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Surface and soliton charge in insulating systems
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By employing the locality property of the Green's function, it is shown that the charge of a filled

band can only be changed in integral units under a loca1 perturbation. This result is used to show

that the surface charge depends on the surface potential only in a discrete way. The half-integral

quantization of the surface charge in a case of an inversion-symmetric and periodic bulk potential
has been rederived. It is also shown that the fractional part of a soliton charge associated with a to-

pological defect in the periodic potential is simply determined by the period misfit of the potential
on the two sides of the defect.

Consider a one-dimensional noninteracting electron sys-
tem in a periodic potential. The energy spectrum is
known to consist of Bloch bands separated by energy
gaps. If the periodic potential is altered in a finite region,
the energy spectrum is not changed except for a number
of discrete levels appearing between the bands or below
the lowest band. Nonlocal perturbation of the periodic
potential can also be considered. One example is that the
potential at the right of some point be uniformly shifted
to the right by less than a period, with the resulting void
region being filled with an arbitrary potential. We call the
resulting imperfection a topological defect (or shift-
generated topological defect, to be specific). Another kind
of topological defect can be obtained by taking off the
semi-infinite part of the periodic potential at the right of
some point, and replacing it with the reflection of the
left-side potential about this point. This gives rise to a
reflection-generated topological defect, which is dis-
tinguished from the above case if the periodic potential
does not have a center of reflection. It is clear that the en-

ergy spectrum in such a system is still the same as in the
ideal case, with perhaps a number of discrete levels off the
bands. We can also consider an "edge defect" resulting
from replacing a semi-infinite range of the potential by a
potential barrier; the energy spectrum below the barrier is
also the same as before, discounting the discrete levels.

Because of the defects in the potential, the electron
charge density of a filled band is distorted from the ideal
case. By now, there already exists a large number of
works concerning the charge accumulation or depletion
due to such distortions. It has been shown by Heine' that
in case of a refiection-symmetric and periodic bulk poten-
tial, the surface charge is quantized in half-integral units.
Extensive discussion and various generalizations of this
result has been given by a number of people. In the pres-
ence of a topological defect, fractional charge deficiency
has been found by Su, Schrieffer, and Heeger. This prob-
lem has also been extensively studied on various models
using both conventional solid-state theory and field-
theoretical methods.

Here we present an elementary derivation of the
aforementioned results, attempting to achieve a certain
unity and abstractness of the approach. Our basic tool is

the Green's function, supplemented by a "5-function-
potential cutting" trick. %e develop this idea by the
statement and proof of a series of theorems.

Theorem 1. The total electron charge of the states en-
closed in a contour in the complex energy plane is un-
changed by the perturbation of the potential in a finite re-
gion, if the contour crosses the real energy axis only
through the gaps of the unperturbed spectrum, and there
are no energy levels that can pass through the contour
during the continuous turning-on of the perturbation.

Here the unperturbed system may already have a finite
number of defects, topologically trivial or nontrivial. Be-
cause the energy spectrum is real, the contour mentioned
in the theorem is free to change so long as it encloses the
same energy range. Another point to note is that al-
though the concept of "total charge" is meaningless
beause of its divergence when one or more energy bands
are enclosed in the contour, the change b, of the total
charge can actually be defined in a precise way as the in-
tegral of the local electron-density distortion due to the
perturbation:

5=I dx [p(x) —po(x)]; (1)

here (and hereafter) the electron charge is set to be unity.
If 6 (x,x';z) is the perturbed Green's function and
Go(x, x',z) the unperturbed, then the density distortion
due to the perturbation V(x) can be written as

p(x) —po(x)= fc . [6(x,x;z) —Go(x,x;z)] .
Kl

Using the Dyson relation between the perturbed and un-
perturbed Green functions, the above equation can be
turned into the following form:

dz
p(x) —po(x) = f dx'Go(x, x';z)

2'7Tl

)& V(x ')6 (x ',x;z) .

