expansion holds only when ks8 is much
smaller than the scale of variation of o(E). A different
case of interest will be discussed in the next section,

Another interesting property is the thermoelectric
power defined by

K1S=
e8 Eo

(38)

ks8 E

f rr(E( — dE

we see that the last one holds strictly only in the lowest
order. It also holds, as can easily be seen, for the simpler
transport coefficients of Eq. (15}. Thus our procedure
provides justification for Eq. (40) in appropriate limits.

The next and last remark is concerned with the chemi-
cal potential and temperature measurement. As men-
tioned previously, one way to perform it, is by introducing
two measurement reservoirs A and 8, and tune their
chemical potentials and temperatures to yield a zero net
heat and particle currents between them and the system
(note that the coupling of the reservoirs to the system
should be weak enough so as not to perturb its electron
distribution). In the golden rule approximation, zero net
particle current implies:

N yV~2
s i A A 8

i=I
N/V/2g (n, )in' Rg(f i —fi)dE, (41)

i=1

where V is the matrix element describing the coupling be-
tween the MR's and the system and nz is the density of
states of the reservoirs. Similarly, zero net heat current
gives

Substituting Eqs. (29) and (36) into Eq. (38) we obtain in
the lowest order, the familiar expression for metals:

ksm 8s= ks8 [ln(EO}s 0]~ .
e 3

(39)

Comparing Eqs. (28a) and (28b) with the general, physi-
cally plausible expression, given by Cutler and Mott, '

N iVi2
Pl ll g E —p

i=1
N iVi2g (n ) ng R (E —p, )(f, f2—)dE .

i=1

(42)

Comparing Eqs. (41) and (42) to the previously derived
conditions, Eqs. (20) and (23), we find that they are identi-
cal if nz(

~

V
~

/fi) is independent of energy and channel
number i. It seeins then, that an ideal measurement pro-
cess should satisfy the above condition or otherwise we
find differences in the extensive parameters between the
system and the measurement reservoirs. Moreover, such a
measurement will depend on details of the coupling to the
system and the structure of the specific apparatus. A
weaker condition, more plausible in real systems, which
might be sufficient in the case of a large number of chan-
nels is that there exist no systematic variation of
nq(

~

V
~

/fi} with energy. We expect that purely random
variations would cancel out.

IV. CRITICAL BEHAVIOR OF THE METALLIC
THERMOPO%ER NEAR THE MOBILITY EDGE

One of the advantages of a multichannel Landauer-type
formula is that it may be used to create and justify the
scaling theory for the transport in disordered systems, by
lceking at the size dependence of the appropriate coeffi-
cients. 2 ' In this section we shall use our theory for the
thermoelectric coefficients to derive an expression for the
thermopower in terms of the energy-dependent conduc-
tivity o(E). In the derivation we employ the now accept-
ed assumptions for the scaling behavior' of o(E) near the
mobility edge EM to obtain the scaling of the electronic
thermopower, S(8,EF EM) as a funct—ion of the tempera-
ture 8 and separation from the mobility edge [the usual
localization metal-insulator (MI) transition is obtained
when EF~EM] in the metallic phase. This expression is
valid for an arbitrary amount of disorder as long as hop-
ping and inelastic processes are neglected and it holds in
the whole metallic phase (as long as EF is within the re-
gion of extended states).

Our assumptions are as follows. We treat only the elec-
tronic contribution and neglect the phonon part of the
heat current. Phonon-drag effects, that may be crucial for
the thermopower of pure metals, are neglected since the
disorder is also assumed to severely limit the phonon
mean free path.

