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Real-space inversion of the dielectric-response function of a superlattice
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(Received 17 June 198S)

We present a technique for inverting the dielectric-response function of a superlattice in the
random-phase approximation allowing for realistic superlattice eigenstates and multiple subbands.

In the case of an infinite superlattice obeying cyclic boundary conditions we show how to construct
an analytic expression for the inverse response function in closed form whose roots give the plasmon
modes.

INTRODUCTION

Recently there has been much interest in the theoretical
calculation of the plasmon dispersion relationship of a su-
perlattice (Bloss, ' Sarma and Quinn, Giuliani, Qin, and
Quinn, and Tselis and Quinn ). Much of the work has
approached this problem using expressions for the
dielectric-response function in reciprocal space. The
plasmons are given by the frequencies for which the deter-
minant of the infinite dielectric matrix goes to zero. In
this paper we take the alternative approach of calculating
the inverse response function using a real-space formalism
which gives the plasmon modes as its poles. The advan-
tage of this technique is that the resulting expressions are
in the form required to calculate interaction effects so
that the contribution of the plasmon poles can be seen
directly in, for example, the self-energy. It is important to
realize that for many applications the knowledge of the
plasmon poles themselves is insufficient. One must also
have the screened interaction. This is given by the expres-
sion

E r, r",co U r"—r' r"

and so involves an accurate knowledge of the inverse
response function and its spatial variation. This in turn
requires that the model used for e and hence e ' includes
realistic eigenstatcs.

obvious way to deal with an arbitrary number of bands.
Thus we write our model wave functions as

' 1/2

gP' '(x —na)e ' e

where a is the superlattice spacing, (a) is an index denot-
ing conduction or valence subband, and all the other sym-
bols have their usual meaning. In this calculation we
choose the Fermi level to be such that only the lowest
(valence) subband is occupied.

CALCULATION OF THE
DIELECTRIC RESPONSE FUNCTION

Our calculation follows along similar lines to Ortuno
and Inkson, Sterne and Inkson, and Inkson and Shama.
We start with the expression dielectric-response function
in the random-phase approximation

e(r, r', co) =5(r—r') —f v(r —r")P(r",r', co)dr", (2)

where U is the Coulomb interaction and P the polarizabili-
ty is given by

THE MODEL

Our model regards the superlattice as being a structure
composed of a large number of regularly spaced, two-
dimensional quantum wells separated by layers of dielec-
tric materials. We assume that the behavior of the elec-
trons parallel to the layers is free-electron-like. Perpen-
dicular to the layers in the superlattice direction we as-
sume extreme tight-binding types of wave functions with
flat bands. PhysicaHy this means that we have taken
there to be no overlap integral between electrons in adja-
cent wells, which is quite a good approximation to the in-
tended experimental situation for the energies involved.
We take the case when the number of subbands of impor-
tance (formed by the quantization within the wells) is two,
although the formalism presented can be generalized in an

2(n» —n» )
P(r, r', co)= g

K, K'», E» E» %co —i 5— —

X g»(r)P» (r)P»(r')f» (r'),

E being an index denoting both wave vector and band in-
dex. This calculation can be made more accurate by di-
viding the Coulomb interaction by a scalar dielectric con-
stant to take into account the effect of the valence polar-
izability and of the low-lying core energy levels. Substi-
tuting our wave functions into this expression, assuming
that the functions P(x) are real and using the condition on
the Fermi level, we obtain
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The four terms in this expression arise from the two inter-
subband and two intrasubband contributions, respectively.

We Fourier transform this expression with respect to

p —p and simplify using the fact that there is negligible
overlap of the wave functions between wells to obtain

P(q~~, x,x', co) =P""(q~~,co)g A (x —sa)A""(x' —sa )

+P'"(q, ~,~)XA'"(x —sa) A'"(x —sa),

A '"(x sa) =P'(—x sa )P"(x——sa),

and

P (q~~, co)=—g0 „ei, —ei, + —E %co —i5—
II It+~It

2 ""ii+qii

Q i, ei, +E —ei, + —irico —i5
li g

II qtl

(5c)

where

A""(x sa) =P"(x —sa—)P"(x —sa), (Sa)

P""(q~~,co) is the usual intraband polarization propaga-
tor for a two-dimensional electron gas while P (q~~, co) is
an interband propagator. The summation involved in (5c)
is evaluated in the usual manner by transformation into
an integral. The problem reduces to evaluating

k
P

(qual
co)= f dx f 18

(2~ )
& irjqUf 0

X 1 +8'
dx d8—x cos8 —z —u ia— X

—x cos8+z —u ia—
where

kX= „2= Q =
kf" 2kf

'

which have been performed in the literature. In a similar fashion one can write

k
P (q, )= ~ f 1 f d8

(2ir) Rquf 0 —~ —x cos8 z —u Es—lhq~~uf ia— —
L

—f dxf'18 —x cos8+z —u +Es jfiq~~uf ia—
which is identical to the expression for P""(q~~,co) but with z replaced by z +Es lfiq~~uf.