Because our contour of integration is array from the spec-
trunl of Gp (and therefore of 6, assuming no discrete lev-
el on the contour), the Green's functions are exponentially
bounded for large distances,

~

x —x'~. As a result, the
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density distortion diminishes exponentially as x is far
from the region of the perturbation. The change of the
total charge given by Eq. (1) is thus well defined.

Now we are ready to prove theorem 1. First we consid-
er the perturbation A, Y(x), with 0~A, & l. By substituting
Eq. (3) into Eq. (1) and expanding Gi in terrors of Go and
A, V(x), we have

bi= f . [Tr(GoA VGo)+Tr(GoA VGoA VGo)+ ' ' ]2'Fl

where the traces in coordinate representation is just the in-
tegration in coordinates. The series in the square brackets
converges if

f dx
i
V(x)i (5)

is bounded and A, sufficiently small. In fact, this conver-
gence is uniform for z on the contour, so that we can in-
terchange the order of the summation and the integration
in z. By using the cyclic invariant property of the trace
operation and the following relation,

(Go) =—

the nth-order term can be written as

Tr(GoVGoV' ' ' »
which gives a zero result after the integration in z because
of the single-valuedness of Go on the contour. Thus bi
vanishes for a sufficiently small but finite value (say, A, i)
of A, .

To raise A, further, we treat the system with A, iV(x)
contained in the potential as the unperturbed system, and
(A, —A, ~)V(x) as the perturbation. The same argument
goes through for sufficiently small but positive A, —A, &,

yielding

f dx[pi(x}—pi (x)]=0. (&)

Thus

hi —=f dx[pi(x) —po(x)]

x pg x —pg + pg x —pp x

=f dx[pi(x) —pi (x)]+f dx [pi (x)—po(x)]

In this way, we can raise A, step by step until A. = 1, while
keeping the change of the total charge being zero.

The condition in theorem 1 may well be violated for a
general local perturbation; for example, there might be
some levels passing through the contour during the con-
tinuous turning on of the perturbation. In this case we
have the following theorem.

Theorem 2. The total electron charge of the states with
their energies enclosed in a given contour in the complex
energy plane is changed only in integral units, if the per-
turbation is in a finite region, and if the contour crosses
the real energy axis only through the gaps of both the un-

perturbed and the perturbed spectrum.
Again, we first consider the perturbation A, V(x). As A,

is increased from 0, the spectrum of the perturbed system
varies continuously from the unperturbed. Suppose at
A, =A, i, a level crosses the contour C for the first time. We
distort our contour a httle bit from C to C' to give way to
the level. This allows A, to increase to A, , +e (with e small
and positive} with C' never being crossed. According to
theorem 1, the change of the total charge of the states en-
closed in C' is zero, i.e.,

. j) dx [Gi,+,(x,x;z)—Go(x,x;z)]=0 . (10)

Since there is a level of the perturbed system contained be-
tween C and C' at A, =A, i+@, we must have

x g +g x~x;z — 0 X,X;z

Z x Gg +~ x x'z — 0 x~x iz
27T'l )+g 7 t

g 00

+(IIc—c' . dx Gi, +,(x,x;z)

G(x,x',z) =Go(x,x';z)+ VGo(x, a;z}G(a,x',z), (12}

where V is the amplitude of the 5-function. We first set
x =a in the above equation to solve for G(a,x';z), which
is then substituted back into the equation to give an ex-
pression for the perturbed Green's function as

Go(x,a;z)Go(a, x;z) V
G (x,x',z}=Go(x,x';z)+

1 —VGo a,a;z

From Eq. (12) it is clear that the poles of G are not at
those of Go; thus the poles of G must come from the
solution of the following equation:

VGo(a, a;z) =1 . (14)

This has solutions only when z is real and away from the
From the spectral representation of Go(a, a;z), it

=+],
where the plus (minus} sign corresponds to the case that
the level crossed the contour C from outside (inside). We
can continue this argument until A, = 1, yielding

x px —pox =n,
where n is the net number of levels that went inside of the
contour C during the course of increasing A, from 0 to l.

