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The theory of a Bloch electron moving in the presence of a homogeneous electric field is reviewed
and objections to the conventional derivations are discussed. A new derivation of the time develop-
ment of a Bloch electron moving in a homogeneous, but time-dependent, electric field is presented
using a vector potential to describe the field rather than the usual scalar potential. This new treat-
ment avoids all the basic assumptions of the conventional derivations and demonstrates that a Bloch
electron will oscillate in a single band with the Bloch period if a homogeneous electric field is
abruptly turned on, with a tunneling probability into other bands given by the conventional expres-
sion. It is also shown that the calculated optical absorption will have the same ladderlike structure
that would be obtained if Wannier-Stark quantized energy levels are assumed, although the present
calculation makes no such assumption. The previous objections to the existence of Bloch oscillations
for electrons in a perfect periodic potential are examined and found to be irrelevant provided the
tunneling probability per Bloch oscillation period is much less than one, a condition that is generally
satisfied for typical elemental and compound semiconductors for electric fields smaller than
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10° V/cm.

I. INTRODUCTION

Ever since the initial application of quantum mechanics
to the dynamics of electrons in solids, the analysis of
Bloch electrons moving in a homogeneous electric field
has been of central importance.

By employing quasiclassical considerations, Bloch'
demonstrated that a wave packet composed of a superpo-
sition of states from a single band peaked about some
quasimomentum, 7k, moves with a group velocity given
by the gradient of the energy-band function with respect
to the quasimomentum and that the time rate of change
of the quasimomentum is equal to F, the force on the
electron due to the external field which is present in addi-
tion to the crystal periodic potential. Thus, neglecting in-
terband transitions, the quasimomentum of a Bloch elec-
tron in a homogeneous electric field will be uniformly ac-
celerated into the next Brillouin zone in a repeated zone
scheme (or equivalently undergoes an umklapp process
back into the first zone) with the Bloch period of oscilla-
tion given by #G/F, where G is the length of the
reciprocal-lattice vector in the direction of the field with a
corresponding oscillation of the electron wave packet in
configuration space.

Early calculations of the tunneling probability into oth-
er bands in which the electric field is represented by a
time-independent scalar potential were made by Zener” us-
ing a Wentzel-Kramers-Brillouin (WKB) generalization of
Bloch functions, by Houston? using accelerated Bloch
states (Houston states), and subsequently by Kane* and
Argyres® who employed the crystal-momentum represen-
tation (CMR) which leads to Wannier-Stark® quantized
energy levels. Their calculations lead to the conclusion
that the tunneling rate per Bloch period is <<1 for elec-
tric fields <10° V/cm for typical band parameters corre-
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sponding to elemental or compound semiconductors.’

Despite the apparent agreement among these calcula-
tions, the validity of employing the CMR or Houston
functions to describe electrons moving in a periodic poten-
tial and an applied electric field potential has been disput-
ed. Some of the main criticisms may be summarized as
follows.

(a) The eigenvalues of the energy of the time-
independent Schrodinger equation are not quantized but
are continuous with all values of E allowed.

(b) Since the Hamiltonian is not periodic on the boun-
daries of a (finite) crystal, it is not clear that one can em-
ploy the CMR or Houston functions since Bloch func-
tions are periodic on the boundary, i.e., a superposition of
Bloch functions to represent the wave function ¢ will au-
tomatically yield a ¢ which is periodic on the boundary,
but the solution of the time-dependent Schrodinger equa-
tion, including the nonperiodic scalar potential,
¢ = —e & 1, may not have this property.

(c) The CMR of the operator x which enters in the cal-
culation may not be well defined because x¢,, cannot
be represented as a linear combination of Bloch states,
ie., | X@ny | 2d7 diverges as the crystal approaches
infinite extent in the x direction.

We give below a brief historical account concerning these
controversies.

In a series of papers, Wannier® and collaborators®® have
argued that in the presence of a homogeneous electric
field, one can modify the Bloch functions in such a way
that there is no interband coupling and an electron in a
crystal will move within one band with its k changing in
time according to Bloch’s theory. Furthermore, if
k(z =0) is in the direction of a reciprocal-lattice vector,
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the periodic motion in k space gives rise to an energy
quantization with AE = Fa where a is the lattice constant
in the direction of the field, the so-called Wannier-Stark
ladders. “The basis for this idea is that energy bands arise
from the translational symmetry of the crystalline field
and this symmetry is not removed physically by the pres-
ence of the applied field,”® i.e., the force on the electron is
periodic with the lattice period.

