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Phonon-induced lifetime broadenings of electronic states and critical points in Si and Ge
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%e present calculations of the lifetime broadenings of electronic states produced by the electron-

phonon interaction in semiconductors and of their dependence on temperature. This effect is
evaluated as a complex self-energy of the electronic states. The real part of this self-energy describes
a shift of the bands with temperature, whereas the imaginary part is responsible for the broadening
of the states. For the calculations based on perturbation theory to second order in atomic displace-
ment we use a local pseudopotential with a basis of 59 plane waves, the lattice dynamics of %eber's
bond-charge model, and a tetrahedron method for doubly constrained Brillouin-zone integrals. Re-
sults are given for points along the A and 5 direction of the Brillouin zone for Si and Ge, thus ob-

taining the temperature dependence of the broadening parameters of the interband critical points

Eo, Eo, El, and E2. The results are compared with experimental data obtained from ellipsometric
measurements of the temperature dependence of the dielectric function. Remarkable agreement be-

tween calculated and measured data is found.

I. INTRODUCTION

VA'th increasing temperature semiconductors show a
shift in the energy of electronic states and an increasing
lifetime broadening. These effects can be investigated by
measuring structures in the optical spectra, such as those
obtained by absorption or ellipsometric techniques. ' In
the case of germanium and silicon such spectra reveal an
indirect absorption edge, not considered here since its
broadening is small, and other edges or critical points
(CP's) ]ab'l~ Eo, Eo, Ei, E2, . . . . 'fhe Eo ~geis the
lowest direct edge of Ge and corresponds to transitions at
the I point of the Brillouin zone (BZ). The Ei edge cor-
responds to transitions from the highest valence band to
the lowest conduction band along the (111) directions;
for Si it is nearly degenerate with the Eo gap which
occllrs at I. The Ez tlailsitioils coffespoild to electi'onlc
states not well localized in k space which include or are
close in energy to the lowest gap at the X point.

While quantitative data for the shifts of energy gaps
and critical points with temperature are very abundant,
especially for Ge and Si,2 7 the corresponding data for
broadenings are less abundant. Systematic data versus
temperature have recently been obtained for a number of
materials [Si (Refs. 3 and 7), Ge (Ref. 4), InSb (Ref. 5)„
and a-Sn (Ref. 6)]. In Refs. 3—7 the shift and the
broadening of the Eo, Eo, Ei, and Ei gaps, and also the
E, +hi gap which is split from Ei by spin-orbit interac-
tion, is investigated. The broadenings obtained and their
temperature dependence are analyzed in a phenomenologi-
cal manner. We present here a microscopic analysis of
these broadenings for Ge and Si.

Electrons high up in the conduction bands and holes
deep into the valence band can decay into electronic exci-
tations through Coulomb interaction. This decay is of the
Auger type. The resulting lifetime broadenings are very
smaH unless the energies of electrons (holes) with respect

to the band edge become close to the plasma frequency (16
eV). Up to -3 eV, for instance, the broadening due to
this kind of decay is less than 10 meV. ' The broadenings
observed for the Eo, Ei, Eo, and Ei edges, have initial-
and final-state energies which are less than 3 eV from the
band edge. Their lifetime broadenings are more than
10 meV and they are temperature dependent. Since the
Auger processes should be nearly independent of tempera-
ture, the observed broadenings must be due to electron-
phonon interaction. In the presence of this interaction the
electrons (holes) become quasiparticles with a tempera-
ture-dependent self-energy. The real part of this self-
energy corresponds to an energy shift of the optical gaps,
its imaginary part to a lifetime broadening.

Theoretical work so far has concentrated on the calcu-
lation of the temperature-dependent energy shift of elec-
tronic states produced by the electron-phonon interaction.
Two different contributions to this shift arise: that of
thermal expansion and the direct renormalization of band
energies by electron-phonon interactions. The first contri-
bution can easily be calculated from the presumably
known dependence of the band structure on volume, to-
gether with the expansion coefficients. Theoretical in-
terest has thus focused on the effect of the electron-
phonon interaction. This effect can, in turn, also be bro-
ken up into two contributions: the Debye-%aller terms
and the Fan"' or "self-energy" terms. Both terms are
obtained from a perturbative calculation' of the electron
self-energy to second order in atomic displacement u.
The corresponding Feynman diagrams are shown in Fig.
I. The Debye-Wailer correction is an effect of the
second-order electron-phonon interaction taken to first or-
der in perturbation theory and depends only on phonon
amplitude and not otherwise on the particular phonon in-
volved. The "self-energy" contributions, which are dif-
ferent for each electronic state and also for each phonon
involved, arise from the first-order electron-phonon in-
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FIG. 1. Self-energy graphs which give the temperature renor-

malization of the bands to second order in the displacement u.
{a) represents the Fan terms; {b) the lowest-order Debye-%aller
correction.

