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The optical absorption in semiconducting quantum-well structures is calculated for the case where
the quantum well consists of an indirect-band-gap semiconductor. The absorption is obtained for
the cases where the carriers are confined in either quasi-one- or quasi-two-dimensional structures.
The absorption is found to be a nonmonotonic function of the photon energy for a fixed width of the
quantum well. However, the exact behavior of the absorption due to interband transitions between
the valence and conduction bands of the semiconductor is different for quasi-one- and quasi-two-
dimensional structures reflecting the different behavior of the density of states for carriers confined
in such quasi-one- and quasi-two-dimensional structures. Our results for quasi-one- and quasi-two-
dimensional systems converge to each other in the appropriate limits and also to the results obtained
for an indirect-band-gap semiconductor in the bulk limit.

I. INTRODUCTION

With the steady improvement in molecular-beam epi-
taxy (MBE) and metal-organic chemical-vapor (MOCVD)
techniques, it has become possible to fabricate sophisticat-
ed submicrometer devices whose dimensions are of the or-
der of the thermal de Broglie wavelength of the charge
carriers in such structures.'~* The optical and electrical
transport properties of such quantum-well and superlat-
tice structures have been the subject of much investiga-
tion, both theoretically’~!° and experimentally.2%!!—13
Most of the recent work on quantum-well heterostruc-
tures and superlattices has been performed using
GaAs/Ga;_,Al,As systems, where GaAs is a direct-
band-gap semiconductor, although work has been done on
InAs/GaSb and Hg-CdTe systems.'®!” More recently,
work has been done by fabricating superlattice systems of
amorphous silicon!®!® and some of the optical and electri-
cal properties of this system have been studied experimen-
tally. Since silicon is an indirect-band-gap semiconductor,
its optical properties are different from GaAs since in the
former material, interband transitions between the valence
and conduction bands of the semiconductor can only take
place via a process in which the carriers are simultaneous-
ly scattered by lattice imperfections such as phonons
when they absorb light.?’ In addition, there are other po-
tential semiconducting quantum-well systems which are
of some interest such as those involving GaP or Ge (Ref.
21) in which an important component of the system is an
indirect-band-gap semiconductor. In fact, in a detailed
treatment of GaAs/Ga,_,Al,As quantum-well systems,
one has to take account of the fact that GaAs has a higher
band with an indirect band gap of 1.8 eV.?> Therefore, it
is important to extend previous treatments of the optical
properties of semiconducting quantum-well systems® to
the case where the semiconductor has an indirect band
gap.

In this paper we calculate the interband optical absorp-
tion for a semiconducting quantum well system where the
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active semiconducting layer is made of a material having
an indirect band gap. Since such quantum-well systems
have been fabricated which are not only quasi-two-
dimensional in their nature because of the confinement of
the carriers in a layer structure but have also been fabri-
cated in the form of quantum-well wires®* where the car-
riers behave as a quasi-one-dimensional electron gas, we
will consider both quasi-one- and quasi-two-dimensional
quantum-well structures. The optical absorption in
quantum-well wires fabricated from direct-band-gap semi-
conducting materials has been theoretically calculated.?*
In our calculations, we will use a parabolic two-band
model for the conduction and valence bands of the semi-
conductor where the maximum in the valence band occurs
at a different point in k space than the minima in the con-
duction band. In our model we will assume that the con-
fining potential barrier can be approximated by an infinite
square-well potential. This approximation will be fairly
good if we are studying transitions between the states
which lie close to the bottom of the potential well al-
though it will break down for very narrow potential wells
where the lowest-energy levels lie close to the top of the
potential well. Even for the more general case, the use of
the infinite potential-well model should yield results
which are qualitatively, if not quantitatively, close to what
one would expect to observe experimentally.

In Sec. II the theoretical results of our calculations are
presented together with the model and the various approx-
imations we have used. We consider indirect transitions
in which the electron in the valence band absorbs a pho-
ton and is simultaneously scattered by the emission or ab-
sorption of a phonon. In our treatment we will consider
interactions with acoustic phonons and with both polar
and nonpolar optical phonons. The interaction with non-
polar optical phonons should be important in nonpolar
materials such as silicon or germanium, while the interac-
tion with polar optical phonons will play an important
role in weakly ionic semiconductors such as the III-V
semiconducting compounds. In Sec. III we will present
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our numerical results and discuss their relevance to possi-
ble experiments.

