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Reflectance of a rough insulating overlayer on a metal with a nonlocal optical response
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A local-field formalism is used to calculate the roughness-induced reflectance change of Al with a
rough Al,O; overlayer for normally incident light. Calculations are done for both gratings and ran-
domly rough surfaces. We include a nonlocal response for the Al; this changes the surface-plasmon
dispersion relation at large wave vectors and has a significant effect on the reflectance spectrum

when the scale of roughness is small.

I. INTRODUCTION

There have been numerous experimental and theoretical
studies of optical effects of surface roughness. Both ran-
domly rough surfaces and gratings have been investigated.
The angular distribution of scattered light can give infor-
mation about the statistical properties of randomly rough
surfaces and the profile of gratings.!~* A rough surface
couples the incident electromagnetic wave to surface
plasmons and polaritons; this gives rise to an enhance-
ment of scattered fields which is important for under-
standing surface-enhanced optical effects.>® The specular
reflectance of a surface and the dispersion relation of sur-
face waves are changed, and a surface wave can be
damped by various scattering processes.”® Layered sys-
tems with rough interfaces have been studied,”!° and very
recently, nonperturbative theories have been used to study
larg“e-gmplitude roughness and localization phenome-
na.' "

With few exceptions, local dielectric functions €(w)
have been used to describe the optical response of the sys-
tem. A local approximation is probably adequate for
large-scale roughness. However, if the scale of roughness
along the surface becomes small, on the order of 100 A or
less, the scattered fields have large-wave vector Fourier
components, and the effects of nonlocality or spatial
dispersion can be expected to become important. Sobha
and Agarwal'® studied the field enhancement to first or-
der in the height, near a rough nonlocal surface. Howev-
er, their treatment appears to be applicable only to single-
pole nonlocal dielectric functions, such as a hydrodynam-
ic dielectric function for a metal; the possibility of
electron-hole excitations is thereby excluded.

In this work we apply a general local-field formalism,
developed by two of the authors,'* to the calculation of
the roughness-induced reflectance change of a nonlocal
system. The system with a rough surface, having a dielec-
tric response that is not translationally invariant along the
surfaces, is replaced by a system having a macroscopic,
translationally invariant dielectric response using an
averaging procedure that takes into account the correla-
tions of the spatial fluctuations. We present this theory in
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Sec. II. In the calculation we keep terms of second order
in the roughness height and find the change, due to
roughness, of the specular reflectance. Since the new sys-
tem is translationally invariant along the surface, our
theory does not give the scattered fields, as do theories
which keep first-order terms in the roughness height.!’
Our results are valid only if the height of the surface
roughness is small, and we also assume that the light is
normally incident and that the outermost material, whose
surface is rough, is described by a local dielectric func-
tion. There are no restrictions on the form of the nonlocal
optical response of the interior of the system.

In Sec. III we use the theory to calculate the reflectance
of a rough, local Al,0; overlayer on a smooth nonlocal Al
substrate. This system has been treated previously, using
a local dielectric function for the AL!® In order to simpli-
fy the numerical work, we have described the Al by a non-
local hydrodynamic dielectric function in a semiclassical-
infinite-barrier model. We emphasize that the theory is
not restricted to this simple nonlocal model, but with ad-
ditional effort it could be applied to much more sophisti-
cated models. We discuss the frequency dependence for
the reflectance change produced by roughness, comparing
the results of nonlocal and local theories. In Sec. IV we
summarize the results we have obtained and indicate in
what directions further developments of the theory are
needed.

II. THEORY

In order to obtain the specular fields and the reflectance
of a rough surface we will follow a macroscopic approach:
we will solve the macroscopic Maxwell’s equations for an
effective system with full translational symmetry along
the surface and with a macroscopic dielectric response €y,
which relates the average electric field E, to the average
displacement field D, through

Da Zg MEG . (1)
Here and in what follows we use a caret to indicate the

operator character of the response, i.e.,
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D, (0= [ dr'&y(r,r)E,(r). 2

The macroscopic response €y, is not given by a simple
average of the actual macroscopic response € of the rough
system, since it must take into account the coupling be-
tween the average and the spatially fluctuating fields at
the surface: a local-field effect. Thus, the local polariza-
tion of each of the dips and valleys of the rough surface
contributes to both, and depends on both, the average and
the fluctuating part of the field.