These arguments have been refuted by Zak,'° who
shows that although it immediately follows from the one-
dimensional time-independent Schrodinger equation for
the infinite crystal with lattice constant g, that if E is an
eigenvalue, so is E +naF an eigenvalue, the spectrum of
E is continuous with — «0 < E < 0, so the ladders in ener-
gy do not exist. Zak also points out that for a finite crys-
tal, the use of periodic boundary conditions arising from
the idea of bending the string of atoms into a chain is no
longer valid because the potential of the field will become
discontinuous so the end points cannot be considered
equivalent. Wannier'! has argued that Zak’s critique of
his proof is not valid, but concedes that the Stark ladders
may be metastable resonant states limited by interband
tunneling, as are the electron states in the hydrogen atom
in the presence of a constant electric field. However,
Wannier’s arguments were immediately rejected by Zak,'?
who claims that Wannier’s original equation was incorrect
as shown using the kq representation.

Rabinovitch!® has further rigorously shown that if the
usual Born—von Kirman periodic boundary conditions
are employed for a finite one-dimensional crystal, i.e.,
¥(x +L)=1(x), then there are no solutions of the time-
independent Schrédinger equation if the potential includes
the effect of the electric field. He also argues that if one
employs the less restrictive periodic boundary conditions
Y(0)=4y(L) and 99(0)/dx =3dy(L)/3dx, then the symme-
try argument that leads to the Stark ladders is no longer
valid. Thus, in either case, for a finite crystal, no Stark
ladders are obtained.

Rabinovitch and Zak'* have numerically solved the
Schrédinger equation for the energy eigenvalues and
eigenfunctions for a Mathieu-type model crystal in an
electric field of finite range. They find that the energy
eigenfunctions are drastically affected by the addition of
boundary conditions, whereas the energy eigenvalues are
not significantly affected. These eigenvalues show a com-
plete absence of the Stark ladder spectrum.

Rabinovitch and Zak!® have extended Zak’s'® earlier ar-
guments to the question of Bloch oscillation. They argue
that since neglecting the interband coupling terms in the
time-independent Schrodinger equation in the CMR leads
incorrectly to energy quantization, then the interband
terms cannot be neglected in the lowest approximation be-
cause they are the same order as the terms retained. Ap-
plying the same reasoning to the time-dependent equation,
they conclude (without offering a proof) that neglecting
the interband terms as a first approximation, as done by
Houston, is incorrect for times equal to or longer than the
period of one Bloch oscillation. On the basis of treating
the problem in the kq representation,'® they conclude that
the electron does not execute a Bloch oscillation because
the eigenvalue E is continuous and therefore cannot be as-

signed a band index.

Nevertheless, shortly before these latter arguments ap-
peared, experimental results were obtained by Koss and
Lambert,!” which were interpreted as supporting the ex-
istence of Wannier-Stark levels. They found that the ob-
served low-temperature optical absorption of GaAs in a
strong electric field (& ~10° V/cm) closely followed the
theoretical predictions of Callaway,'® which were based on
employing Kane’s wave function and Wannier-Stark
quantized energy levels. The ‘“staircase” in the optical ab-
sorption as a function of incident photon energy was both
qualitatively and quantitatively in agreement with theoret-
ical predictions assuming quantized energy levels.

More recently, Churchill and Holmstrom!® have re-
viewed the theory of Bloch oscillations. They argue that,
since for free electrons, an electron wave packet is uni-
formly accelerated by a constant electric field, they con-
clude “that the Bloch oscillation model, in which inter-
band transitions are discounted, gives an unrealistic pic-
ture, since it requires a discontinuous change in the form
v(t) from a linear to an oscillating function of time when
even a small lattice potential is added.” They then show
that if transitions into adjacent bands take place at every
Brillouin-zone (BZ) edge, then the resulting velocity con-
verges to the empty lattice case as the strength of the
periodic potential approaches zero. They conclude that
the whole question of electron motion under the simul-
taneous influence of a periodic lattice potential and an ap-
plied field ought to be thoroughly reviewed.

