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Many-body effects in the paramagnetic and antiferromagnetic states
of the (111)silicon face
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The electron density of surface states has been calculated for both the paramagnetic and the anti-
ferromagnetic states of Si(111}.Many-body effects associated with correlation and electron-phonon
coupling are included. Our results have been obtained by using a self-consistent tight-binding ap-
proach, a Bethe-lattice method, and Green-function techniques. The paramagnetic phase shows a
very narrow Kondo-like peak at the Fermi level E~, two satellites at E~+0.2 eV, and two broader
peaks at Ep+0. 8 eV. The antiferromagnetic phase shows two peaks at Ep+0. 8 eV and two others
at SF+0.4 eV. In this case the energy gap of 0,6 eV due to correlation effects is reduced by
electron-phonon coupling up to 0.25 eV.

I. INTRODUCTION

Despite the great deal of work on covalent surfaces,
these systems continue to be a challenge to both theoreti-
cal and experimental researchers. Si(111)surfaces present
two types of reconstruction; the (2 X 1) surface is obtained
by cleavage, and the (7 X 7) reconstruction appears under
annealing and remains stable when the temperature is
lowered; an unreconstructed surface seems to have been
obtained only by appropriate methods. 'z Many different
models have hen proposed for the two reconstructions.
The n-bonded chain model, s modified by a buckling of
the surface atoms for the (2X1) reconstruction, appears
to be the only model consistent with recent ion-
backscatterings and optical experiments;s's however, low-

energy electron-diffraction (LEED) results only show a
moderate agreement with the results given by Pandey's
model, while photoemission experimentss'9 for the surface
bands of this (2X 1) surface show some discrepancies with
theoretical calculations. 'P

For the Si(111)-(7X7) reconstructed surface many dif-
ferent models have been proposed;" ' ion-backscattering
experiments tend to favor Himpsel's" and McRae's'2
models, but there is no definitive explanation for this
reconstruction. Rment experimental'4' 's evidence for the
Si(111)-(7X7) surface suggests that correlation effects and
electron-phonon coupling may play a major role in the
surface properties associated with the dangling-bond sur-
face states. Preliminary theoretical results have shown
that, indeed, this is so for a metal-like surface This is

expected to be the case for a Si(111)-(7X7) surface which
seems to have an odd number of dmgling bonds.

These results suggest that many-body effects may also
be important for the Si(111)-(2X1)surface; these effects
may be the source of the discrepancies commented on
above for photoemission experiments. Prompted by these
considerations and guided by previous theoretical work in
two-dimensional systems, ' ' we have started to analyze
the surface of three-dimensional Si crystals by including
correlation and electron-phonon interactions in the
dangling-bond surface states.

In this paper, we present theoretical results for the
paramagnetic and antiferromagnetic states of the Si(111)
surface. Independently of the intrinsic interest that these
ideal surfaces can have, ' we think that this theoretical
analysis may throw light on the importance of correlation
and electron-phonon effects on the properties of covalent
surface states. A similar analysis is under progress in our
laboratory for the m-bond model of reconstructed sur-
faces.

II. THE MODEL

In this paper, we describe the electron band structure
for Si by means of the Weaire-Thorpe Hamiltonian We
introduce sp hybrids for each atom and nearest-neighbor
interaction in the crystal. Since correlation effects for the
bulk crystal have been shown to be small, we only intro-
duce in our model an intrasite Coulomb interaction for
the dangling bonds. Accordingly, the electronic part of
our Hamiltonian is the following:

Hei g(Es 2~ U)nd, cr+ g Esns, ~+ g Ebn; + g tpc, c; + g t jc;" cj" +g Und, nd, ,
d, CT

u {+d) Q, CT u (+u) (i+j )
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where ne ~, n,"~, and n;"~ are the dangling bonds, the other
surface layer orbitals, and the bulk orbital occupation
number operators, respectively; to is the hopping integral
inside each atom, while t;~ defines the hopping integrals
between orbitals u and u of nearest neighbors i and j. In
Hamiltonian (1), the surface level E, is adjusted to get
charge neutrality in the last layer. Note that a Hartree
solution to Hamiltonian (1) is equivalent to substituting
E, UI—2 for E, and to eliminating Une, ne, from Eq. (1}.