II. THEORY

The model we use in our calculations of the interband
optical absorption in indirect-band-gap semiconducting
quantum-well structures is similar to that presented by
Smith? for bulk semiconductors. In this model we as-
sume conduction and valence bands which are parabolic
in the vicinity of the band extrema with the maximum in
the valence band and the minimum in the conduction
band occurring at different points in k space. We assume
an isotropic effective mass for the electron in the vicinity
of the band extrema with the maximum in the valence
band occurring at k=0 and with M conduction-band
minima, each a distance k, from the valence-band max-
imum in k space. The indirect band gap E, in the semi-
conductor is less than the direct band gap E;. Therefore,
when the photon energy #() is less than the direct band
gap but greater than the indirect band gap, optical transi-
tions can only occur when the electron gains the necessary
momentum to make a transition from a state in the vicini-
ty of the valence-band maximum to a state in the vicinity
of one of the conduction-band minima by absorbing or
emitting a phonon of wave vector whose magnitude is of
order ky. This is because the photon carries negligible
momentum compared to the separation between the
conduction- and valence-band extrema in k space. To cal-
]
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FIG. 1. The normalized optical absorption in an indirect-
band-gap semiconductor is shown as a function of photon ener-
gy #i{} in a quantum-well wire and a quasi-two-dimensional lay-
ered quantum-well structure for well widths of 200 A at 77 K.
The absorption is also shown for a bulk semiconductor of the
same material parameters and with the same normalization
coefficient. The parameters used in the calculation are of those
of Ge.

culate the probability of these phonon-assisted optical
transitions we need to use second-order perturbation
theory,2°'25 and obtain the following for the transition
probability for this process:

2

W=Qn/h) 3, [ >
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In Eq. (1) the interaction Hamiltonians between the elec-
trons and the radiation field H 4 and the phonon field ¥

are given by
H ,y=(—e/mc)A-p (2)

and

V)= 3 C(q)[Q, exp(iq~r)+QT_q exp(—iq-1)] . (3)
q

Here, C(q) is the wave-vector-dependent coupling coeffi-

cient between the electrons and the phonons and Q,,0_,

are the phonon creation and annihilation operators. For

coupling to acoustic phonons, the coupling coefficient is

C(q)=igE}*/(pV)'/?; (4a)

for coupling to nonpolar optical phonons, the coupling
coefficient is

C(q)=(#/2pV)*ES® , (4b)
while for coupling to polar optical phonons, it is
C(q)=iewo(4m/V,€') *qey/q* . (4c)

Here E3*P is the deformation potential constant for the
semiconductor for coupling to either acoustic or optical
phonons, p is the density of the material, w, is the optical
phonon frequency, and 1/€'=1/€,—1/€, where €, is the
high-frequency dielectric constant and €, is the static

+ (klnl | VS l kllnlf)(kllnll IHrad | kn)
Ek“n”_Ekn —#Q

[

dielectric constant of the material.

For electrons confined in a quantum-well structure, we
assume a model in which the confinement is in an infinite
potential well. Although in realistic situations the poten-
tial well is finite, the use of the infinite-well model should
yield good results if we are interested in transitions be-
tween subbands near the top of the valence band and the
bottom of the conduction band. Using this model, the
wave functions and energy eigenvalues for electrons and
holes confined in quasi-one-dimensional quantum-well
wire structures are

W) =(2/VE *ug(r)sin(ngmx /a)sin(l my)explik,z) , (5)
E(n,l,,k)=E, +(#k*/2m. ) +nlE., +I’E, , (6)
and

E(ny,l,,k,)=E, —(#k%/2m,)—n2E,, —I2Ey , (1)

respectively, where E, is the energy at the bottom of the
conduction band, E, is the energy at the top of the
valence band, k =k, —k, where k is the location of the
conduction-band minimum in k space,

E a0 =(1#2 /2m 4a*[b?]) ,

a and b are the sides of the quantum-well wire of rec-
tangular cross section, the axis of the wire is taken to be
the z direction, and m, is the effective mass of the ath
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particle. Similarly, for electrons and holes confined in a
quasi-two-dimensional well structure of width d, the wave
function and eigenvalues are

Wr)=(2/Vy)2ug(r)sin(ngmz /d)expi (kyx +kyy),  (8)
E(n.,k —ko)=E, +#*k—ko)*/2m.+nlE, , 9)
and

E(n,,k)=E,—(#k*/2m,—nlE, , (10)

where E g =(m*#)/2m,d>. In the above, u,(r) are the
Bloch functions at the band edges of the conduction and
valence bands and the direction of confinement is taken to
be the z direction. Also, in Eq. (9) and (10), k and k, are
the components of these wave vectors in the plane of the
quantum well.