A direct consequence of theorem 2 is that the increase
of the total charge of a band of states is equal to an in-
teger, which is the net number of discrete levels merged
into the band during the continuous turning-on of the per-
turbation.

The following theorem has a special value for the dis-
cussion of the "edge charge" of a semi-infinite system,
and the "soliton charge" due to a topological defect.

Theorem 3. The insertion of a 5-function impurity in
the potential changes the charge of a band by one or noth-
ing. With a 5-function potential at x =a, the perturbed
Green's function satisfies
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is a strictly decreasing function of z when z is in an ener-

gy gap. Just above a pole Go(a, a;z} is positive infinite;
just below a pole it is negative infinite. It may or may not
be infinite at a band edge, depending on whether the wave
function P(x =a;z) at the band edge is nonzero or zero.
It is now clear that in the course of increasing V from
zero to positive (negative) infinity, all the discrete levels
are shifted upwards (downwards), and the number of lev-
els split from or merged into an energy band is at most
one. The present theorem immediately follows from
theorem 2.

To discuss the charge associated with an edge, we have
to choose a reference charge distribution, which is to be
subtracted from the actual charge density. A natural
choice of this is the charge distribution in the correspond-
ing infinitely extended potential, with the part outside the
boundary being set to zero. According to theorems 2 and
3, the fractional part of the edge charge must be indepen-
dent of the details of the edge potential once the boundary
point is chosen. For different choice of the boundary
points d and a' in the reference charge distribution, po(x),
the fractional part of the edge charge changes by the
amount

d'
x po x mod1 (15)

If the bulk periodic potential has a center of reflection,
a general theorem claiins that the edge charge is an in-
teger or half-integer with the boundary point (which
determine the reference charge distribution} at a center of
reflection of the periodic potential. This result was first
obtained by Heine' using a quite different method, and
was then discussed by a number of people. We now give
a simple proof of this theorem. Suppose the bulk periodic
potential is infinitely extended (removing the edge), we in-
sert a 5-function potential at a reflection center, and let
the amplitude go to positive infinity. Theorem 3 says that
this will change the total charge of a band by one or noth-
ing. Because the charge density before and after the inser-
tion of the 5 potential is symmetric about the position of
the 5 function, the charge deficiency must be shared
equally by the two sides. Each side is equivalent to a
semi-infinite system with a hard wall at the edge, so we
conclude that the edge charge is + —,

' or zero. Since the
modification of the surface potential can only change the
surface charge by an integer, the surface charge in the
general case must be an integer or a half-integer.

The half-integral quantization of the surface charge has
been employed by Kallin and Halperin to prove the van-

ishing of the piezoelectric constant of a crystal, which has
a reflectional symmetry but may not be terminated
symmetrically. We can follow exactly the same kind of
reasoning to prove that the piezoelectric effect is a bulk
effect in the general case, using the fact that the surface
charge depends on the surface potential only in a discrete
way.

Now we consider the problem with a topological defect
in the periodic potential,

Vo(x) if x &0,
V(x)= '

Vo(x —a) if x &0,

where Vo(x+1)= Vo(x), and 0&a &1. The case with
a =l/2 has been studied in a remarkable work of Su,
Schrieffer, and Heeger, and the charge deficiency due to
such a defect has been found to be one-half. For a general
shift of the potential, the charge deficiency has been
found to be a/I by Prange and Thouless. Here we give
a new derivation of these results.

