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Electron-phonon interactions and charge-density-wave formations in strong magnetic fields
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An electron gas in a strong magnetic field will attain a one-dimensional energy spectrum due to
the quenching of the motion perpendicular to the field into the lowest Landau level. Such a system
is then expected to show an instability towards a charge-density-wave formation. In this report, we

show that for strongly polar semiconductors, the electron-phonon interactions greatly enhance the
critical temperature for an instability and lead to a Peierls instability with a permanent distortion of
the electron-phonon system.

It is well known that a (quasi-) one-dimensional (1D)
conductor exhibits various kinds of instabilities at low
temperatures, such as charge-density wave (CDW) and
Peierls instabilities. ' The reason for these two kinds of
instabilities in particular is the divergent behavior of the
bare electron polarization diagram for wave vectors

q =2kF, which is uniquely attributed to the one-
dimensional energy spectrum. z The divergence of this
diagram will cause a formation of a CDW with a wave
vector q =2kF in a 1D electron gas. If there are electron
polar-optic phonon interactions, the divergence of the
electron polarization diagram means that the frequency of
phonons with this wave vector will go to zero, causing a
static distortion of the electron-phonon system. This is
what we call a Peierls instability.

If a magnetic field is applied to a three-dimensional
electron gas, the density-of-states for motions perpendicu-
lar to the field will attain a discrete structure, the so-
called Landau levels. For strong enough magnetic fields,
only one spin direction of the lowest Landau level will be
occupied and the energy spectrum will for all practical
purposes be 1D, associated with the motion parallel to the
field. One would thus expect such a system to display
many of the quahties of a 1D system. In particular,
Fukuyama3 has shown that a CDW instability driven by
the electron-electron Coulomb interactions is likely to
occur. Phenomena that are quite plausibly manifestations
of a CDW formation have also been observed experimen-
tally in graphite.

In this paper we calculate the critical temperature for a
Peierls instability driven by polar-optic electron-phonon
coupling for some strongly polar semiconductors and
compare our results with the critical temperature given by
Fukuyama's theory, ~ which does seem to predict a critical
temperature that agrees fairly well in magnitude with ex-
perimental values. ' For strongly polar semiconductors,
however, the electron-phonan interactions enhance the
critical temperature from that given by Fukuyama's
theory and lead to a Peierls instability with a permanent
lattice distortion. This distortion should be readily ob-
served by slow neutron scattering or X-ray diffraction.
Finally, we also calculate the nature of the phonon disper-
sion relation near q =2k+ for T =0.

We consider an electron-phonon system of dimension
L with an applied magnetic field B=Bz. We assume
that the magnetic field is sufficiently strong that only one
spin direction of the lowest Landau level is occupied. The
system is described by a Hamiltonian 8=Hef+Hph
+H, t ~+H,~ ~h. The noninteracting electron term 1s

H, i
——g e(p)c~t~ where s(p)=p2/2m (we take A=1)

with ttt the effective mass due to interactions with the
static lattice. The kinetic energy Tto, with co, =e8/trtc
associated with the motion perpendicular to the field has
been subtracted off and p is the z component of the
momentum. The operator c destroys an electron with
the center of its cyclotron motion at x =X and z com-
ponent of its momentum equal to p; ~

a &
=

~
X)

~ p &. The
wave function g (r) of this state is

QN(r)=
iraq ir2 exp[ i(pz+Xy—/1 ) (X—x) —/21 ],1

(1)
where 1=(c/eB)'~ is the magnetic length.

The noninteracting phonon system is described by
Huh ——g too(q)aqaq where aq destroys a longitudinal op-
tical phonon of inomentum q and frequency too(q).