expanded about the positions u(1,~) =0. The zeroth-order
Hamiltonian Ho gives the one-electron states

~
k,n ) and

band energies ek„where (k,n) are wave-vector and band
index. The first two terms of the expansion of
&(r—R(l, x) —u(l, v)) in powers of u(l, a } are'

H i
——g u~(l, a),V

BR~ l, K

teraction taken to second order in perturbation theory.
These two corrections are related by a sum rule derived
from translational invariance. 'i It has been shown that
both Fan and Debye-Wailer terms should be included in
the calculations of the temperature shift of the band struc-
ture' ' so as to preserve translational invariance' ' and
to obtain a good description of the experimental data. '

The temperature shifts of the lowest direct gapa at the
I point of Si and Ge (Refs. 17 and 18) have been calculat-
ed. These calculations have been extended recently to
electronic states at other points of the BZ, ' thus obtain-
ing the temperature shifts of the indirect gaps, of the
so:ond-lowest direct gap, and of the Ei and Ei CP's.
The agreement with experimental data is excellent, except
for the Ei CP, a shortcoming which may partly result
from the uncertainties in the location of the Ei transi-
tions in k space.

Realistic calculations of the temperature-dependent
broadenings of electronic states in semiconductors are, to
our knowledge, limited to a study by I.awaetz of the
broadening of the ED+50 edge of tetrahedral semicon-
ductors, split from Eo by spin-orbit interaction. This
author analyzed optical-absorption data near Eo+kp aild
obtained from them the interaction coefficient (deforma-
tion potential) between holes at I and optical phonons.

We present in this paper a calculation of the broadening
of the electronic states which contribute to the Eo, Eo,
Ei, and E2 gaps of Ge and Si. The calculation is based
on the empirical pseudopotential band structure of these
materials2' and the lattice dynamics of Weber. These
broadenings are obtained by evaluating the imaginary part
of the corresponding self-energy (Fan terms) with the
rigid-ion model for the potential of the distorted lattice.
The results are found to be in excellent agreement with ex-
perimental data.

II. THEORY

In deriving the relevant relations for the phonon-
induced broadening we follow the theory of Refs. 13 and
17. Consider a crystal with atoms of species a which oc-
cupy sites R(l, a. ) and have displacements u(l, a.) from
equilibrium, where l labels the unit cells. In order to
describe the renormalization of the semiconductor band
structure by the electron-phonon interaction, the
electron-atom interaction V(r —R(l,a) —u(I, a.)) is Taylor

The subscripts a,P denote Cartesian components which
are summed when repeated. The adiabatic approximation
allows the neglect of time dependence of u(1,~). To
second order in u(l, a. ) we obtain, using standard
Rayleigh-Schrodinger perturbation theory, 'i

Ek„([u(l,a)) )=sk„+(kn,
~
(Hi+Hi) k, n }

/

(k', n'
/
H i /

kn), f

~

+
Ekn ek'n'+i 9

+yDW+ USE (3)

The prime on the summation indicates that the term
(k', n'}=(k,n) is omitted. The first correction term to the
unperturbed energy of the initial state ek„, XD, is purely
real (Debye-Wailer term) whereas in the second correction
term, the "self-energy" term, X, every state is endowed
with a complex self-energy. Equation (3) has been derived
with standard Rayleigh-Schrodinger perturbation theory,
which implies that the phonon frequencies are small com-
pared with the relevant scale of electronic energies (typi-
cally the density of electronic states does not vary appreci-
ably in less than 0.1 eV). This approximation should be
good enough for our purposes. The resulting equations
can easily be generalized to include finite phonon frequen-
ries using standard many-body perturbation technique. "

Equation (3) is closely analogous to the standard calcu-
lation of the effects of impurities on band structure. Just
as in the impurity case, the final step is to perform an en-

semble average (in our case, mimicking a time average)
over the thermal displaceinents u(l, a), The result is writ-
ten as

(4)

is the shift of the band structure induced by the
Debye-Wailer term (DW) and the self-energy term (SE)
and rk„ is a lifetime. The temperature shift has been cal-
culated in previous papers, ' ' hence we focus our atten-
tion on the evaluation of the imaginary part of Eq„, con-
nected with the lifetime 7k„The last term .of Eq. (3) can
be rewritten after ensemble averaging as

dE'
QSE

o+ E —E'+ &q

where Bk,(E) are the matrix elements of the spectral
electron-phonon operator which are defined as
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8~(E)= y &&kn ~H, ~k, '&&k, n ~a, ~k, n&&

x5(E —ep „).

h~ ——ReXg„(s~ )=Pf,dE',sa sF.

q,„—E' (8)

(9)

8~(E'}
XP(E)=Pf, dE' iirB—) (E), (7)

where p means the principal value. In this way we obtain
the real and imaginary part of the self-energy term

The outer brackets denote the thermal average. Using the
Dirac identity, Eq. (5) can be written

Writing more explicitly with the use of Eqs. (1) and (6),
Eq. (9) is

I ~(T)= +BI i,„/Bngj(ngj. + —,
' ), (10)

QJ
where nq J is the Bose-Einstein occupation factor
(e —1) ' for the phonon mode (Q,j) of energy conj.
The coefficient BI ~/Bnq& is given by

Bl /Bng ———g [&k,n
~

BV/BR (v)
~
k+Q, n'&&k+Q, n'[ BV/Mp(a')

~
k, n &]e

N;, a",n'

xr(m„m„~q, )-'"s ( —Q J ~)sa(Q J;~')5(s„„—e~+e.')