It was shown in Ref. 14 that the relation between &€,
and € is

ey =€oa—EaplEr —(1/KDNVXVX )] 7 epe,  (32)

where k =w/c, o is the frequency, c is the speed of light
in vacuum, and we define

5aﬂ Eﬁaa ﬁﬁ, a,B=a,f (3b)

for any operator O. Here, i’a is the average projection
operator, defined through its action on any function F,

P,F=F,=(F), )

and f’f =1 -—ﬁa is the fluctuation projection operator. By
(F) we denote an appropriate average of F which we
leave unspecified, although f’,, must be idempotent and
commute with space-time differential operators.'*

We describe the profile of the rough surface by z =£(p)
and we assume that the difference between € and the
response €, of a nominal plane bounded system,

Aé=E€-§,, (5)
is a local, isotropic response
Ae(r,r')=(eg— 1[O(z —&(p)) —O(2)]6(r—1') . (6)

Here © is the unit step function, €, is the frequency-
dependent dielectric function of the system near its sur-
face, and p=(x,y). The nominal flat surface, chosen such
that (£) =0, lies on the xy plane, and the material occu-
pies the z> O region (see Fig. 1).
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FIG. 1. Diagram of the system with a rough surface.

Notice that while we assume A€ to be local and isotro-
pic, we do not make any assumptions on € outside the sur-
face region. Thus, the system could be a layered structure
or a spatially dispersive metal.

Since in this paper we are interested in the effects of a
rough dielectric overlayer on the optical properties of a
metal, and in the effects of the spatial dispersion of the
metal itself, we avoid unnecessary complications by re-
stricting ourselves to normal incidence and by assuming
that the roughness amplitude £ is small compared to the
length scale of variation of the fields. Then, it is reason-
able to keep the lowest-order terms in a Taylor expansion
of Ae,

2
Ae(r,r')~(eg—1) g(p)a(z)+§—52ﬂa'(z) Sr—r). ()

Here 8'(z) is the derivative of the Dirac delta function 8(z)
and we perform all the following calculations up to
second order in £. We remark that for non-normal in-
cidence and p polarization one has to proceed cautiously
in making singular expansions such as (7) since the com-
ponent of the electric field normal to the nominal surface
has abrupt variations near z=0.

Substituting Eq. (5) in Eq. (3) we find (see the Appen-
dix)

A&y =(A8) —k*(AEG A&) + kX AYG(AE) , (8a)

where G is the Green’s function of Maxwell’s equation for
the flat system which obeys

(VXVX —k%,)G=—1 (8b)

with outgoing boundary conditions, and
Aé\MEé\M_‘é\p . (9)

We will refer to the first term on the right-hand side of
Eq. (8a) as the “smoothing” contribution to &, since it
arises from the averaging of the surface profile, which
smooths the otherwise sharp interface between the materi-
al and vacuum. The second and third terms are local-
field contributions, and they depend on the correlation of
the spatial fluctuations of €.

For normal incidence and the electric field along the x
direction, we only need the xx component of A€,;, which
becomes, upon substitution of Eq. (7) in Eq. (8a).