The electron-electron interaction is

H,i,i
———,

' f dr f dri 1( (ri)1' (r)u(r —ri)1((r)g(ri) (2)

with f(r)=g g (r)c~. Here u(r)=eileor is the
Coulomb interaction where eo is the dielectric constant of
the background medium. Our only concern with H,~,&

is
that it contains information on how the mobile conduc-
tion electrons screen a charge-density fiuctuation. 6 This
screening is expressed by a dielectric constant e(q, to) that
will effect the renormalization of the phonon frequencies.
We will assume that e(q, co) has been calculated by some
suitable approximation, such as the Thomas-Fermi or the
random-phase approximation (RPA).

The electron-phonon interaction is of the form

H, i vh
——g M(q)(a q+aq)pq

which describes the creation of an electron-hole pair of
momentum q and the creation or annihilation of a pho-
non. The matrix element M(q) for polar-optic phonons is
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2rre coLo(1/e„—1/ep)
(4)

Here coro is the longitudinal optical frequency, assumed
to be constant, and e„ is the high-frequency dielectric
constant, given by the square-root of the refractive index.

For the basis given by Eq. (1), the density-operator pq is

pq= g exp[ iq,—(X+ ,
'

l'q„—) ,'(q—, l—) ]c +c, (5)

where [a+)= iX+1 q~) [p+q, ) and qir =qr+qr.
Hence the electron-phonon interaction can be written

H, i ~h
——g M(q)exp(iq, X)(a ~+aq )c +c, (6)

q,a

where M(q) =M(q)exp[iq q„l ,' —(qi1) —].

As the ions vibrate, they will couple to the electron den-

sity by H, i ~h and thus induce a fluctuation in the electron
density, which will tend to screen the motion of the iona.
The effect of this screening will be to reduce the phonon
frequencies, since the fluctuation in the electron density
will reduce the ion-ion coupling. This is expressed by the
fact that the new, screened phonon frequencies co~ are
given by the poles of the renormalized phonon propaga-
tor, which is

2cop(q)
(7)D(q, co) =

co (q) —cop(q} —2cop(q)2 2 ~M
~

P(q, co)

e(q, co)

where P(q, co) is the real part of the retarded electron po-
larization graph. Since cuL~~~~„ the electron plasma
frequency, we can replace P(q, co) and e(q, co} by their
static limits P(q} and e(q). For q, =2k~ the polarization
graph is then '

1.14cF
P(q, =2ki;) =— ln

(2rrl) kF

where kz is the Fermi momentum in the z direction and

si; the Fermi energy. The prefactor is just the total densi-

ty of states in the z direction and reflects the high degen-
eracy caused by the magnetic field.

It is then evident that the renormalized phonon fre-
quencies co(q&, 2k+) will tend to zero as the temperature is
lowered; a so-called giant Kohn anomaly. When

co(qi, 2k+) goes to zero, there is a static distortion of the
electron-phonon system which will open up a gap in the
electron energy spectrum. The critical temperature at
which this occurs can be written, by combining Eqs. (4),
(7), and (8),

1.14cF 1
Tc cxP

kg 2 IM(qp) I

'
(2m.l)'k~ cop(qp)e(qp)

where qp ——(q|,2kF). This expression is clearly of the
same form as the BCS formula for the critical tempera-
ture of the superconducting state. With' e(qp) = I+a /
qp, where (rcl) =(2me /irepkF)exp[ ——,(qil) ], Eq. (9)
becomes

1.14cF
T, = exp

k~

4(k~l)'+Q'+ e ~"
1TE'F

m 1

mkf e„
e-'"

6p

Here Q=qil. The observable transition will be the one
with Q maximizing T, . This evidently occurs for Q =0
which gives

1.14cF
T~ = exp

2FPle
4(kFl) + 'ltEp'

m 1

mkF

%'e have compared the critical temperature given by
Eq. (11) with the one given by Fukuyama's theory, r which
is a Hartree-Fock calculation for a CDW formation of an
electron gas in a magnetic field, without electron-phonon
coupling. In this theory, the vertex of the electron
density-density correlation function is approximated by an
RPA term and a ladder term. The momentum transfer in
the z direction in the ladder term is then averaged over
( —kF, kF) to obtain a Dyson equation for the vertex. One
can show" that this theory is correct to order kzl. The
critical temperature is then the temperature at which the
expression for the vertex diverges, which occurs for