To derive this result, Bloch's theorem has been used and
the same conventions as in Ref. 17: M„ is the mass of the
ath atom in the unit cell at position r„, N the number of
unit cells in the crystal, e~(Q,j;~) are the polarization
vectors of the phonons obtained by solving the lattice
dynamical problem with some appropriate model. ii

Equation (11) shows that only phonons which couple to
an electronic state with the same energy s~+q „as the ini-
tial state sq„can make a contribution to I'q„(T) (real tran-
sitions). In a full nonadiabatic calculation, the 5 function
would become 5(s~ —

eq+q „+conj), but this correction
has negligible significance except for states at the extreme
top or bottom of a band where the broadening is neverthe-
less very small.

We now apply the results given above to the diamond
structure with the origin of the unit cell chosen to be such

I

+ V(G —G')S(G —G') ]ck„(G'),

fl—1/2 y c (G)ei(k+o) r

G
(12)

where V(G) is the local pseudopotential form factor and
S(G}the structure factor cos(G r). Equation (11) can be
written in the form convenient for numerical calculations:

that ~=xi —ri ——(——1, 1, 1)a/8 (midway between two
nearest-neighbor atoms). The electron energies s~„and
wave functions P~„are given by solving the secular equa-
tion

o= g I [«+G)' —e~. ]5oo

BI"~/Bno,.——+[I (k,n, n';Q) u(Q j;+)+e(k,n, n';Q) u(Q j;—)]'5(s&„—ej,+q „).J

The displacements u(Q, j,+) are the even and odd com-
binations of displacement of the two atoms in the unit cell
which are obtained from the phonon eigenvectors. ' We
have obtained these eigenvectors with Weber's bond-
charge inodel. The Pth component of I' was evaluated
to be"

I p(k, n, n';Q) —= g cq+q „(G')c~(G)(G'—G+Q)p
G,G'

X V(G' —G+Q) eos[(G' —G).r] .

The expression for ep is the same as that for I ~, except
that the cosine is replaced by the sine. Because of the 5
function in Eq. (13), the broadenings are expected to be
roughly proportional to the electronic density of states at
the energy of the initial state.

III. NUMERICAL PROCEDURE

Our aim is the evaluation of the temperature depen-
dence of the phonon-induced lifetime broadening I ~(T),
given by Eq. (10). We rewrite this equation as

I ~(T)=f dQg B(k,n;Q)[n (qTj) +'],

g 8(kn, Q)—:mg BI ~„/Bnq&5(Q —conj ) .

In Eq. (16) we have introduced a temperature-independent
electron-phonon spectral function g 8(kn, Q) similar to
g E(kn, Q) used for the temperature shift of the gap in
Refs. 17—19. The function g 8 corresponds to the densi-
ty of phonon states weighed by electron-phonon matrix
elements.

The first step of our procedure is to calculate the spec-
tral function g 8 and then to perform the integral over
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X5(Q ri—)gq) . (17)

Such a summation is constrained to the intersection of
two different constant-energy surfaces, one which corre-
sponds to electronic energy differences and the other to
phonon energies.

Allen has generalized the tetrahedron method to such
doubly constrained BZ summations. Simple analytic re-
sults have been obtained by linearly interpolating the ener-
gies and weight functions throughout a small tetrahed-
ron.

We have used this tetrahedron method to compute the
spectral function g 8(k,n;Q). The irreducible —,', th
wedge of the BZ was divided into 228 small tetrahedra
which correspond to a discrete mesh of 89 k points. As
in the calculations of the energy shifts with tempera-
ture, ' ' the bond-charge-model programs of Weber
were used. The band structure was calculated from Eq.
(12) using the local pseudopotential form factors from
Cohen and Bergstresser. ' For the V(Q) in Eq. (14), with

Q not equal to a reciprocal-lattice vector G, we used the
interpolation and the extrapolation to V(0)= —2sF/3,
shown in Fig. 1 of Ref. 18.