We have discussed in this paper two types of transport
coefficients: those between the outside HR's [defined by
Eq. (15}] and those on the system itself [defined by Eq.
(27}]. The former include the effects of the contact resis-
tances with and the electron thermalization in the reser-
voirs while the latter include mostly elastic scattering in
the sainple itself. Fortunately, the differences between
these two types of coefficients become small in the limit
of a large number of channels and/or weak transmission.
Both of those conditions are relevant near the MI transi-
tion at low temperatures. Thus, in this section we use the
simpler coefficients of Eq. (15). This enables us to use the
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cr( E}=a (E E—~ )", E & E~ (43)

where the exponent x is currently believed to be around
unity and a is some constant. Substituting Eq. (43) into
Eq. (40) we obtain in the lowest order in temperature
(kg 8 ((Ep E~—):

kii ~ kii8S=
e 3EF—E

while for high temperatures (k&8 »EF —E ) we find
r

kg E —E
const—

8 B

(44)

(45}

Notice however, that the latter limit may be inconsistent
with the neglect of inelastic processes. Equations (44) and
(45) imply that S can be scaled to depend not on kii8
and EF E~ s—eparately, but on a single variable k&8/
«F Esr)—

In the metallic phase, the neglect of inelastic scattering
is valid on length scales smaller than the phase coherence
length L~ [given in usual cases~a by (Dr;„)'~2, D being the
diffusion coefficient and r;„ the inelastic scattering time
for the electrons]. On the other hand, the thermal smear-
ing involved in the evaluation of our results [e.g. , Eq. (16),
etc.] uses energies

~

E EF
~

& k+8—and thus length
scales, ' (i)ID/~E EF

~

)' &—(AD/kji8)'~ . Since ~;„ is

typically larger than iri/ka8 by at least one to two orders
of magnitude, most of the latter scales are smaller than

L~ so that our assumption is consistent.
Once the transport coefficients are evaluated for scales

up to L~, their behavior for macroscopic samples is ob-
tained by using' ' ' classical combination rules. Since
the thermopower S is given via Eq. (38), by a ratio of two
transport coefficients, both proportional, in three dimen-
sions, to the system's length, it turns out to be scale in-
dependent from L~ on.

We believe that the above remarks, for systems where
the disorder is sufficiently effective to make the effects of
the phonons relatively unimportant, make our assump-
tions appear rather plausible. It would, thus, be extremely
interesting to check our results in this section, namely

Cutler-Mott' expression, Eq. (40) for the thermopower.
However, instead of using the assumptions' ' of
minimum metallic conductivity for cr(E), we invoke the
result of the scahng theory' that in the vicinity of E~

Eqs. (44) and (45), experimentally near the MI transition
in bulk systems.

V. SUMMARY AND CONCLUSIONS

%e presented a comprehensive theory for linear thermal
and electrical transport for noninteracting electrons be-

tween two reservoirs connected via ideal multichannel
leads and an arbitrary disordered sample. Both tempera-
ture and chemical potential differences are assumed be-

tween the two reservoirs. There are two types of transport
coefficients: those [Eq. (15)] defined between the two
reservoirs and those [Eq. (27)] defined across the sample
itself. The former include the various impedances due to
the connections of the leads to the reservoirs as well as the
effects of electron thermalization by inelastic scattering in
the reservoirs. The latter include only the effects of elas-
tic scattering in the sample (and the neglect of interchan-
nel interference, justified by the phase randomization of
the electrons in the reservoirs).

The definitions of temperature and chemical potential
differences across the sample are discussed along with
some subtleties in the suggestei (conceptual) way to mea-
sure them. Although the thermoelectric coefficients de-
fined between the reservoirs satisfy the Onsager relation,
the coefficients defined across the sample itself violate it.
Similarly, only the thermopower resulting from the form-
er coefficients satisfies exactly the Cutler-Mott expression
[Eq. (40)]. Correction to the multichannel conductance
formula for a finite temperature' is given as well. The
results are used to make a prediction for the thermopower
near the localization MI transition in bulk systems from
the metallic side at not overly high temperatures.

This theory can be straightforwardly generalized to go
beyond the linear transport approximation. A generaliza-
tion to include inelastic scattering in the sample' is very
much called for as well. We are currently attempting to
further understand the thermoelectric phenomena in the
hopping regime.
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