1—
AT, = — Ze°<§2>5'(z)8<r_r'>
—(1—€)’k*(&*)g(p—p)
X G (p—p',z,2")6(2)8(z') , (10)
where
(EP)E(p))=(EVgp—p) (11)

is the autocorrelation function of the surface profile,
which we assume translationally invariant from a macro-
scopic point of view.
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In order to obtain the reflected fields, we proceed to
solve the macroscopic Maxwell’s equations. These can be
written in integral form as

E=E,—k2G AéyE , (12)

where Eq is the electric field for the flat bounded system.
We take advantage of the translational symmetry of Aey,
by taking a two-dimensional (2D) Fourier transform of
Eq. (12) with wave vector Q=0:

EX0;2)=E§(0;2)—k? [ dz' [ dz” G™(0;2,2")
X Aeyf(0;2',2" )EX(0,2") ,
(13)

where we define the Fourier transform of the fields
through

J
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2
Ep2)= [ (‘;17'?2 E(Q;z)e'® (14)

with similar equations for the operators G*(Q;z,z’) and

Aey(Q;z',2"). Since we restrict ourselves to normal in-

cidence, we will omit when possible the Cartesian index x.
The Fourier transform of Eq. (10) is

1—60
2

Aepy(0;2,2")= — (E2)8'(2)8(z —2")— (1 —¢€p)*k 2( £2)
X [ d?Q'g(—Q)G(Q’;z,2)8(2)8(z') , (15)

which yields upon substitution in Eq. (13)

E(0;2)=E(0;2) — (1 —€o)k 2( £2) {%G’(O;z,O)E(0;0)+-;—G(O;z,O)E’(O;O)

2y
—1-ek6 020 [ TLg(-Q16(Q0.0E00 |,
T

where
G'(Q;2,0)= 261Qn7) (16b)
az z'=0
and
E(Q;0)= @%ﬂ . (16¢0)
z=0

Following a derivation along the lines of that leading to
Eq. (28) of Mochan, Fuchs, and Barrera!® (MFB), we ob-
tain

. ZU IZO 1 ( x12
G(Q;00=—+ | 2 X% (o)
k| ZyQ)+Z)Q) (Q)
ZAQNZAQ) (Q,)?
e DLW G, amw
ZXQ")+Z2Q") (")
where
Z(Q")=[1—(Q'/k)*]'/? (17b)
and
ZAQ")=1/[1—(Q'/k)*]'/? (17¢)

1—60

r=ro+ kXE) |1—rd+ik(1—eod1—ro)* [

2
e —Q16Q00) |, @1

(16a)

[

are the surface impedances of vacuum for s and p polari-
zation, and ZI?(Q’) and ZX(Q') are the corresponding sur-
face impedances for the unperturbed plane bounded sys-
tem. The appearance in Eq. (17) of both s and p surface
impedances, and that of the geometric factors (Q, /Q’)?
and (Q;/Q’)% comes from the required rotation of the
Green’s tensor E(Q';0,0) from the Q direction, where s
and p polarizations are uncoupled, to the x axis.

Notice that G(Q;0,0) depends on the unperturbed sub-
strate only through its surface impedance, so that the for-
mulas above can be used without modifications for a man-
ifold of systems.

Now we write the field in vacuum as

E(0;z)=e™—pe—ike (18)

We recall that

Ey(0;z) = poe 0" (19)
and that for z <z’ <0 (Ref. 16),
G(0;2,2')= —sze —ike(gike’ _p o —ike'y (20)

We substitute Egs. (18)—(20) in Eq. (16) to obtain the re-
flection amplitude within the first Born approximation,

’

correct to second order in §. Here r is the unperturbed reflection amplitude

1—-2Z,(0)

ro=——————
07 1+2Z,(0)

(22)
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and Zy(0) is the unperturbed normal incidence

AR/R=(|r|*—|ro|®/|ro|?is given by
[ (1—€9)Z,(0)

AR
—=k2 §2 Re
( ) I—Zé(O)

R [H—(I—GO)ZO(O)

20 Z2QNZAQ") (QL)?
degg(ﬁq,) (Q)Z,(Q") (Q

This is the main result of this paper; the differential re-
flectance is given in terms of the surface impedance of the
unperturbed (i.e., smooth) system and of the 2D Fourier
transform of the surface profile’s autocorrelation func-
tion. Notice that the integrand in Eq. (23) has poles at
Q'=0Qsp, the unperturbed surface-plasmon wave vector,
given by

Z)(Qsp)+2Z,(Qsp)=0 .