On the other hand, we introduce the electron-phonon
interaction in the following way. Since we are interested
mostly in the effect of the phonons on the surface states,
we only introduce the phonons associated with the last
atomic layer. Note that surface states are mostly localized
in the last atomic layer, and that the electrons are more
strongly coupled with the optical phonons of the crystal.
In a first approximation, the electron-phonon coupling for
the optical phonons of a covalent semiconductor is a lo-
calized interactian between the electrons of an atom and
its local vibration. ' This suggests the introduction of an
Einstein model for phonons and the following electron-
phonon interaction:

&e-pi =+too(bshe+ 2 }

in such a way that the factor N, —1 of Eq. (2) is related to
the fluctuation of the electronic charge around that mean
value.

As regards the electron-phonon coupling, measured by
the constant g in Hamiltonian (2},we have taken the value
obtained in a self-consistent calculation for the optical
phonons of Si, renormalized by the effective charge fil-
ling the surface states in the surface layer. This value cor-
responds to the crystal bulk constant, multiplied by a fil-
ling factor of -0.7 (see below); in principle, for the sur-
face this coupling constant would have to be screened also
by the surface-state electrons. However, due to the elec-
tron correlation effects associated with the strong intrasite
Coulomb interaction for the dangling-bond orbitals, the
local density of states near the Fermi level is low' (see
below), and the value of the coupling constant g at the
surface can be assumed to be unscreened.

Hamiltonians (1) and (2) define the model we are going
to discuss. We analyze these Hamiltonians in two steps:
(i) In Sec. III we discuss correlation effects on the elec-
tronic states of the paramagnetic and antiferromagnetic
Si(111) surface; (ii) in Sec. IV we consider the electron-
phonon coupling effects.

+g'~ too+(N, —1)(b, +b, ) . (2)

In this equation, b, and b, are the boson operators associ-
ated with the phonons of frequency too for the surface
atam s. In Hamiltonian (2)„ the local phonons are coupled
to the electrons filling the orbitals of the same surface
atom s. In principle, the phonon is coupled ta all the elec-
trons of the atom; however, the interaction with the elec-
trons filling the valence band is small and of no interest in
our case. We are rather interested in the electrons filling
the surface states. Accordingly, in Eq. (2), N, is the occu-
pation number associated with the dangling bond occup-an-

cy; note that the mean occupancy of a dangling bond is 1,

III. CORRELATION EFFECTS

A. Method of solution

In this section we discuss the procedure we have fol-
lawed to analyze the antiferromagnetic Si(111)-(2)(1)
face. The paramagnetic Si(111}-(1&(1)face has been dis-
cussed elsewhere, and the reader is referred to Ref. 22.

Figure 1 shows a top view of the Si{111)-(2X1)face,
with two different rows of atoms, a and P, having dif-
ferent densities of states for a given spin. We look for the
antiferramagnetic solution by introducing Green-function
techniques and appropriate self-energies. Thus, Hamil-
tonian {1}can be substituted for

FIG. 1. Top view of the antiferromagnetic Si{111)-{2g1) face.
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H, =g[Es+ U5(nd z ) +Xd '(co)]nd '+g[Es+ U5(nd~~ ) +X/'(co)]np'
d, cr d, cr

(3)

Q (+d) Qs Cr Q, U

(Q+v) (i+j )

where the term Und, nd, of Hamiltonian (1) has bben substituted for U(nd a), U(nba ), Xd a(co), and Xga(co), with

(nd a) =f nd (co)dco I.n Eq. (3), E, is the mean level of the surface layer, adjusted to give charge neutrality in the
last layer. Hamiltonian (3) can be used to calculate the electron density of states if the self-energies Xd a and XIa asso-
ciated with the dangling bonds of the two kind of atoms c2 and p at the surface are known. Self-energies are calculated
by following the procedure discussed in Ref. 17; to this end, we introduce the following effective Hamiltonian:

Heff QEeff and a+QEeff and a+ X Es scr+ g Eb i a+ g OCi ac( cr+ g ijei aej a
(N) (a) (P) (8) Q Q Qt Nf

d, cr d, cr cr, i (~s,d), i, i,j,
Q (+d) Q, cr Q, V

(Q+v) {i~j)

(4)

and calculate the effective one-electron density of states n~0' d (co) for the dangling bond d. Then we define the follow-
ing second-order self-energies:

(i) (i) (i)

( X(I) )(2)( ) U2 f +
d J d f d

eff, d,a 2 eff, d, a 3 eff d, a 4

F F N +NP —N3 —N4+1'g

jeff,d, cr N2 jeff, d, a N3 jeff,d, cr N4E E (i) (i) (i)

+U
& dco2 dco3 dco4

F 00 —00 N+N2 —N3 —N4+ l'g

where i =a,P, and we introduce the following self-energies to all orders of U:
~'

Xd'a(co) =(Xd' )' '(co
E, ——,

' U+(1 —(nd ) ) U E,'ff-
(nd. )(I —(nd. ) ) U'

and

a
Eeff, cr =Eeff, cr & (7b)