In a subsequent paper,”® they construct exact solutions
¥(x,t) of the time-dependent Schrodinger equation by tak-
ing linear combinations of the solutions of the time-
independent Schrddinger equation with energies corre-
sponding to a Stark ladder, ie., E,=¢+naF,
— o <n <« for a one-dimensional model. Assuming
this series converges, they show that the wave function
can be written as a Bloch-like state with a time-dependent
wave vector in agreement with Wannier’s result.®* Howev-
er, here all values of € are allowed in agreement with
Zak.' They also show that the solutions ¥(x,t) repeat
after a period of one Bloch oscillation. However, al-
though the ¥(x,?) are Bloch-like they do not reduce to the
usual Bloch state for F =0, i.e., these functions are not
adiabatically connected to the zero-field state in agree-
ment with the results of Wannier and Van Dyke.® Furth-
ermore, they show these solutions do not satisfy
Born—von Karman boundary conditions, since the latter
would require

k(n=k'+EL_ 2
# na
where s is some integer, which is clearly impossible since ¢
is a continuous variable.

Finally, they argue that ¥(x,?) is actually a standing
wave and thus the solutions of the time-dependent equa-
tion carry no current and hence no Bloch oscillations ex-
ist. They conclude that “diagrams which are sometimes
used to portray trajectories of k (¢) superimposed upon the
constant-energy contours within the Brillouin zone are in-
correct and misleading.”

The fact that these “accelerated Bloch functions”?° do
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not reduce to the usual Bloch functions as F—0 is related
to the fact that even for an infinitesimal F, the potential
— Fx diverges as | X | — 0, SO

lim lim Fxs lim lim Fx .

F50 x> x—>o00 F—
Thus if we consider the solutions for the infinite crystal,
they will not reduce to the usual Bloch functions as F—0
because the potential due to the field becomes infinite as
| x| —w and makes the eigenfunctions nonanalytic
functions of the field.”!

The difficulty of treating the operator x in the CMR
also poses some mathematical ?roblems as already noted
in (c) above. However, Blount?” has argued that these dif-
ficulties can be surmounted and that the operator x can,
in the right context, be given a Bloch-state representation.

In order to clarify our understanding of the behavior of
Bloch electrons moving in a homogeneous electric field, it
would be of considerable value to develop a procedure
that would be valid for a finite crystal (thus avoiding the
difficulties inherent in treating the potential — Fx in an
infinite crystal), employing periodic boundary conditions
only on solutions of equations that are explicitly periodic
(thus avoiding the problem pointed out by Rabinovitch),
without any assumption about the nature of the allowed
energy spectrum (thus avoiding the controversy about
Wannier-Stark levels). In Sec. II we shall do so. Then, in
Sec. IIT we shall discuss the validity of the objections to
the possibility of Bloch oscillations raised in Refs. 15, 19,
and 20.

II. BLOCH ELECTRON IN A HOMOGENEOUS
ELECTRIC FIELD DESCRIBED BY
A YECTOR POTENTIAL

We consider the time evolution of an electron in a
Bloch state for ¢ <0 under the influence of an electric
field, &(z), turned on at t=0. The time-dependent
Schrodinger equation may then be written

2
Hytr,n= [[R=€/OAL )1y 588
2m ot
where
t
A=—c [ &) 2

and v (r) is the crystal periodic potential.

It is convenient to obtain ¥(r,¢) from ¥(r, t =0) by em-
ploying an eigenfunction expansion whose elements are
the instantaneous solutions of the same Hamiltonian, i.e.,

_ 2
L%Mm}-v(r) i(r,t)=¢;(t)i(r,1) , (3)

where the g;(z) are, in general, time dependent because
A= A(1). Then for each ¢ the set {¢;} can be chosen to
be C—O—N and can be used as a basis in which to expand
Y. (After this paper was completed we learned that Kit-
tel*® has considered the motion of an electron in a homo-
geneous time-dependent electric field by employing a vec-
tor potential. His treatment is primarily concerned with
proving the acceleration theorem for an electron confined

to a single band, whereas we shall include an analysis of
the effects of interband coupling.)

Now, for each t, H is invariant under a crystal lattice
translation because v (r) is periodic and A is independent
of r for a homogeneous electric field. This is the funda-
mental advantage of treating the effect of the field in
terms of a vector potential instead of a scalar potential,
i.e., the Hamiltonian maintains its periodicity as does the
force on the electron. The apparent disadvantage is that
even if & is time independent for ¢ >0, the vector poten-
tial is still time dependent, so the eigenvalues, €;(¢), will be
time dependent.