For an initial k state at the I point the Q sum in Eq.
(17) can be restricted to the irreducible wedge of the BZ.
For a general k point the sum can also be carried out over
the irreducible part of the BZ, then adding similar contri-
butions from all vectors in the star of k so as to obtain
g 8. For a k point along the A line this means that the
Q sum in Eq. (17) must be carried out in the —,', th wedge
of the BZ for the eight points of the star of

~

k
~
[1,1,1].

In this way it is possible to determine the temperature
dependence of the lifetime broadening I'q„(T) of every
electronic state in the BZ. We have calculated I q„(T) for
the following transitions in Si and Ge: the direct transi-
tions at the I' point, the E~ and E2 CP's, and the transi-
tions along the b, line. The E& transitions take place be-
tween the A3 valence band (VB) and the A~ conduction
band (CB) between

(2m/a)( —,', —,', —,
' )

and

(2~/a)( —,', —,', —,
' ) .

The region for the E2 transitions is not well defined. %'e
have used the points (2n/a)(0 9,0 1,0.1) fo. r S. i and
(2m/a)( —,', —,', —,

'
) for Ge as representative points. The

calculations must be carried out separately in each case
for the conduction- and the valence-band states. The
states at the absolute maximum of the VB (I 2s) and at
the absolute minimum of the CB (0.85X~ in Si and L ~ in
Ge), do not show any phonon-induced broadening since
there are no other electronic states with the same energy.

the phonon frequencies Q with the Bose-Einstein occupa-
tion factor in order to obtain the temperature dependence
of I ~. For calculating g 8 we must perform a summa-
tion over the BZ with two 5 functions of the kind

g 8(k,n;Q)=QW(k, n;Qj)5(sq+& „—s~)
QJ

This is the consequence of the assumption of negligible
phonon frequency. If this assumption were lifted band-
edge states would broaden slightly through phonon ab
sorption, i.e., at T+0.

IV. RESULTS

In Figs. 2 and 3 we show as an example the calculated
spectral functions g 8(Q) for initial states along the A
direction of Si, including those at the 1 and L points.
Figure 2 indicates that for the highest VB states the lead-
ing contribution to the broadening is due to the optical
phonons and increases with increasing separation from 1 .
Near the 1 point there is nearly no contribution from
acoustic phonons, close to the L point small structure re-
lated to acoustic phonons near the edge of the BZ is seen.
The total area under g 8(Q) increases with increasing
separation from the I point because of the increasing
electronic density of states. The corresponding sequence
of spectral functions for the lowest CB of Si can be seen
in Fig. 3. Here the area under g~8(Q) decreases with in-
creasing separation from the 1 point. The structure at
about 20 rneV indicates that the transverse acoustic pho-
nons, having a fiat dispersion near the X point, contribute

3—
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0..

i I I

0 10 20 30 40 50 60
A(meV)

FIG. 2. Dimensionless spectral functions g 8(Q) for the
highest valence-band state (VB) of Si. A sequence of k points
from L to I is shorn.
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0. FIG. 4. Temperature dependence of the broadening I q„of
valence-band (VB), and conduction-band (CB) states of Si along
the A direction of the Brillouin zone.

0
0 10 20 30 &0 50 60

I'(T)=1"0 1+ +I i .2

e e/T (18)

A {meV}

FIG. 3. Dimensionless spectral functions g~8(Q) for the
lowest conduction-band state (CB) of Si. A sequence of points
from L to I is shown.

Within the present theoretical treatment Eq. (18) can
only be rigorously justified if a group of phonons of fre-
quencies close to kse/A yield the dominant contribution

100

strongly to the broadening of the CB states in contrast to
the case of VB states.

Figures 4 and 5 show the temperature dependence of
the broadening of electronic states along the A direction
for the VB (lower part of figures} and the CB (upper part}
for Si and Ge, respectively. In Figs. 6 and 7 we display
the broadenings along the 5 line of Si and Ge, again for
the electronic states in the highest VB and lowest CB, in-
cluding also the broadening of two representative states
contributing to the Ez transition [(0.9,0.1,0.1} for Si and
(0.75,0.25,0.25) for Ge, in units of 2n/a]. The zero-point
broadening I {0)is proportional to the area under gi8(Q).
In the high-temperature limit there is a factor of
2k&T/AQ in the integrand which gives more weight to
the low-frequency phonons. Hence, a broadening strongly
increasing with T indicates a considerable contribution
from acoustic phonons.

In previous works experimental data for the tem-
perature dependence of the broadening of the CP's were
fitted with a phenomenological expression based on the
Bose-Einstein statistical factor which should take into ac-
count electron-phonon interactions with phonons of aver-
age frequency kae/A:

50

E 0—

200

f50

l i l

0 400
T (K)

800

FIG. 5. Temperature dependence of the broadening I ~ of
valence-band (VB) and conduction-band (CB}states of Ge along
the A direction of the BriBouin zone.
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I { i ) l ( ) ) I

0 X 0.%5X„

100
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] i ] ( I i I

0 400 800
T {K)

t00

50

FIG. 6. Temperature dependence of the broadening I q„of
valence-band (VB} and conduction-band (CB) states of Si along
the 6 direction of the Brillouin zone. The result for the
representative point for the E2 transitions (2m/a)(0. 9,0.1,0. 1}is
also included.