1.14cF
Tc exp

krr

where

@p(g,kpl}nepkF.
(12)

@p(g,kFl) = I dx e i Jp(xg) [x'+(~i)z]'"

kFIXtan-'
[x +(Icl) ]'i

e
—Q~/2

Q +4(kFl)

Here we have modified Fukuyama's theory by allowing
screening of the Coulomb line in the ladder diagram.
This can be rigorously justified" diagrammatically, and it
was taken into account by Yoshioka and Fukuyama
when they applied Fukuyama's theory to graphite, but
was neglected in Fukuyama's original paper. In Eq. (13),
the integral comes from the ladder term and drives the in-
stability, whereas the second term is the RPA term and
counteracts the instability. The transition occurs for the
value of Q that maximizes the integral Np(g, kzl). This
value is Q =Qp, where Qp is between 1 and 2. Naturally,
one does not expect the electron-phonon coupling to have
any significant effect on T, until the coupling is suffi-
ciently strong. Hence for nonpolar or weakly polar semi-
conductors one would expect formation of an electron
CD% with a negligible ion displacement. For strongly
polar semiconductors, however, the strength of the
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electron-phonon interaction will increase the transition
temperature given by Fukuyama's theory resulting in a
large static lattice displacement. The dependence of T,
on the magnetic field and the electron density n will also
be different from that of the electron CDW. Equation
(12) gives approximately (neglecting the dependence of
the screening length on the magnetic field)

T,-n 8 exp( n—8 ), whereas Eq. (11) gives

T, -nIB 2exp( —n'8 ).
Numerical calculations show that for a )0.5 the

electron-phonon interactions give rise to a critical tem-
perature much higher than that given by Fukuyama's
theory for certain electron densities. In particular, we
have calculated T, as given by Eq. (12) and Eq. (11) for
CdS, ZnO, and CdFI, which have polaron coupling con-
stants' a =0.527, a =0.849, and a =3.2. The results are
shown in Fig. 1.

It is also interesting to study how the phonon dispersion
relation drd(q)/dq for the optical phonons behaves near
the instability for T =0. In this case, the electron polari-
zation graph is easily calculated with the result

1. 2m PkF+P /2
P(q) =—,ln

(2ml) P p /2 pkF— (14)
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For p =2kF, this implies that the phonon dispersion rela-
tion diverges as

pkF+p'/2
ln

2 + 2pkF p /2 pkF p /2

similar to the strong divergence displayed by a planar Fer-
Inl surface.

In conclusion, an electron gas in a strong magnetic field
has a one-dimensional energy spectrum and should thus
show a tendency towards CDW formations, similar to
that of a 1D electron gas. For strongly polar semicon-
ductors, the electron-phonon coupling tends to enhance
the transition temperature and give rise to a permanent
distortion with a wave vector q=(0,0,2kF) of both the
lattice and the electron gas. This distortion should be
readily observable by conventional experimental tech-
niques. In the calculations presented here, we have as-
sumed an isotropic system, whereas for a real system one
would expect the transition to occur in a direction deter-
mined by the symmetry of the crystal.

Note added in proof. The possibility of a phase transi-
tion in similar systems was first considered in a paper by
H. Frohlich and C. Torreaux. ' The authors would like to
thank Dr. M. J. Rice for making us aware of the existence
of this paper.

FIG. 1. {a) Critical temperature for a Peierls instability for
CdS from Eq. (11). For the same range of magnetic field, T, as
given by Fukuyama's theory [Eq. (12)] is less than 2x 10 3 K.
(1) Critical temperature for ZnO. The CD%' temperature is less

than 2X10 ' K. (c} Critical temperature for CdF2. Here the
CD%' temperature is ~& 10 K.
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