The solutions of Eq. (3) are easily obtained by substitut-
ing

pir,t)=e'X/%g,(x,1) @)

into Eq. (3) with X'= A-r. The resulting equation for ¢;
is

~L2+v(r)]¢;=ei¢i (5)
2m
with solutions
¢ =dni(r)
and
g =¢g,(k), (6)

i.e., the Bloch functions with €,(k), the energy band func-
tions of the unperturbed crystal. Then from Egs. (4) and
(6)

di(r,r)=e® At/ Ag (r). @)

Furthermore, since H is invariant under a lattice transla-
tion, we can define the allowed values of k using periodic
boundary conditions on the ¢;. The result is

eA n;
e +k—§ N, G;, (8)
where G; (i =1,2,3) are the primitive reciprocal-lattice
vectors, N; are the number of cells in the i direction, and
n; are integers with — N;/2 <n; <N;/2 in order to avoid
redundant solutions.

Therefore, in order for periodic boundary conditions to
be satisfied, the k must be functions of ¢ which satisfy

fik=—2A="—%(—c®)=e&=F. )
(4 C

Thus the ¢, are precisely the Houston functions which
are derived here without making any assumption about
the neglect of interband matrix elements but arise instead
as the exact time-dependent eigenfunctions of the time-
dependent Hamiltonian of the system. In this system it
follows from Eq. (8) and the time dependence of A(t) that
the BZ describing the allowed k(z) values is itself time
dependent, i.e., the periodic boundary conditions lead to
BZ boundaries that move in time so as time increases the
electron wave vector does not undergo an umklapp pro-
cess back to the other side of the BZ, but continues with
continuous values of k(z) in the time-dependent zone.
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Thus, the problem of employing periodic boundary condi-
tions on the eigenfunctions to be used in an expansion and
simultaneously maintaining #ik=F when one employs a
time-independent gauge with ¢=—e&-r is eliminated
here from the outset.”° Then substituting

Y(r,0)=2 a;,(t)¢;(r,1) (10)
i
into Eq. (1) and multiplying both sides of the resultant

equation by exp( — ie A-r/fic)$ and integrating over the
volume of the crystal at time ¢ yields

fact that e A /fic +k is time independent according to Eq.
(8) and

K 3 dkx F 3 .
3y U= gy Un g = 5 g, U

Here U,, is the periodic part of the Bloch function and
X ()= f "“ak Uyndr . (12)

It follows from Eq. (11) that the coefficients a,;(, are
coupled only to the a, (), i.e., coupled only to the same k.

da Therefore for a given k, lettin
en(k(8))apyn=ifi gkm +F2Xm| (k())apy 8 &

(11) Gnin=an(texp |- — . eatktear’ (13)

where we have specialized to the case & =& (£)7 and have
employed the orthonormality of the Bloch functions, the  in Eq. (11) yields
J
F(1)
(1) =" za,, (DX k(1)) exp |+ f [en k(1) —eq(k(2))]dt’ (14)

which is equivalent to Houston’s result which he derived.employing a scalar potential to represent the effect of the elec-
tric field. However, unlike Houston’s method we have not employed an expansion which is periodic on the boundaries to
find the solution corresponding to a nonperiodic Hamiltonian nor have we required the CMR of the operator x as re-
quired in the usual time-dependent perturbation theory formalism. In the Appendix we show the equivalence of the
Houston expansion and that given by Eq. (10) by employing a gauge transformation.

If initially, before the field is turned on, the electron state can be described by a Bloch wave in band n with
k=k(¢t =0), then at 1 =0

Ay =8, , (15)

and for sufficiently short times for which a, << 1, n's£n, we can substitute Eq. (15) into Eq. (14) to obtain

()= f F(t)

Xon(k(2'))exp | — t' (16)

f [en(k(z'"))—¢€,(k(2"))]dt" |d

Specializing to the case F =const for ¢ > 0 for a field in the direction of a reciprocal-lattice vector G and evaluating the
integral for N traversals of a BZ by employing the periodicity of X,,(k) and ¢,(k), we obtain