BI'~
I i (T)= [n(e)+-,'],

Bn
(19)

with 8 the temperature corresponding to the average pho-
non energy. We define the averaged electron-phonon de-
formation potential D as

=6ir[D(k, n )] N, (k, n),(
BIg„(g&)

n az Q

to I (T). Figures 2 and 3 suggest that this is usually the
case for the TO phonons except at very low temperatures.
In view of the success of Eq. (18) in fitting experimental
data, and of its simplicity, we have attempted to use it
here to fit the calculated I ( T). By taking into account all
three parameters (I'0, I,„and 8), the value of I, was in
most cases smaller than 2 meV, so that a fit of acceptable
quality could be performed with Eq. (18) for I i

——0, i.e.,
with only two parameters I 0 and 8. Values of I i+0 ob-
tained from fits to experimental data may correspond to
other broadening mechanisms (e.g., electron-electron in-
teraction, impurities, surface scattering). The parameters
I 0 and 8 obtained from the fits of all the calculated ini-
tial states of the valence and conduction bands of Si and
Ge are given in Table I. Note that I 0 gives the broaden-
ing at T=0. The average phonon frequency indicates
how large the contribution of the acoustic phonons to the
broadening is For.example, for the VB states of Si along
the A direction (see Fig. 2) this contribution is small.
This results in a high value for 8 (540 K). In the case of
the corresponding CB states, however, the smaller average
frequency of 0"=350 K indicates a larger acoustic phonon
contribution which can be clearly seen from Fig. 3. From
the fit parameters I o and 8 it is possible to determine an
average electron-phonon deformation potential D by per-
forming an average over the contributions to I q„(T) of
the whole BZ and over the phonon branches j. Thus,
from Eq. (10) we obtain

0,,

L 200

100

=6 [D(k,n)] N, (kn),
MBa

(20)

where (u ) is the averaged squared phonon amplitude, a
the lattice constant, ro an average phonon frequency,
which, in the spirit of Eq. (18), should be set equal to
kyrie/iri, and N, (k, n) the electronic density of states at the
energy of the initial state (k, n). The factor of 6 in Eq.
(20) takes into account the six phonon branches giving
contributions to the broadening. With this definition we
can write Eq. (19) in the following way:

I ~(T)=6m [D(k,n)] N, (k, n)

0
0

{ i I i I i 1

400 800
T (K)

(21)

Taking B=k~e/A, the deformation potential D is deter-
mined by the fit parameters I 0 and 8 from Eq. (18):

FIG. '7. Temperature dependence of the broadening I 1 of
valence-band (VB) and conduction-band (CB) states of Ge
along the 6 direction of the Brillouin zone. The result for

c rep1cscntative p01nt for thc E2 trans1t1ons
(2n./a)(0. 75,0.25,0.25) is also included.

2 1/2
Ma kg I 08

D(k, n)=
3M &,(k, n)

(22)

For the electronic density of states at the energy of the in-
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TABLE I. Values of the parameters I o and 8 obtained by fitting the calculated Lorentzian broadening parameter I versus tem-
perature T to the equation I (T)=I 0[1+2/(e ~ —1)j for several electronic states of the valence and conduction band of Si and Ge.
Furthermore, the electronic density of states W, are hsted, calculated eath the tetrahedron method for the electron energies. D is an
averaged electron-phonon deformation potential, defined in Eq. (20).

N,
I o {meV) 8 {K) (1 eV 'atom ') D (eV)

Valence band

I 0 (meV) 8 {K) (1 eV 'atom ') D (eV)

0.25L
0.50L
0.75L
L3
0.25X
0.SOX

0.75X
Xg
(2~/a)(0. 9,0.1,0.1)
{2m /a)(0. 75,0.25.0.25)

0
10.88(14) 620{9)
25.82(28) 583(7)
34.07(35) 559(6)
42.18(43) 554(7)
25.83(28) 583(7)
43.78{47) 514(6)
37.91(48) 471(6)
31.59(54) 436(8)
33,66(53) 446(8)

0.089
0.230
0.351
0.484
0.2S4
0.616
0.722
0.712
0.738

11.7
10.9
9.9
9.4

10.4
8.1

6.7
5.9
6.1

8.31(7) 390(4)
21.43(19) 358(3)
29.42{26) 343(3)
36.73(34) 337(3)
19.30(20) 360{4)
37.02(38) 317(3)
28.87(38) 285(4)
24.79{41) 274(5)

31.87(38) 299(4)