0.35-

—0.30-

LJ
~~ 0.25-
h
L 020

for the dangling-bond surface states.
Effective levels Eeg a are determined by imposing self-

consistency for the chmgling-bond charges (n' ) as calcu-
lated from Hanultonians (3) and (4). Let us comment at
this point that the symmetry of the problem yields the fol-
lowing identities:

&n &=(n~&, (7a)

X(a) ( ) XI()(~) (7c)

EP)6 2,0,a —E 261,0,a+E 3 6 7,0,0+E46 9,0,a ~

The final point to discuss in this section is the pro-
cedure we have followed to calculate the density of states
in the surface layer. In this paper we have used the
Bethe-lattice method adapted to the (2X1) surface. In

A.
this method, Dyson's equation, (co H)G = I, is project—ed
on the orbitals of atoms n and 0 (see Fig. 1). This yields
the following equations (see Ref. 23):

(lE Pcs)GOO, a 1+F361,0,a+F263,0,a+E 46 5,0 a r

(lE Eb U1Z 1)G l, ocr E3Gooa+U2620a
+ U464, O,
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FIG. 2. Local density of states for the dangling bond of the
Si(111)-(2&1) face, mth U =5.5 eV. Solid line: spin up.
Dashed line: spin down.

+—46 12,0,a r

where 1 is the unit matrix, and
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E~ ~ tp

to Eg

tp

to to
aV~=—

0 tp E, to

to tp to Es

Ep, ~ to to to

to E, tp to

[Note that Tq"' and T'4"' are related to T 3"' and
T z~ through a mirror plane symmetry of the (2 X 1) sur-
face.]

Equations (10) yield the different transfer matrices and
allow us to calculate G po [see Eqs. (8)]:

g pp ——(E V —V3 T—3' —V 3 T 3"' V4 T—4"' )

to

io Eg ip

io to Eg
From this equation we can obtain the density of states as-
sociated with the orbitals of the surface layer:

tp
Vb-=

p

to

tp tp

Eb tp to

tp Eb tp

tp tp Eb

n~ ~(u) = ——ImGpp )) ~(p)},a

n& z(c0) = ——ImGpp ) ) ~(co),P

n, ~ (co)= ——ImGpp 33 ~ (p) ),a

(12a)

(12c)
V I is a 4X4 matrix defining the interaction between the
orbitals of nearest-neighbor atoms in the bulk, while V3,
Y3, and V4 define the interaction between the orbitals of
the atoms of the first and second layers33 (see Fig. 1).
g„o is a 4X4 matrix with elements g„p&J ~, where i
and j run from 1 to 4, according to the orbitals of the
atoms n and o. Finally, T ) is the transfer matrix for the
bulk crystal. 3 Equation (8) can be solved by introducing
the following transfer matrices:

g"' ——~J p ~(GJo ~) ', T,'"' =Gg o,o(GJ'o, n')

for j' odd and j even . (9)

1
n ~~(co)= ——ImGoo 22 ~(co) . (12d)

B. Results

The parameters of Hamiltonian (1) have been taken
from Ref. 23. The s and p levels of Si are taken as fol-
lows:

Ep —E, =S eV,

while the hopping integrals are defined by the following
interactions:

(i) sscr—first neighbors interaction: —1.65 eV;
(ii) sscr—first neighbors interaction: —2.16 eV;
(iii) ppcr —first neighbors interaction: 3.35 eV;
(iv) ppn —first neighbors interaction: —1.00 eV,(El —ps —V) T)—+3T3 pgg4 }/3——g3"'

(10)
which were adjusted to give an appropriate density of
states for the bulk bands calculated with the Bethe-lattice
method.

(E1—V —P 3 T 3"' V4 T e"' ) V 3
———$ 3"'

(EI g IT V T ls, IT V Till, v) V T ollI, IT

In these equations s runs from 2 to 4 and depends on the
direction of the bonds joining atoms j and j' (1 refers to
the dangling bond orbital). Introducing Eq. (9) into Eqs.
(8) we get the following equations:

(E1 Vs —V ) T )
—V 3—g 3"' —V 4 T 4"' ) V 3 —T3"'—
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FIG. 3. Local density of states for the surface layer of the
Si(111)-(2X1) face, with U =5.5 eV. Solid line: spin up.
Dashed line: spin down.

FIG. 4. Local density of states for the first sublayer of the
Si(111)-(2&1) face, with U =S.S eV. Solid line: spin up.
Dashed line: spin down.
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FIG. 5. Local density of states for the dangling bond of the
paramagnetic Si(111)-{1X1) face, with U =6 eV.