The soliton charge associated with the defect is defined

1 L, Xof Zx, f ax[p(x}—po(x}]

+f dx[p(x}—po(x —a)] (L » l),

(17)

where p(x) is the electron density of a band in the poten-
tial V(x), and po(x} is that of the same band in the poten-
tial Vo(x}. It can be easily shown that the above defini-
tion of the soliton charge is equivalent to that given by
Kivelson and Schrieffer. " We take the present form only
for convenience. Suppose two 5 potentials with positive
infinite amplitudes are inserted at x =xo aild x =xo+a
in the potential V(x), resulting in a electron density of
ps(x). According to theorem 3, we have

x p~ x —p x =integer . (ig)

On the other hand,

ro ce
x pox pox + x pox pox —a

ro=f dx[p, (x) p,(x)]-

+ x pg x +a —po x =integer 19

because the potential giving rise to the density [ps(x),
x &xo', ps(x+a), x &xo] can be regarded as

V(x), x &xo
Vi(x) =25(x —xo)+ '

V(x+a, x &xo

A —++ oo (20)

which differs from Vo(x} only in a finite region. Collect-
ing Eqs. (17)—(19), we have

I. xo+Q
hg ——integer+ dxo dx[ps(x) —po(x —a)] .

21. zo

(21)

Since ps(x) (xo &x &xo+a) is the charge density of the
discrete levels (with their energies within the band under
consideration) bounded by the two 5 potentials of positive
infinite amplitudes, we must have

Zo+a
h~ ——integer- s o dx po(x —a)2I. Zo

=integer —a/I .

According to theorem 2, the above result should be still
valid if the potential (16) is modified in a finite region.
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The formula (22) has been derived by Prange and Thou-
less based on quite different theories. This result can be
intuitively understood as follows. ' During the formation
of the defect, electrons far away at the right of the defect
are carried to the right by a distance a. This must leave a
charge deficiency of a/1 in the vicinity of the defect, as-
suming one electron per unit period. Further distortion of
the potential around the defect can only introduce a
charge difference equal to an integer.

Another way to derive this result" is to make a scale
transformation in the region in the topological defect,
such that the periods of the potential fit in both sides.
The Hamiltonian in the new coordinates differs from the
ideal one by a local perturbation of the potential and the
kinetic energy. According to theorem 2, this ideal Hamil-
tonian can be used to calculate the fractional part of the
soliton charge. The soliton charge is given by Eq. (22),
because of an "ideal" distribution of the electron density
in the new coordinates corresponds exactly to a deficiency
of a /I in the original coordinates.

In the case of a reflection generated topological defect,
we can insert a 5 potential at the reflection center, and let
the amplitude of the 5 potential go to positive infinity. It
is immediately clear that the electron charge associated
with this defect is, apart from an additive integer, twice
the surface charge of the semi-infinite system at one side
of the 5 potential.

So far we have been talking about one-dimensional elec-
tron systems. Our theorems 1 and 2 remain valid in
higher dimensions. The results about surface charge and
soliton (domain wall) charge can also be carried over to
higher dimensions if the system is periodic in the newly
added dlmenslons.

The effect of many-body interaction can be treated by a
self-consistent approximation. The effective potential
differs from the bare potential of the ions in two ways.
First, the periodic part is modified while the periodicity
remains the same. This, however, will introduce no diffi-

culty, since our theory does not refer to any detailed struc-
ture of the periodic potential. Second, a local perturba-
tion of the bare potential may lead to a long-range pertur-
bation of the effective potential, because the electron-
density distortion is not necessarily confined in a local re-
gion. But one expects that the long-range tail should be
exponentially small, due to the insulating property of the
Bloch bands. From Eq. (3), further distortion in the
charge density due to such a small tail in the effective po-
tential remains exponentially small. By a perturbation
theory similar to the proofs of our theorems, one expects
that the charge of a filled band cannot be changed by such
an exponential tail of the effective potential.

Now we summarize our basic results, By employing
the locality property of the Green's function when its en-

ergy parameter is away from the spectrum, we have
shown that the charge of a band can only be changed in
integral units by a local perturbation. According to this
result, the fractional part of the surface charge only de-
pends on the bulk periodic potential and the position of
the boundary point in the definition of the reference
charge-density distribution. The half-integral quantiza-
tion of the surface charge in case of an inversion-
symmetric bulk potential has been rederived. It is also
shown that the fractional part of a soliton charge associat-
ed with a topological defect in the periodic potential is
simply determined by the asymptotic period misfit of the
potential on the two sides of the defect.
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