0.097
0.2S2
0.418
0.591
0.085
0.252
0.644
0.713

13.1
12.5
11.1
10.3
20.4
15.4
8.1

7.0

8.0

~15
r2
0.25L
0.50L
0.75L
Ll
0.25X
0.SOX

0.75X
X)
(2m/a)(0. 9,0. 1,0. 1)
{2m /a)(0. 75,0.25,0.25)

23.69{32)
25.13(28)
27.71(60)
20.17(99)
10.56(20)
8.91(17)

29.35(43)
9.40(15)
1.004{3)
0.32(1)
3.19(6)

525(8)
223(3)
418(10)
405{21)
398(8)
389(8)
484(8)
492(9)
393(15)
414(17)
480{10)

Conduction band
0.468 7.0
0.856 3.4
0.690 5.5
0.624 4.9
0.370 4.5
0.315 4.5
0.696 6.1

0.208 6.3
0.012 7.7
0.022 3.3
0.085 5.7

15.63(44) 237(7)
1.459(1) 320(2)

12.94(27) 230(5)
5.84(10) 2S2(5)
0.54(1) 245(6)
0

23.08(55) 244{6)
7.99(17) 258(6)
0.14(1) 229{8)
1.179{4) 251(8)

12.94(36) 234(7)

0.406
0.343
0.587
0.278
0.037

0.710
0.305
0.008
0.075

0.498

6.8
2.6
5.1

5.2
4.3

6.4
5.9
4.S
4.5

itial state we took the values obtained with the tetrahed-
ron method for the electrons. These values of N, (k, n)
as well as those for the average ele:tron-phonon deforma-
tion potential D(k, n) are listed in Table I for electronic
states along the A and 5 lines in the BZ of Si and Ge.

We should mention that for semiconducting lead chal-
cogenides a detailed study of the broadening of critical
points, as obtained by photoemission spectra, has been
performed. From the linear dependence of the broaden-
ings with temperature a similarly defined averaged defor-
mation potential has been determined to be D =30 eV for
PbS and D =23 eV for PbSe, values which when divided
by a factor of v 6 (resulting from a different definition of
D) are similar to those obtained here for the VB of Si and
Ge.

V. BROADENING OF CRITICAL POINTS

We now combine the results of the preceding section
for the broadening of the valence- and conduction-band
states in order to obtain the temperature-dependent
broadening of the critical points„ I =I'vs+I zz. The re-
sults are compared with data measured by spectroscopic
ellipsometry, as far as available

A. E~ critical points

The lifetime broadening of the Ei transitions is taken
to be the average of those for k = (n /2a )(1,1, 1),
k = (3n /4a )(1,1, 1), and k = (m /a )( 1, 1,1). Figure 8(a)
shows the resulting broadening for Si and Fig. 8(b) shows
that for Ge (solid lines), together with the experimental
data. The parameters for the fits of the calculated data to
Eq. (18) for I i

——0, as well as the parameters from the fit
of the experimental data, are given in Table II. In the
case of Si, the Eo gap is nearly degenerate with the Ei
gap at room temperature, so that it is difficult to distin-
guish these two contributions. However, at l0 K there
seems to be a separation of about 100 meV (measured by
electroreflectance ). The Ei and Eo transitions have also
been resolved with ellipsometry, thus obtaining data for
the broadening of the Ei as well as for the Eo gap up to
280 K. The corresponding experimental points are
shown in Fig. 8(a) as open squares (I"z ) and open trian-

gles (I, ). At higher temperatures (T~ 280 K) the points

obtained from the fits (solid squares) represent a mixture
between ihe two contributions. Our band-structure calcu-
lations do not take into account in the spin-orbit splitting,
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si (a)
of E, and Ei+b, i, the one for E, +b, i showing higher
values because of the higher density of states for the lower
VB split by spin-orbit interaction. The calculated theoret-
ical solid line, which should thus be interpreted as a mean
value of Ei and E, +b, i, shows good agreement with the
experimental data.
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FIG. 8. Lifetime broadening of the E~ gap for (a) Si and (b)
Ge and of the Eo gap for Si (a), with energy nearly degenerate
with Ei. Solid lines: calculated phonon-induced broadening.
(a) Experimental points: Q and C3, two critical points in the E[
region. 8, one CP in the E~ region. (b} Dotted lines are fits to
the experimental data of the E~ and E~+ht transitions.

which for the Ei transitions of Si is nevertheless about 30
meV and thus smaller than the lifetime broadening.

For Ge, however, the spin-orbit splitting 6& can be
clearly resolved in ellipsometric and other spectra
(hi —187 meV, Ref. 4). The dotted lines in Fig. 8(b) indi-
cate the fits to the experimental data for the broadenings

B. Direct gaps Eo and Eo

The parameters describing the lifetime broadening of
the direct gaps Ez and Ec with the help of Eq. (18) (for
I i

——0) are also given in Table II. As already mentioned
in the preceding section, the lowest direct transition in Si,
Eo„ is nearly degenerate with the Ei critical point. At
low temperatures, however, we succeeded in separating
the Eo from the Ei transitions. The experimental points
(open triangles) are shown in Fig. 8(a), together with the
theoretical curve. Bix:ause of the low strength of the Eo
transitions, the values for I, scatter and seem to be sys-

0
tematically slightly larger than the calculated ones.