Using the convolution theorem we now express e as
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e( xex', q]],co}=5(x —x') —f U (q]] ex ex")P (x"ex'eq]],co)dx"

=5(x —x') —g f e ]] [P(q]],c0)A (x",sa)]"3"(x'—sa)dx",
s,v Ill

where v is an index denoting either ( uu) or ( cc). This is now in a suitable form to use the real-space inversion technique.

INVERSION OF THE DIELECTRIC-RESPONSE FUNCTION AND THE PLASMON MODES

We proceed to invert using the expression for the inverse of a separable matrix (Ortuno and Inkson)

A =1—8 C- =-A '=1+8(1—CB) 'C

which gives for e

e '(x,x', q]],co) =5(x —x')+g f U( q]], x, x")[P( q]]co)A (x" sa)]"—Q~ 3"(x' ta)dx—",
s, t
v, v'

where

(10)

(10a)Q *r =()r —f f [P(r)(,a)A(x ea)] e—(a((x"x )A , (x ')a)dx' d—x'.
This step reduces the problem of calculating e ' from inversion of e which has continuous labels to inversion of Q

—
]r~r

which has discrete labels and is usually more localized than e '. We further simplify the inversion problem by imposing
Born —von Kirmin boundary conditions in the superlattice direction.

An illuminating way to write out Q '„ is to treat it as a matrix Q,, ' but with each element replaced by a 2)&2 ma-
trix. Using the fact that 3 (x)=0 for x & a/2 and x & —a/2, we find the following tight-binding-like structure:

e -qaZw'

e 2qaZ w'

qadi
w

e -qaZw'

~
—2qay w'

e
—qa~ w'

x~

—2qaZ w'
e qaZ w'

~
—qaZ w'

e
—

qadi
w

w'

where

a/2 a/2x~=5~ P"(q,~) — 3 "(x}e «~' " ~A (x')dxdx',
q -a/2 -a/2
~il

a/2 a/2
y = —P'( q]r]a) f 3 "(x)e«'dx f A~(x')e «'dx'

ll

and

~e 2 a/2 a/2= —P"(q((,a) f 2 "(x)e e*dx f Ae(x')ee*dx' .
qll

-a/2 -a/2

(1 la)

(1 lb)

(1 lc)

The matrix Q„' can be case into block diagonal form
using a unitary transformation. We define

(12)

On performing the summation we obtain

—qa +Ikap-1w' g w'+ yw'
—qa +ika

—qa —ikae
—qa —ika

BtQ '8 =5k k I ' (k),
where

(13)

where k =2mn/Xa and is restricted in the usual way to
lie in the first Brillouin zone of the soperlattice.
Transforming Q

' this gives

(13b)

Inversion of BtQ —'8 is now simply a matter of invert-
ing each of the 2X2 submatrices down the block diagonal,
and we obtain for Q,", ~

I —]w' ~we+ Irw' y e
—(«a ikralr+Zw' g e

—(«a+ika)—r

(13a)

Qar =QBa,kL «~}Bk,r .
k

Substituting into our expression for e ' we find

(14)



R. D. KING-SMITH AND J. C. INKSON 33

e '=5(x —x')+ g f u(qll, x,x")[p(qll, co)A(x"—sa)]"B,kl (k,qll, a])8k, A (x' —ta}dx" .
v, v'

s, k, t

The energy structure of e ' is now contained in the matrix I . The plasmon modes are given by the values of
k, qll to for which e ' becomes infimte «when det(1"

If we restrict ourselves to the case when only the lower band is of importance, X, P, and Z reduce to simple scalars.
In addition F =Z and so we can write the condition for plasmons as

2 e0=1— P (qII, co)f f A (x}e II A (x'}dx dx'
II

Slllh(qlla) a/2 a/2 ell]a z I

(qll ~) —1 f f A"'(x)e II A (x')dx dx .
qll cosh qlla —cos ka — /a2 —a/2

Specializing further to the case where A""(x)=5(x), all the integrals are unity and we derive the well-known result'