We remark again that since our results depend on the
surface impedance of the unperturbed system, they can
readily be used to calculate the change in reflectance upon
roughening of a wide variety of systems. For example, it
can easily be shown that for a local semi-infinite medium
with dielectric function €;, one recovers Eq. (21) of Ref.
17 by substituting in Eq. (23) the corresponding expres-
sions for the surface impedance:

Zy(0)=1/(&)'?,
ZAQ" ) =[€ek?—(Q" 2] */eok ,
ZAQ") =k /[ek*—(Q")?]' 2.

(24)

(25)

In the following section we will apply our results to a
metal covered by a rough dielectric overlayer using both a
local and a hydrodynamic nonlocal model for the metal.

III. CALCULATION OF REFLECTANCE CHANGE

A. Parameters used in the calculation

We have used the theory presented in the preceding sec-
tion to calculate the roughness-induced reflectance change
of a rough Al,0; overlayer on a smooth Al substrate, a
system similar to that considered by Mills and Maradu-
din'® and by Arya.!® Since we are particularly interested
in nonlocal effects associated with the dispersion of the
surface-plasmon energy at large wave vectors, our charac-
teristic scales of roughness are smaller than those used by
the above works by a factor of approximately 10.

Calculations have been done for both a sinusoidal grat-
ing and a randomly rough surface. The deviation of the
grating surface from the z=0 plane is

&(x)=h,sin(gox) , (26)

where go=2m/Ag, Ag being the grating wavelength. This
gives an autocorrelation function

(EP)E(P)) = (Mg (p—p") @7

surface
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impedance. Finally, the differential reflectance

ZAQNZAQ) (Q))

i

(23)

ZUQN+Z)Q) (Q)  ZAQN+ZAQ") (Q')?

I

where (£2)=+h? and g(p—p')=cos[go(x —x')], which

has the Fourier transform
g(Q)=21r2[8(Qx+qo)+8(Qx—qo)]8(Qy) .

The randomly rough surface has mean square height
(&%) and is described by a Gaussian autocorrelation func-
tion

(28)

glp—p')=e—\p—pV/d’ (29)

where d is the correlation length; this has the Fourier
transform

g(Q)=mnd% 424 (30)

All calculations for gratings have been done with a sin-
gle grating height A,=5 A, and for the randomly, rough
surface we have used the rms height ((£2))!/2=5 A. The
results can easily be extended to other heights by noting
that the reflectance change AR o« (£2).

A hydrodynamic dielectric function

2
@p

ek(q,co)=1— (31

olo+i/T)—3vfq?

is used for Al; the plasma energy is hw,=E,=15.06 eV,
the damping parameter (mPT)‘1=0.O375, and the Fermi
velocity vp=1.96X10°ms™".

The impedances Zg (Q) and ZX(Q) at the surface of the
Al,O; overlayer are found by impedance transfer, starting
with the surface impedances Z,"(Q) and ZM(Q) of the Al
substrate. Using the semiclassical-infinite-barrier (SCIB)
method,'>? we have

02 q;
€lq,0)  e—q%/qd

1 © dqz
zQ=— [ =

) (32)

where ¢2=Q%+¢2, k =w/c, €(g,0) is given by Eq. (31),
and € is a local dielectric function e=¢€;(0,w). Performing
the integration in Eq. (32), we find

€=Uk i

zY(Q)= p a

(33)

1|9?
1_e]l"

with T'={Q?+[w) —w(w+i/7)]/3v#}'/2 The surface
impedance for s polarization is the local expression

ZMO)=1/(e— Q2 /kH)'/2 . (34)