The "Eo" transitions in Si, from the I z5 VB to the I 2

CB states (4.2 eV, Ref. 29), are very weak and, to our
knowledge, no experimental data for the temperature
dependence of their broadening parameter are available.
the same is true for the Ez transitions of Ge, taking place
between the I z& VB state and the I ~q CB state. Here be-

cause of the spin-orbit splitting of the VB states, bo, as
well as of the CB states, b.ii, one obtains a rather broad
structure in the spectrum of the dielectric constant arising
from the Eo and ED+ho CP's. It was not possible to
resolve these points reliably, especially at high tempera-
ture. " The lowest direct transition of Ge (Eo) is strongly
affected by exciton interaction. Only the I z CB state
broadens with increasing temperature, within the approxi-
mation used. For this broadening we found rather small
values (see Table I), due, in part, to the small density of
electronic states.

TABLE II. Values of the parameters I o and 8 obtained by fitting the calculated broadening parameter I versus temperature T to
the equation I (T)= I 0[1+2/(e~r —11], labeled as theory. For comparison, the fit parameters for the experimental data are listed.
For the E2 transition different parameters are obtained for fitting the critical point line shape with a 1D or 2D model.

Eo gap theory
Eo gap theory
Ei gap theory
Et gap experiment

E2 gap theory
E2 gap experiment 1D
E2 gap experiment 2D

I o (meV)

23.7(3)
25.1(3)
47.4(8)
59'

36.8(6)

18'

525(8)
223(3)
505(10}
743'

449(8)

261"

r, (meV)

59

I o (meV)

1.459(1)
15.6(4)
31.3(3)
25'
43'
45.0(7)
72'
69'

320(2)
237(7)
336(4)

484'
278(5)
429'
499'

I i (meV)

12
9c

31'
8e

'Reference 7, data for the mixture of E& and Eo contributions fitted from 280 to 750
Reference 4, experimental data for the Ei transition, fitted with Eq. (18).

'Reference 4, experimental data for the E, +hi transition, fitted with Eq. (18).
d Reference 7, experimental data fitted with Eq. (18).
'Reference 4, experimental data fitted with Eq. (18).

K to I ( T)= I 0[ 1+2/(ee~r —1)).
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FIG. 9. Lifetime broadening of the E2 gap for (a) Si and (b)
Ge. Sohd lines: phonon-induced broadening calculated for a
representative point of the E2 transitions. Experimental data,
fitted with a 1D line shape, are shown by the solid points for (a)
Si and the dashed line for (b) Ge, the data fitted with a 2D line
shape are indicated by open points for (a) Si and by a dotted line
for Ge (b).

C. E2 critical points

The origin of the strong E2 structure in the optical
spectra is not well defined. It has been attributed to tran-
sitions in several regions of the BZ, thus rather poorly lo-
calized in k space. To determine the broadening we have
used the transitions at the point (2n /a)(0. 9,0. 1,0. I ) for Si
and {2m/a)(0. 75,0.25,0.25) for Ge as representative.
Fitting the c@culated temperature-dependent broadening
to Eq. (18) (with I i

——0) yields the parameters given in
Table II.

In Fig. 9 we show the comparison between theoretical
and experimental data, the last ones obtained again from
ellipsometrical measurements, by fitting the second
derivative of the dielectric function with respect to the
photon energy to theoretical CP line shapes. M i' In the
case of the E2 CP it is possible to flt its line shape with
models having different dimensionality. For Si at room
temperature the fits were performed with a one-
dimensional (1D) maximum for E2. However, in doing
the temperature-dependent measurements of the dielectric
function of Ge, InSb, and a-Sn, it appeared that a
two-dimensional {2D) CP is the best representation of this

structure over the entire temperature range. In Fig. 9
we have plotted for comparison the experimental data ob-
tained by fitting a 1D [solid points for Si, Fig. 9(a);
dashed line for Ge, Fig. 9(b}];and a 2D line shape [open
points for Si, Fig. 9(a); dotted line for Ge, Fig. 9(b)], to-
gether with the calculated curve for the broadening pa-
rameter of Ez. The experimental data fitted with a 2D
line shape give smaller broadening parameters, lying
closer to the calculated ones. The facts suggest that the
E2 transitions can, indeed, be better represented by two-
dimensional critical points. However, the local pseudopo-
tential band structure used in our calculations underesti-
mates the E2 CP energies by about 10%. A higher CP
energy would lead to a higher electronic density of states
and thus to higher values for the broadening parameters.