IV. ELECTRON-PHONON EirECTS

A. Method of calculation

Let us now concentrate in solving the Hamiltonian (2),
where N, is the occupation number operator of the elec-
trons filling the surface-state bands (we shall neglect tem-
perature effects that in this case are not expected to be im-
portant). Consider, in a first step, the paramagnetic solu-
tion. As Fig. 5 shows, surface states present three peaks
in the density of states: At the FeRTTTi level there appears a

As regards the intrasite Coulomb interaction, we follow
Ref. 22 and take U=5.5 eV. As discussed in Ref. 22,
this value is equivalent to the effective value of 1.5 eV
taken for the two-dimensional models of the surface
states.

In Figs. 2, 3, and 4 we present our results for the elec-
tronic density of states on the dIETigling bond, the surface
layer, and the first sublayer for spins up and down of the
(2X1) surface. In Fig. 5 we present the density of states
for the paramagnetic state of Si(111)-1X1,for compar-
ison. In the Si(111)-(2X1)surface we find that the sur-
face bands present four different peaks. Two peaks, locat-
ed roughly at EF+0.8 eV, are similar to the ones found in
the Si(111)-(1X 1) face, while the two other peaks defining
the fundamental energy gap (-0.6 eV) can be understood
as coming from the splitting of the Kondo-like peak that
appears for the Si(111)-(1X1)face. The weights of the
four peaks for the (2X1}face differ, however, from the
weights found in the (1 X 1) surface; thus in the (2X 1) sur-
face each peak at EF+1.0 eV has a weight of about 0.21,
while the weight of each of the two central peaks are close
to 0.29; the reason is that in the present calculation the
peak at EF 0.8 eV (or EF—+0.8 eV) is rather close to the
other peak coming from the Kondo-like peak splitting.
Regardless, our results show that correlation effects are
very important for both the paramagnetic and the antifer-
romagnetic states, and that the density of states found for
U=5.5 eV is close to the one calculated in a two-
dimensional model by taking an effective value close to
1.5 eV for the intrasite Coulomb interaction. '

Kondo-like resonance, and at Ep+0. 8 eV we find two
other broader bands. Since 0.8 eV is much greater than
the phonon frequency (F00-0.062 eV), we propose to
analyze the electron-phonon coupling by considering each
peak separately and by using the renormalization argu-
ments applied to quasiparticles. 2

Consider, for simplicity, the band located at
E=E~—0.S eV. This band is associated with the creation
of a high energetic hole; this hole corresponds to the
creation of a strong fiuctuation of charge (En=i) at the
surface atom and. for this case, we expect to have no re-
normalization in the electron-phonon coupling of the
q)Tasiparticle. The effect of the electron-phonon coupling
in the electron density of states for this peak can be
analyzed by means of an appropriate diagonal self-energy,
X', ph(r0). Similar to the analysis of electron correlation
effects, we calculate that local self-energy to all orders of
the coupling by memis of an interpolation scheme (al-
though details will be published elsewhere, 2s we give here
a brief summary of the procedure). In our method, we ob-
tain the electron-phonon coupling in two limits: g~O
and 8'~0 ( W is the width of the peak). For g~O, the
lowest perturbation approach is adequate and yields

( i)E 2
&e-ph =gp , dE',

N+ cop —E (14)

2
g COO

Xc-ph 0—Np
(17a)

1 s~ g/1!
Q —X', ph(co) s 0 &+~0(g —I)

(17b)

By eliminating 0 between Eqs. (17a) and (17b), we obtain
a relationship between X', ph(co) and X,"ph [this last self-
energy being defined by Eq. (4)]. This relationship gives
the interpolated expression we are looking for; indeed, it is
easy to show that the defined self-energy, X', ph(a)), yields
the appropriate limits for g~O and W~O.

For the Kondo-like peak, things are slightly different
since we have for this case excitations of very low energy,
associated with a smaller fiuctuation of electronic charge
at ~ch atom. The quasiparticle renormalization
method shows that the electron-phonon coupling for the

where n, (E) is the density of states associated with the
peak we are considering. For W~O, the self-energy can
be obtained from the exact Green function given in Ref.
26:

1 " g'/l)
G(co)=, =e (15)

ro —XB ph(N) ) 0 ro+0(g

(Energies are referred to the center of the peak. } Since we
are interested in an intermediate case, we look for an in-

terpolation between these two limits following the argu-
ment given in Ref. 27. Thus, by taking the limit W—BO

in Eq. (14) [or g—BO in Eq. (15)],one has

2

hm X,"p",(a )= 6
IV~0 6)—Np

Now, we define the following equations:
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FIG. 6. Local density of states around EF for the paramag-
netic state of the Si(111}-(1X 1}face. Dashed line: only correla-
tion effects included. Solid line: electron-phonon coupling in-
cluded.