Using the eigenfunctions and eigenvalues given by Egs.
(5)—(10) together with Egs. (1)—(3), we find, using a
straightforward approach such as that used by Smith,?
the following expression for the absorption coefficient:

]

J(Ep)=QuttA}) " (mm,)? 3

LI A

for a quasi-one-dimensional quantum-well structure, by
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a*=[16m*Me> /ncm*QUE, —#Q)*] | p,, € | 2
X | Clko) | X(nyy+ 3+ 5Wy(E,y,) . (11)

Here the t+ sign indicates processes which involve the
emission and absorption of a phonon, respectively, n is
the index of refraction of the semiconductor, ngg is the
Bose-Einstein distribution function for phonons of wave
vector k,, where kg is the wave vector necessary to bridge
the separation in wave-vector space between the
conduction-band minima and the valence-band maximum,
Pey is the matrix element of the momentum operator be-
tween the band-edge Bloch function u,(r) for the conduc-
tion and valence bands, E,; and Eé are the direct and in-
direct band gaps in the semiconductor, respectively, and

Ep=#Q—E} +#0, . (12)

The quantity Jy(E,,) is the convolution integral of the
product of the density of states for the electrons in the
conduction and valence bands for the quasi-N-di-
mensional structure

Em
IVE)= [ " dE N,EN(E,—E), (13)

and is given by

O(E,, —(n2+1)Eq,—(n2+12)Eq.) (14)

JAEp)=m.m,/2m#?L) 3, (E, —nlEq,—nlEq)O(E,, —n2Eq,—n2Eq,) (15)

n,,n.

for a quasi-two-dimensional quantum-well structure and
by

J3(Ep)=(m.m,/#*EL /(167°) (16)

in a bulk three-dimensional structure. In the above, 4 is
the cross-sectional area of the quantum-well wire and L is
the width of the quasi-two-dimensional quantum well.
Also O(x) is the step function, i.e.,

1, x>0
O(x)={"
x 0, x <0 (17)

and N (E) and N,(E) are the density of states of the elec-
trons in the conduction band and the holes in the valence
band. From Eq. (11) together with Egs. (14)—(16), we can
find the dependence of the absorption coefficient on the
photon energy, the indirect band gap and the temperature.
The dependence of the absorption on the photon energy in
an indirect-band-gap semiconductor depends on the
dimensionality of the electron gas, being a quadratic func-
tion of the photon energy in a bulk semiconductor, a
series of linear functions of the photon energy in a quasi-
two-dimensional structure and a step function of the pho-
ton energy in a quasi-one-dimensional structure. The
behavior of the absorption in a quantum-well wire for in-
direct interband transitions is similar to that found in a

r
bulk indirect-band-gap semiconductor in the presence of a
strong magnetic field.? This is because a strong magnetic
field also constrains the electrons and holes to behave as a
quasi-one-dimensional system. The quasi-two-dimen-
sional expression for Jy(E,, ) can be obtained by replacing
the summations over /., and /, in Eq. (14) by integrals
over these quantum numbers while the bulk expression
can be obtained by replacing the summations over n, and
n, in Eq. (15) by integrals. Thus our results for quasi-
one- and quasi-two-dimensional systems converge to each
other in the appropriate limits and also to the results ob-
tained for an indirect-band-gap semiconductor in the bulk
limit.
III. NUMERICAL RESULTS AND DISCUSSION

In Figs. 1 and 2 the normalized absorption coefficient is
shown as a function of photon energy at 77 and 300 K in
a quantum-well wire and a layered quasi-two-dimensional
quantum-well structure for wire thickness or layer width
of 200 A with the absorption in the bulk shown for com-
parison. The same normalization coefficient is used in
both cases. The parameters used in these calculations are
those characteristic of germanium with direct and indirect
band gaps being taken as 0.88 and 0.73 eV at 77 K and as
0.81 and 0.66 eV at 300 K.?” The electron and holes
masses used in the calculation are 0.04m, and 0.3m,,
respectively,?® where m, is the free-electron mass. The
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FIG. 2. The normalized optical absorption coefficient is
shown as a function of photon energy at 300 K for the same
cases and material parameters used in Fig. 1.