2
.2 : k
2 Sin(BN/2) G2 ik , , ,

|a,(NT) | ——_—sinz(B/Z) f__G/ZX,,-,,(k)exp F fo [en (ks k) —¢, (ks k) )dky |dky | (17)

where
=1

B= N G/Z[e,, (k) —€, (k) ]dk, (18)

and T is the period for one traversal (i.e., one Bloch oscillation) of the BZ given by
#iG
T= F (19)

For large N, | @, |? will increase provided B—2m(M +8) with M an integer and 6 << 1 in which case
sin*(BN /2)/sin*(B/2)—N?

with a width ~1/N. Argyres® has shown using a similar expression, that the corresponding transmission coefficient, i.e.,
the transmission probability per period T arising from Eq. (17) is

. kx
+ Lo lemtkioki) —ea ki k) Jdks |dky

G2
| f X,n(k)exp , (20)
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which is equivalent to Kane’s result.* Using the expres-
sion for P,, obtained by Kane in a two-band model, the
tunneling probability is < 10~!7 for typical band parame-
ters’ for & < 10° V/cm which leads to the conclusion that
if scattering is neglected the wave function given by Eq.
(7) is a good approximation to the exact wave function for
many Bloch oscillations provided NP,, << 1. In addition,
it is easy to show that the condition B=27M is equivalent
to the requirement in the Kane-Argyres theory that elastic
tunneling takes place only between Wannier-Stark quan-
tized energy states. This follows from the fact that in the
latter theory the Stark energy levels, E,,, are given by

—f oy [Env—en(K)]dk, =27v ,
where v is an integer. Therefore

G/2
—f o [Env—8(K)]
—[Epy—en(K)]}dky =2m(v—1') .

S peatk(e))exp

a,(t)~

o
5 Jo Lenlkle) —e, (ke ) 20 )Jdr”
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Thus, if E,,=E,, to allow elastic tunneling,

F f G/z[e"(k —¢g,(k)]ldk, =2m(v—+')=27M ,

F=F

I

therefore, although we have not had to determine whether
the system has discrete Stark-like levels, our calculation
automatically gives rise to a selection rule which is
equivalent to that which would be obtained by requiring
conservation of energy for tunneling between Stark levels
in different bands.

Furthermore, if we wish to consider optical absorption
while representing the effect of the homogeneous electric
field by a vector potential as done above we must add to
this vector potential a vector potential Agg representing
the incident radiation field. If we treat the resulting
P Agr term in the Hamiltonian as a perturbation and
neglect the terms in | Agg|? and X,, as small, we can
calculate the |a,(t)|? as performed above. The result
analogous to Eq. (16) for the perturbation would then be

dat’, 21

where we have, as usual, neglected the wave vector of the photon. Then, making the same change of variables that led to
Eq. (17), and evaluating the integral as a sum corresponding to N traversals of the BZ, we would obtain the result analo-

gous to Eq. (17), i.e.,

inX(B'N/2) | 6/
(NT)| 2~ SDUBEN/2) (K
et ND == 2) JZeaprntex |
where
G/2
=—f oy LEwlK) —Eq (K) £ i ]dk, (23)

As in the tunneling case, |a, |* continues to grow if
B'=2wM’ where M’ is an integer. It then follows from
Eq. (23) that if M'—>M'+1, o—w + Aw, where

—;:—ﬁAwG =21
or
27F
filo=—1—-, 4
G (24)

which is exactly the energy spacing between Wannier-
Stark levels. Thus the increase in optical absorption ex-
perimentally obtained by Koss and Lambert!” can also be
derived without requiring the assumption of Stark quan-
tized energy levels,'® the enhanced absorption at these
values of w arising purely from a selection rule involving
the Houston functions.

In summary, in this section we have considered the
dynamics of a Bloch electron in a homogeneous electric
field using a time-dependent formalism in which the elec-
tric field is represented by a time-dependent vector poten-
tial that is independent of position. The Hamiltonian
then has the same spatial periodicity as the crystal poten-

f [en(K') —e,(K') i )dk;,

2

dk, | , (22)

tial. It is then possible to employ periodic boundary con-
ditions for a finite crystal to enumerate the (time-
dependent) eigenfunctions of the instantaneous Hamiltoni-
an. These eigenfunctions are the Houston states multi-
plied by a phase factor that is dependent on the vector po-
tential. The time-dependent wave vectors k(z) then
change continuously with time and are allowed to take on
all values in a periodic zone scheme. The electron dynam-
ics are completely described by the energy-band functions
and Bloch states of the unperturbed crystal.