S] llll( q I I

a )0=1— P""(qll, )
qll cosll(qlla) —cos(ka)

Inthesmail ql, limit P (qll, ~) isgiv
2

P (q,a]}= sq

(16)

where N, is electron density per unit area, which yields for co

27TH e qll siiih(qlla)

In' cosh(qlla) —cos(ka)

Similar arguments can be applied vrhen the response is dominated by interband transitions. The equation analogous to
(16) for this case is

2 le a/2 u/2

II

Slllh(qlla ) a/2 a/2 —q (x —x')
P (qll co) —1 A'"(x)e II A'"(x')dx dx'

qll
II cosh(qll a —cos(ka }

Following the notation of Bloss' we find, working to first order in qll,

a/2 a/2
A'"(x)e II A (x')dx dx'=2ne 1]0 2me q—llz]0

q I I

-0/2 -0/2

(20)

(21a)

a/2 u/2
A'"(x)e II A'"(x')dx dx'= —2]re2qllz]0,—0/2 —0/2 (21b)

vrhere

a/2 u/2
l]0 ——f f A (x)

~

x —x'
~

A'"(x')dx dx'

a/2
z)o —— A zz z.

(21c)

(21d)

a) =Ee+4lrwge Eel]0 1-2 2 2 VIIzto

Iio

Slllh(
X

cosh(qlla) —cos(ka)

(22)

The small qll form of P'" is

2X,E&

QP —E
&

(21e)

which is identical to Bloss's equation 15.
In Fig. 1 we show the kind of results for the plasma fre-

quencies which Eqs. (16) and (20) yield. We have as-
sumed in the calculation that

P"(x)=0, x & a/4 and x & —a /4,

Combining all these terms together we obtain for the plas-
ma frequency

2 2&X]II)"(x)= cos, —a/4&x &a/4,
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The approximations involved essentially take the deter-
minant of (I ') to be

det(1 ') =(I ')"(I ')", (23a)

2 3 4 5

and then find the zeros of det(I" ') by setting each of
(I ')" and (I ') equal to zero. We would hope to ob-
tain a slightly better approximation to the plasma fre-
quencies by including the effects of (I' ')'2 and (I ')2'
in the computation. This calculation has been done, and
we found that the effect of the extra two terms for the
above values of electron density, energy gap, etc; was to
slightly depress the frequencies of the lower band and
raise those of the upper, but everywhere the effect was
very small.

and

P'(x) =0, x )a /4 and x & —a /4,

P'(x)= sin, —a/4&x &a/4.2 . 4mx

We have taken the value of the superlattice spacing to be
400 A, the electron density to be 10' electrons/cm2, the
energy of the gap to be 20 meV, the static dielectric
response to be 13, and the effective mass of the electrons
to be 1. The computation was done using the full expres-
sions for P~ and P and analytic forms for the integrals
involved in (6) and (7). Our results are very similar to
those given by Bloss (1983}and Tsehs and Quinn for the
upper band and qualitatively the same as those given by
Giuliani, Qin, and Quinn for the lower subband.

However this calculation does not give the exact zeros
of the determinant of (I ')

(I —1)11(1—1)22 (I —1)12(1 —1)21 (23)

FIG. 1. Theoretical calculation of the plasmon dispersion re-
lation of a superlattice. The frequency is expressed in units of
classical plasma frequency. See the text for values of energy

gap, etc., used in calculation. The lowest band represents the re-

gion where it is possible for an electron to undergo a real excita-
tion process within the conduction band. The next band shows
the plasmon dispersion relation resulting from the lower sub-

band. The third curve is for real excitations across the gap.
The final band shows the intersubband plasmon dispersion rela-
tion.

CONCLUSIONS

We have here a method of inverting the dielectric
response of a superlattice which gives as its poles the
plasmon frequencies. The formalism can easily deal with
effects due to the finite widths of the quantum wells and
can also treat the case where there is more than one sub-
band of importance. More important, however, is that we
now have an expression for e ' in closed form. The in-
verse response function is at the center of most interaction
effects. The electron-electron and electron-phonon both
depend explicitly upon e '. The electron self-energy can
also be related to the inverse response function through
the screened electron-electron interaction, and a
knowledge of this quantity leads to the quasiparticle prop-
erties and nonlocal potential corrections to the band struc-
ture.

It should be pointed out that recently Jain and Allen'0
have calculated an expression for the density correlation
function which is closely related to the inverse response
function (7), assuming 5 function electron density profiles.
Our inverse response function reduces to this expression
in the appropriate limit.
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