interband absorption is lower in a quasi-two-dimensional
quantum-well structure than it is in the bulk and increases
towards its bulk value as the dimensions of the quantum
well increases. Also, the interband absorption is lower in
a quantum-well wire than it is in a layered quantum-well
structure, but again approaches its value in the bulk as the
thickness of the wire increases. For a quasi-two-di-
mensional quantum-well structure, it can be seen that the
absorption consists of a series of linear functions of the
photon energy with changes in the slope of the absorption
with photon energy whenever phonon-assisted transitions
can occur between different sets of subbands in the con-
duction and valence bands. The behavior of the absorp-
tion here is similar to that predicted in direct-band-gap
semiconductors for forbidden transitions.* For the case
of a quantum-well wire, the absorption consists of a series
of steps as a function of the photon energy with a new
step occurring whenever there is a transition between the
quantized subbands in the conduction and valence bands
with the emission or absorption of a phonon. The lower-
energy step occurs when a phonon is being absorbed,
while the higher-energy step occurs for phonon emission.
In the figures it is being assumed that the main scattering
is due to optical phonons where the energy of the optical
phonons is 36 meV. Therefore, for a transition between a
given set of subbands, there are two closely-lying steps
which are separated in energy by 72 meV. The threshold
for interband absorption to occur is shifted to higher pho-
ton energies from the bulk because of the increase of the
effective band gap with the size quantization of the elec-
tronic energy levels.* The steps in the absorption due to
processes in which phonons are absorbed increase dramat-
ically as the temperature increases from 77 to 300 K.
This reflects the increase in the number of phonons of
wave vector k; which are necessary for the phonon-
assisted transitions with temperature. At high tempera-
tures, transitions can occur with both emission and ab-
sorption of phonons while at low temperatures, where
there are few phonons available of the wave vector needed
for the phonon-assisted transitions, transitions can only
occur with the emission of a phonon.
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FIG. 3. The normalized optical absorption is shown as a
function of photon energy for a layered quantum-well structure
of width 100 A and for a bulk semiconductor at 77 K. The

same values of the material parameters are used as in Figs. 1
and 2.

In Figs. 3 and 4 the normalized absorption coefficient is
shown as a function of the photon energy at 77 and 300 K
for a quasi-two-dimensional quantum-well structure of
width 100 A with the bulk value also shown for compar-
ison, and the parameters used in the calculation are again
those characteristic of Ge. The normalization coefficient
is the same as used in Figs. 1 and 2. Here, again the ab-
sorption is smaller in the quantum-well structure than it is
in the bulk, with the absorption increasing as the well
width increases. For this well width, the threshold for ab-
sorption in a quantum-well wire is shifted towards photon
energies lying near the direct band gap of Ge, and there-
fore the results for a quantum-well wire are not shown for
this wire thickness.

Our theoretical calculations show that for indirect-
band-gap semiconducting quantum-well systems, the in-
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FIG. 4. The normalized optical absorption is shown as a
function of the photon energy for the same cases as considered
in Fig. 3 but at a temperature of 300 K.
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terband optical absorption is smaller than in the bulk.
The absorption is not as dramatic a function of the pho-
ton energy in quasi-two-dimensional semiconducting
structures as it is for a direct-band-gap material where the
absorption consists of a series of steps with increasing
photon energy. The reason for the less dramatic depen-
dence of the absorption on the photon energy in an
indirect-band-gap semiconductor has to do with the fact
that it depends upon the convolution of the electron and
hole densities of states which washes out some of the
sharp peaks and steps which occur in the absorption for
quasi-one- and quasi-two-dimensional direct-band-gap
semiconducting quantum-well structures. As mentioned
earlier, similar effects occur in direct-band semiconduct-
ing quantum-well systems for forbidden transitions.?*
The temperature dependence of the absorption comes
directly from the temperature dependences of the popula-
tion of phonons of wave vector ky, which are involved in
the phonon-assisted transitions between the top of the
valence band and the bottom of the conduction bands.
Recently, the optical absorption has been studied in su-
perlattice structures made from indirect-band-gap semi-
conductors such as GaP-GaAs,P,_,.” In these superlat-
tice structures, the absorption was found to be enhanced
over that observed in bulk samples of the indirect-band-
gap semiconductors. This is different from the decreased
absorption predicted in quantum-well structures made of

indirect-band-gap semiconducting materials. However,
these structures are not the same as the quantum-well
structures considered in this paper, because the artificial
periodicity introduced along the direction of confinement
in superlattice structures introduces zero-folding effects
which lead to the appearance of direct band gaps in the
superlattice structure.’*=32 As a result of the appearance
of these direct gaps, interband absorption can occur
without phonon assistance in these multilayered superlat-
tice structures, and therefore the absorption can be much
larger than in the bulk material where phonons are needed
for the interband absorption. In contrast, for a single
quantum-well structure, which we have considered here,
such zone-folding effects should not take place, and there-
fore the absorption should decrease over its value in the
bulk.
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