This method avoids any discussion of the energy eigen-
values of the time-independent Hamiltonian that would be
obtained if the effect of the electric field were represented
by a scalar potential. It also avoids the need to impose
boundary conditions on a nontranslationally invariant
Hamiltonian.

Moreover, by employing a vector potential, the F—0
limit can be taken without regard to whether L is finite or
infinite and the solutions reduce to the unperturbed Bloch
states for F—0.

The results for the tunneling probability are the same as
those obtained using Stark-Wannier quantized energy lev-
els, and for typical semiconductors they justify the use of
Houston functions to describe the electron dynamics for
many cycles of the BZ for electric fields < 10% V/cm.
The “ladder” in the optical absorption originally predicted
on the basis of assuming the existence of Wannier-Stark
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quantized energy levels is also obtained as a result of a
selection rule using Houston functions without any as-
sumed energy quantization.

Finally, we note that both the present treatment of opti-
cal absorption and that of Callaway'® completely neglects
the effect of electron scattering. In either case, this ap-
proximation is valid provided the relaxation time for
scattering is long compared to the Bloch period. Howev-
er, Muller et al.?* have observed that this condition is not
satisfied in the experiment performed by Koss and Lam-
bert so that a proper comparison between theory and their
results would require a description of electron dynamics
and optical absorption which includes the effects of elec-
tron scattering.

III. ANALYSIS OF PREVIOUS OBJECTIONS
TO BLOCH OSCILLATIONS

Zak'® has shown that if the time-independent field is
represented by a scalar potential the dropping of the inter-
band coupling terms, as done by Kane,* leads to quantized
energy levels, whereas an exact treatment of the
Schrédinger equation results in a continuum with
— o <E < . Rabinovitch and Zak'® have adopted this
argument, and claim that, although the neglect of the in-
terband coupling leads to the Houston functions,’ the in-
clusion of these terms leads to the result that the Houston
functions cannot be a valid approximation to the wave
function for times as long as or longer than the period of
one Bloch oscillation. They essentially base their argu-
ment on the fact that the Houston function does not give
the same time development as the exact solution, in the kg
representation, of an initial state which, at ¢ =0, is an en-
ergy eigenfunction of the Hamiltonian including the elec-
tric field.

This is not a valid criticism for the following reason.
The time-independent Schrodinger equation including the
field in one dimension is

# d’

2m dx?
As Rabinovitch and Zak'* have pointed out elsewhere,
there is only one solution of this equation for a given E,
the other exponentially increasing as x — o0. Thus, unlike
the case when F =0, we cannot take linear combinations
of two degenerate states to form two other states that car-
ry current. Consequently, unlike Bloch states, the solu-
tions of Eq. (25) separately do not carry current. The
solution of the time-dependent Schrédinger equation cor-
responding to this initial state is

W(x,t)=e "B/ Hy(x) (26)

Y+v (Y —Fxp=Ep(x) . (25)

and is definitely not a Houston function.

The reason for this is that Eq. (26) gives the time
development of a state which is an eigenfunction of H,
while the Houston functions give the time development of
a state (subject to the same H) which at ¢t =0 is in a given
Bloch state. If i(x) were expanded in terms of Bloch
states, we would necessarily have all Bloch states in the
sum with nonzero coefficients. If one waited a long time
after turning on the field, a state which is originally

described by a single Bloch function would first evolve as
a Houston function, and if the time is sufficiently long,
this state would then tunnel into all the other bands and
would require a many-band description. The argument by
Rabinovitch and Zak that the Houston function does not
represent the correct time development of an eigenstate of
the field-dependent Hamiltonian is therefore correct but
irrelevant—it is supposed to represent the time develop-
ment of an eigenfunction of the field-free Hamiltonian
after the field has been turned on, and is a valid descrip-
tion of such a state for times sufficiently short so that
tunneling to other bands is negligible, which, in practice,
is satisfied for many periods of the Bloch oscillation.

It is interesting to note that Koss and Lambert!” em-
ployed a field strength & ~10° V/cm for GaAs, which
yields a tunneling probability per oscillation, Pcv, of
0(10~!%) and a Bloch oscillation period, T ~10~'? sec.
Thus even after 3 107 sec~ 1 year, the probability that
an electron initially in a given Bloch state tunnels out of
the valence band is infinitesimal, so the use of Houston
functions to calculate the absorption rate is completely
justified.