Let the Al,O; overlayer have the local dielectric con-
stant €, and thickness H. Introducing the functions
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2=~ L tanctpm (352)
€o
o 1B L 35b)
Z) =1 cot(7BH) , (
0
zZW= %tan(%BH), (350)
@ _ ik 1
2= oot 3 BH) (35d)
where
B=(k*€—Q*)'?%, (35¢)
we find the impedances at the Al,O; surface,?!
zXonz ) +z 220z
Z, (Q)=""2> O\ Zps (36)

z\ 2‘2’+2Z"§(Q)

The unperturbed normal incidence surface impedance
Z,(0) in Egs. (22) and (23) is given by Egs. (32)—(36) with
Q=0. The dielectric constant €, of Al,0; is taken from
measurements by Arakawa and Williams.?! At energies
greater than 8.5 eV interband transitions cause a steep rise
of Im(ey), which has important consequences in the re-
sults.

B. Results and discussion

Figures 2—4 show the reflectance change —AR
= Rmooth —Rougn as a function of photon energy for
sinusoidal gratings with three wavelengths: A,=200, 100,
and 50 A. The average thickness of the overlayer is
H=20 A in all three figures. The curves labeled “nonlo-
cal” and “local” were calculated with the Al dielectric
function [Eq. (31)] and its local (vp=0) limit, respective-
ly.

. + - . : : .
0.04 4
0.031 i

NONLOCAL

002 LOCAL §
x
<
1

0.0l |- ]

[e] 4

-0.01F -

1 1 1 i 1 1 1
4 6 8 ) 2
ENERGY (eV)

FIG. 2. Local and nonlocal reflectance change — AR as func-
tions of photon energy for a grating with A,=200 A. The
values of other parameters used in this and subsequent figures
are discussed in the text.
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FIG. 3. Local and nonlocal reflectance change —ARas func-
tions of photon energy for a grating with A,=100 A.

The most prominent feature of these curves is a peak in
—AR /R due to surface-plasmon excitation; this arises
formally from a nearly vanishing denominator Z;(Q’)
+2ZXQ’) in Eq. (23). In the region of high Al,0; absorp-
tion (E>8.5 eV), —AR/R becomes negative, which
means that a rough surface is more highly reflecting than
a smooth one. Finally, there is a systematic decrease in
height of the surface-plasmon peak as the grating wave-
length decreases.

The position of the surface-plasmon peak can be under-
stood from Fig. 5, where the local and nonlocal surface-
plasmon energies are plotted for the vacuum-smooth
A1,03-Al structure as functions of the dimensionless wave
vector along the surface, Q Qc/w,. The wave vectors
0= (2m/A)(c/w,) associated with certain wavelengths,
A=50, 100, 200, and 500 A are marked. For small Q
the surface plasmon follows the light line E/E,

T L T T T T

-~ NONLOCAL

-0.01 | \ i

-AR
T
J—
L

-0.02 + 4

s s L L L s L
4 6 8 10 2
ENERGY (eV)

FIG. 4. Local and nonlocal reflectance change —AR as func-
tions of photon energy for a grating with A,=>50 A.
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FIG. 5. Local and nonlocal surface plasmon energies as func-
tions of dimensionless wave vector O =Qc /o, for a 20-A Al,O;
overlayer on an Al substrate.

=0/w,= Q closely; in this region the E and B fields of
the surface plasmon extend far out into the vacuum, and
the Al,03 overlayer has almost no effect. With increasing
Q, the surface plasmon moves away from the light line
and begins to approach the energy fiw; =%w,/v'2=10.6
eV which is the high-Q limit of the local surface plasmon
on a vacuum-metal interface. However, long before it
reaches the energy hw,, the fields begin to be more
strongly localized near the metal surface, the Al,O; has an
increasing effect, and the surface-plasmon energy begins
to decrease. The local surface plasmon asymptotically ap-
proaches the energy fiws=%w,/[1+€w;)] which s the
high-Q limit of a surface plasmon on the Al,0;-Al inter-
face, for which the surface-plasmon field does not
penetrate into the vacuum at all. With increasing Q, the
effect of nonlocality is increasingly important, causing the
nonlocal surface-plasmon energy to pass through a
minimum and to continually move to a higher energy.