VI. DISCUSSION

To calculate the broadenings, only electronic states ly-
ing in the same energy region as the initial state are taken
into account [see Eq. (11)]. Thus the method is sensitive
to the details of the band-structure model and to the accu-
racy of the interpolation between the mesh of little
tetrahedra used to perform the BZ integration. We have
used a simple local pseudopotential band structure
without spin-orbit splittings which underestimates the gap
energy near the X point by about 10%. The BZ was
chosen to be divided into 228 little tetrahedra in the ir-
reducible —,', th wedge of the BZ, corresponding to eight
intervals lying between the I and the X point. The
tetrahedron method performs linear interpolations be-
tween neighboring points, so that band bendings are flat-
tened. However, this effect should lead only to small er-
rors in comparison with inaccuracies of the electron ener-

gies inherent to the band-structure calculation.
Our calculation assurres negligibly small phonon ener-

gies (as compared with electronic energies}. A more gen-
eral theory in which this restriction is lifted has been
given by Allen. ' It is based on Feynman-Dyson pertur-
bation theory instead of the Rayleigh-Schrodinger version
used here. In the Feynman-Dyson expressions for the
electron self-energies the complex perturbed energies
c~„+de~+iI ~ appear in the energy denominators, to-
gether with the phonon frequencies. The latter appear
with different signs in the expressions which correspond
to phonon absorption and phonon emission. The changes
induced by the finite phonon frequencies should thus
nearly cancel at high temperatures except near a band
edge where the density of electronic states exhibits a
strong singularity.

The energy hei, „ leads to relative shifts of the band
structure and thus to changes in the density of states N,
with increasing temperature. This should be important if
different parts of the band structure having nearly the
same energy shift with temperature at different rates (e.g.,
the I 2 and the 1.

&
CB states of Ge. The difference in

their shifts at 800 K is 120 meV' ).
We can estimate the error due to neglecting the differ-

ence of perturbed and unperturbed electron energy and the
phonon energy by examining the corresponding change in
the electronic density of states:
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41 /I'=(dE, /dE)4F-/N, , (23)

where && represents the relative energy shift plus or
minus the phonon energy. Typical values for dX, /dE are
for both Si and Ge 1/(eV atom). From Eq. (23) it is ob-
vious that small values for N, such as occur near the VB
maximum and the CB minimum will produce particularly
large errors in I (T). However, the electronic states con-
tributing to most of the interband critical points lie in re-
gions with larger density of states, a fact which reduces
the error. Taking into account these corrections and using
a more realistic band structure would strongly increase the
computer time required for the calculation. [Our calcula-
tion of the broadening of the VB state at the 1. point of Si
took already more than 2 h of central processing unit
(CPU) time on a Honeywell-Bull 60-SOP computer. ]

It should also be possible, in principle, to calculate the
expression for Bl"t /t)n~j [Eq. (13)], by replacing the 5
function 5(et,„—et, +& „)by its representation:

5(x)= lim
1

(24)a-o+ m ~2++2

and performing only one integration with the standard
tetrahedron method. The corresponding real part would
then be the principal value of 1/x:

f 1 . xP —dx = 11m
x s o+ ~2++2 (25)

The calculations of the temperature shift' ' have been
performed with expressions corresponding to Eq. (25), us-

ing a broadening of 4=0.01 Ry. ' This large value was
chosen so as to smooth the noise arising from the finite-
mesh size of the calculation. For a good representation of
the 5 function [Eq. (24)], however„ it is necessary to
choose a much smaller value of 4. By doing so, because
of our coarse mesh, energy bands crossing the energy of
the initial state e~„may be incorrectly taken into account

if their energies at neighboring mesh points are very dif-
ferent from each other. To circumvent this problem, we
used the tetrahedron method in the form of Ref. 23 with
linear interpolation of the values of the mesh points. The
results obtained and the comparison with experimental
data are quite rewarding and justify the adequacy of the
procedure employed.

VII. CONCLUSIONS

We have calculated the lifetime broadening of electron-
ic states induced by phonons and its temperature depen-
dence in germanium and silicon. The results show good
agreement with experimental data obtained by means of
spectroscopic ellipsometry. Our model is based on a per-
turbative calculation of the imaginary part of the self-
energy to second order in atomic displacements.

The calculated temperature dependence of the broaden-
ings can be fitted with a phenomenological expression
based on Bose-Einstein factors and containing two adjust-
able parameters, one of them an average phonon tempera-
ture. The calculations were performed for points along
the A and 4 lines, and a few other points of the BZ, from
which the broadenings of the Eo, Eo, E, , and Ez critical
points could be determined. The averaged frequencies of
the phonons involved turned out to be different for VB
and CB states at the same point of the BZ. An averaged
electron-phonon deformation potential was defined to
describe the strength of the coupling.
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