Similarly, the criticisms of Churchill and Holmstrom
are irrelevant to the existence of Bloch oscillations within
a band. By taking linear combinations of the solutions
given by Eq. (25), they construct Bloch-like solutions,
with time-dependent k(t), of the time-dependent
Schrodinger equation. However, their solutions do not
correspond to an electron in a given Bloch state at a time
before the field is turned on and moreover, as they note,
their solutions do not even reduce to the usual field-free
Bloch states as F—0. A more detailed analysis of their
results has been given elsewhere.?

We therefore conclude that the objections of Rabino-
vitch and Zak, and of Churchill and Holmstrom, to the
existence of Bloch oscillations are not valid and that the
conventional diagrams showing k(¢) moving along &(k)
curves and propagating in a periodic zone scheme (or un-
dergoing an umklapp process back into the first BZ) are
justified, provided the time is sufficiently short that tun-
neling into other bands is negligible. As we have seen in
the case of experiments performed on GaAs by Koss and
Lambert, these times can be astronomically large even for
relatively high fields.

Our conclusions are hardly surprising if one makes
similar considerations concerning the effect of turning on
a weak electric field on an electron initially in the ground
state of a hydrogen atom. Here, as in the crystalline case,
the energy spectrum, including the field described by a
scalar potential, is continuous, although the system
without the field has discrete levels separated by energy
gaps. The electron state is then not well described by an
eigenfunction of the field-dependent Hamiltonian (as Ra-
binovitch and Zak use) or by some equally weighted linear
combination of these extended states summed over an in-
finite set of discrete energy levels (as done by Churchill
and Holmstrom). A more useful description is one in
which the eigenfunctions of the instantaneous Hamiltoni-
an (in which the effects of the electric field are treated in
terms of a vector potential) are employed to describe the
system. Then, unlike the case in which a scalar potential
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is employed to represent the effect of the field, the field-
dependent terms are continuous functions of time, and
thus permit the eigenfunctions of the unperturbed Hamil-
tonian also to be the eigenfunctions of the perturbed
Hamiltonian at the instant the field is turned on. It is
then straightforward to obtain the time development of
the system for times small compared to the inverse ioniza-
tion (i.e., tunneling) rate by employing a linear combina-
tion of the eigenfunctions of the instantaneous Hamiltoni-
an to represent the state of the system. In the crystalline
case, as we have shown, this leads naturally to the use of
Houston functions to describe the electron dynamics, in-
cluding the coupling to other bands, which leads to a cal-
culation of the tunneling rate.

APPENDIX: DERIVATION OF HOUSTON’S
EQUATIONS BY APPLICATION
OF A GAUGE TRANSFORMATION

It is well known? that if

Hy=itp (A1)
with
_ 2
g=1p=e/IAL 40, (A2)
2m
then under the gauge transformation
1 ax
A'=A4VX, ¢'=¢———,
+VX, ¢'=é——7 (A3)
the solution of
H'Y =i’ (Ad)

where

' - 7 ’
a=1p=(e/OAT | o) (AS)
2m

is

Y =e' X%y (A6)
Letting

— t ’ ’

X=c [ &)t r, (A7)
we have from Egs. (2) and (A3)

A'=0, ¢'=—&(1)r. (A8B)

Thus if 4 is a solution of Eq. (1) with A given by Eq. (2),
the corresponding solution of

Iz“-i—v(r)—e&’(t)-r V=it (A9)
2m
is
P =eleAT/ Ry (A10)
With use of Eq. (10) this may be written
Y'(r,t)= z)a,,k(,,cﬁ,,k(,)(r) , (Al1)

nk(t

where the a,, satisfy Eq. (11) and the k(¢) are given by
Eq. (8).

Thus the assumption made by Houston that the expan-
sion given by Eq. (A11) can be employed to obtain the
solution of Eq. (A9) is justified precisely because the k(z)
change as a function of time according to Eq. (8). How-
ever, unlike Houston’s method, the present work does not
assume an expansion of periodic functions is a solution of
a nonperiodic Hamiltonian. In addition, the equation sa-
tisfied by the a,;(,), i-e., Eq. (11), is here derived without
requiring the CMR of the operator x.
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