The energies of the peaks in Figs. 2—4 correspond to
the surface-plasmon energies in Fig. 5 at a wave vector
Q=02m/Ag)(c/w,). For example, in Fig. 3 the local and
nonlocal peaks for A, =100 A occur at 7.05 and 7.5 eV,
values which agree w1th the surface-plasmon energies at
A=100 A or 0=38.23.

The source of the negative sign of —AR at photon en-
ergies greater than 8.5 eV, which corresponds to the re-
gion of high Al,0O; absorption, can be understood by go-
ing to the limit go—0 or Ap— . In this limit one can
imagine finding the reflectance R, of a rough surface
by averaging the reflectance of Al,O; layers with
thicknesses varying about a mean thickness H. If
d?R /dH?> 0 the reflectance R, averaged over a range
of thicknesses about H, will be greater than the reflec-
tance Rgmooth for a single thickness H, or —AR <0. For
the 20-A layer used in the calculation, this behavior
occurs in the highly absorbing region, E> 8.5 eV. In
Figs. 6 and 7 we have calculated the reflectance R of a
smooth Al,O; overlayer and the negative second deriva-
tive, —d’R /dH?, as functions of H, for two photon ener-
gies: E =0.4E, —603 eV and E=0.7E,=10.55 eV.
From Fig. 6 one sees that —d2R /dH? 1s small and

[Re] T T T
L —
— o
0.6 R/ E— .
o6k
0.4}
“:}NI 100428
> Coef / e ]
<] N e
@ or W
\ /
\ /
G2 //
0.4 \/
0.6 .

L . . . L . :
0 40 80 120 160 200 240 280 320 360
THICKNESS H (R)

FIG. 6. Reflectance R and second derivative — d’R /dH? as
functions of Al,O; overlayer thickness H, for a photon energy
E=6.03eV.

positive at E=6.03 eV and H=20 13;, giving a small posi-
tive —AR, and from Fig. 7, —d’R /dH? is large in mag-
nitude and negative at E=10.55 eV and H=20 A, giving
a large negative —AR. Although one cannot expect this
simple correspondence between the signs of —AR /R and
—d?R /dH? to hold for arbitrary grating wavelengths,
Figs. 6 and 7 indicate that one should not be surprised to
find both positive and negative values of —AR /R as one
varies the overlayer thickness and photon energy.

The final trend noted in Figs. 2—4 is the decrease in
height of the surface-plasmon peak in —AR as A, de-
creases. In order to couple to the surface plasmon, which
is strongly localized at the Al,0;-Al interface at high Q,
the fields generated by the rough interface must penetrate
through the Al,O; layer. Since these high-Q fields decay
rapidly (they decay approximately by a factor
e~ =~ 2™’% 4t a depth H), A, must be considerably
greater than H, as in Figs. 2 and 3, in order to have ap-
preciable coupling to the surface plasmon. If Aq=2.5H,
as in Fig. 4, the coupling is already weak, and it vanishes
almost completely for Ao < H.

0.5\ B
ot
2
— 0 9°R
dH2

s L L s L .
0] 40 80 120 160 200 240 280 320 360

THICKNESS H (R)

FIG. 7. Reflectance R and second derivative —d*R /dH? as
functions of AL,O; overlayer thickness H, for a photon energy
E=10.55¢V.
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FIG. 8. Local and nonlocal reflectance change — AR as func-
tions of photon energy for a randomly rough surface with corre-
lation length d=100 A.