Kondo-like peak has to decrease, as compared with the
previous case, by a factor proportional to the square root
of the corresponding weight for the quasiparticle. This
suggests substitution of approximately (for the Kondo-like
peak) g'~ for (g/3)'~ (we have taken an effective g cou-
pling of 1.2 for this peak and 3.6 for the other peaks).

Let us now turn our attention to the antiferromagnetic
Si(111)-(2X 1) face. The electromc density of states drawn
in Figs. 2 and 3 shows that for this face we have two
filled (or empty} peaks per spin associated with the sur-
face states, which are rather close in energy and have
similar weights. We have analyzed the electron-phonon
coupling effects on this density of states by following the
argument given above: Since the two peaks previously
mentioned are very close and their separation is reduced
by the electron-phonon coupling, we have introduced a lo-
cal self-energy X', .~h(co) as a function of the local density
of states in the dangling bond by considering simultane
ously the two peaks per spin calculated in the preceding
section, without any g renormalization (in similarity with
the treatment given in the paramagnetic state to the peak
found below the Fermi level). This means that Eqs. (17a)
and (17b) define X', ~h(co) as a function of X,"~q(to), with
this self-energy given by Eq. (14), n, (E) being the density
of surface states shown in Fig. 2.

B. Results

Figures 6 and 7 show the local density of electronic sur-
face states for the two cases of Si(111)-(1X 1) and -(2 X 1)
faces. Figure 7 shows the total density of states for the
(2X1) face, including spins up and down. Comparing
with Figs. 2 and 3, we see that the main effects of the
electron-phonon coupling are threefold: (i} first, we see
that there is an important broadening of the electronic
states —the final states are around 50% wider than the in-
itial density of states; (ii) on the other hand, the two peaks
below (or above) the Fermi level are strongly overlapping;
(iii) finally, the energy gap between the two density of
states for spins up and down is partially filled by the sa-
tellite structure introduced by the electron-phonon cou-
pling. Note that the final gap has been reduced from 0.6
to 0.25 eV.

In Fig. 6 we show the total density of surface states for
the paramagnetic (1X1) surface. In this case, we find re-
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FIG. 7. Local density of states around Ep for the antifer-
romagnetic Si(111)-{2X1)face. Solid line: only correlation ef-
fects included for spin up. Dashed line: only correlation effects
included for spin down. Dashed-dotted line: electron-phonon
coupling included for spin up and spin down.
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V. CONCLUDING REMARKS

In this paper we have calculated the electron density of
surface states for the paramagnetic and antiferromagnetic
Si(111)face. In our calculation, many-body effects associ-
ated with electron correlation and electron-phonon cou-
pling are included. Our results have been performed by
using a Bethe-lattice approximation for the crystal elec-
tronic structure, and by using Green-function techniques
and appropriate self-energies that include electron-
electron and electron-phonon effects. Our final results for
the electronic density of surface states show a remarkable
agreement with independent results calculated by using
two-dimensional models. ' ' In particular, the paramag-
netic phase shows a very narrow Kondo-like peak at the
Ferxni level, two satellites at E~+0.2 eV, and two broader
peaks at EF+0.8 eV. The antiferromagnetic (2X 1) phase
shows four different peaks, two of them located at
E~+0.8 eV and two other at Ez+0.4 eV; the energy gap
due to correlative effects, which is around 0.6 eV, is re-
duced by electron-phonon coupling to a final value of 0.25
eV.

In conclusion, our calculation shows the great impor-
tance that correlation and electron-phonon coupling ef-
fects have on the electronic properties of the surface states
of Si(111).

suits similar to the ones reported for a two-dimensional
model. Again, the two peaks around EF+0.8 eV are
strongly broadened by the electron-phonon coupling. At
the same tiine, the Kondo-like peak is narrowed, and a
new satellite structure appears at Ez+0.2 eV. The final
width of the Kondo-like peak is 20 meV; for this case,
temperature effects' would tend to eliminate all the
structure shown in Fig. 6 around the Fermi level. At
room temperature, we expect that only the peaks at
EF 0.8 eV an—d Ep —0.20 eV could be observed. At this
point, it could be of interest to remark that according to
the calculation of Ref. 28, for the ideal Si(111) surface,
the antiferromagnetic state is more stable than the
paramagnetic one.
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