Figures 8—10 show the reflectance change —AR /R as
a function of photon energy for randomly rough surfaces
with three different correlation lengths, d=100, 50, and
20 A. The behavior of the peaks in —AR which arise
from surface-plasmon coupling can again be understood
from Fig. 5, after taking account of the fact that a range
of wave vectors enters. In Fig. 8, d=100 A, correspond-
ing to a range Q <3 in Fig. 5, and the surface plasmons
with energies E ~ '8 eV near the peak at 0 ~ 1.5 are excit-
ed. In Figs. 9 and 10 the wave-vector ranges extend to
about Q <6 and 9] <15, respectively. The broad peaks in
Fig. 9 come from the wide range in surface-plasmon ener-
gies with QS 6, and in Fig. 10 the relatively narrow,
asymmetric nonlocal peak is associated with the nonlocal
surface-plasmon-energy minimum E=7.5 eV at Q=38.

0.04
NONLOCAL

003}

002+

-AR

0.0l |-

-0.0lF

7
ENERGY (eV)

FIG. 9. Local and nonlocal reflectance change — AR as func-
tions of photon energy for a randomly rough surface with corre-
lation length d=50 A.
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-0.01+ .

A 2 N . .
5 7 8 9
ENERGY (ev)

FIG. 10. Local and nonlocal reflectance change —AR as
functions of photon energy for a randomly rough surface with
correlation length d=20 A.

IV. CONCLUSIONS

We have used a general local-field formalism to calcu-
late the reflectance of a system with a rough surface by
keeping terms to second order in the roughness amplitude.
We assumed that the light is normally incident and that
the outermost rough surface is described by a local dielec-
tric constant. The final expression for the reflectance in-
volves the autocorrelation function of the surface profile
and impedance of the nominal smooth surface, so the in-
terior of the system need only be translationally invariant
in directions parallel to the surface.

The roughness-induced reflectance decrease —AR was
calculated for both gratings and randomly rough surfaces
with a Gaussian autocorrelation function, for a system
consisting of a rough Al,Oj; layer, with a nominal thick-
ness of 20 A, on an Al substrate. There is a peak in —AR
associated with surface-plasmon excitation. The frequen-
cy of this peak varies in a rather complicated way with
the grating wavelength or the autocorrelation length of
the roughness; however, the behavior can be understood
from the surface-plasmon dispersion relation for the
vacuum-Al,0;-Al system. Calculations for both nonlocal
and local models for the Al substrate show that nonlocali-
ty increases the surface-plasmon frequency at large wave
vectors and causes a corresponding shift of the peak in
—AR to higher frequencies if the scale of roughness is
small.

In future work it would be desirable to extend the
theory to obliquely-incident p- or s-polarized light and to
generalize Eq. (6) so as to include roughness on a nonlocal
medium. Such a theory could be useful for studying
surface-enhanced spectroscopies and the image force for a
metal with small-scale surface roughness.?>?*
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APPENDIX

In this appendix we derive Eq. (8a) by expanding Eq.
(3) up to second order in A€, and therefore, up to second
order in §. We start by analyzing the action of &, &,
€s,, and &y, on any arbitrary field F. According to defi-
nitions (3b), (4), and (5),

€, F=P,eP,F=(8)(F)=(§,+(A&))(F), (Al

where we used the fact that the average of a nonfluctuat-
ing quantity such as €, is the quantity itself. Similarly,
we find that

¢, F=&(F) —(€)(F) =(Aé—(A&))(F) (A2)
and

e F=(8F—(F)))=(AGF)—(AS)(F) . (A3

Notice that &, and &, are of first order in A€, so the
calculation of €y to second order requires
l’e‘,f—(l/kz)(VXVX )er | —1 only to order zero. Hence,

Err =€+ AEpr~€,, (VXVX)fr=VXVX,
and
(€7 —(1/k2(VxVx) ]~ =k?[ (K%, —(VxVx)] !
=k%G , (A4)
as can be checked using Eq. (8b). Using Egs. (A1)—(A4)
in Eq. (3a) we obtain
EuE,=[€, + (A8) — (AEK?G(AE—(A8)))
+(A&)(k2G(0e—(A&)))]E,
=[€,+(A8) —k*(AEG A&) +k*(A&)G (L&) ]E,
(A5)

for any nonfluctuating field E,. From here, Eq. (8a) fol-
lows immediately.
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