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(Received 24 December 1985}

Total-energy calculations are reported for compressed solid Ar which suggest that the observed
1-atm fcc phase should transform to an hcp structure prior to metallization, and it in turn should

transform to a bcc structure at pressures above metallization. It is argued that this structural se-

quence follows from the effects of hybridization between the I valence band and the I + 1 conduc-
tion band as the gap narrows and closes, and that all rare-gas solids are likely to undergo an

hcp~bcc transition with metallization occurring near, if not within, the range of hcp stability. The
lower-pressure fcc~hcp transition in insulating Ar should occur below 230 GPa.

I. INTRODUCTION

TABLE I. Predicted structural transitions in compressed
solid Ar. The volume, pressure, and percentage volume change
are specified for each transition. Volume is relative to

0 3
Vp =37.45 A /atom. For the fcc~hcp entry, these results con-
stitute only an upper (lower) bound on the transition pressure
(volume).

Transition hV (%)P (GPa)V/Vo

There has been continuing interest in the metallization
of compressed rare-gas solids since the early estimates of
Herzfeld. ' As the required pressure may vary with crystal
structure, calculations for He (Ref. 2) and Xe (Refs. 3 and
4) have sought to determine the stable structure at metalli-
zation. In both cases crystallographic phase transitions
were predicted in the vicinity of metallization; however,
the question of whether or not the decreasing gap had ac-
tually driven these transitions was not addressed.

The present paper reports linear muffin-tin orbital cal-
culations of the zero-temperature total energy differences
between the fcc, hcp, and bcc structures of solid Ar. The
structural transitions implied by these differences are list-
ed in Table I, and the metallization volumes for the three
structures, in Table II. These results suggest that the ob-
served 1-atm fcc phase should transform to an hcp struc-
ture prior to metallization, and it should transform to a
bcc phase at pressures above metallization. Both transi-
tions are closely related to the onset of metallic conduc-
tivity. It is argued here that they are caused by the grow-
ing effects of hybridization between the l + 1 conduction
band and the 1 valence band as the insulating gap separat-
ing these bands decreases and then closes.

Combined with the previous work on He (Ref. 2) and
Xe (Refs. 3 and 4), these calculations for Ar suggest that
the rare-gas solids may follow a generalized structural se-
quence of cp~hcp~bcc, with metallization occurring

TABLE II. Metallization volumes and pressures for the fcc,
hcp, and bcc structures of solid Ar. Volume is relative to
Vo ——37.45 A /atom.

Structure V/Vo P (Gpa)

near, if not within, the hcp interval. At low pressures the
fcc and hcp structures are nearly degenerate in energy,
which makes calculation of the observed low-pressure
phases very difficult. The present paper makes no at-
tempt to deal with this problem, and designates the initial
phase as simply close packed (cp). The point made here,
and signified by cp~hcp, is that under significant
compression this near degeneracy is broken in favor of the
hcp structure due to the hybridization mechanism just
mentioned.

Argon was chosen for the present work in part because
of a recent suggestion that it might provide an alternate
pressure standard for tugh-pressure diamond anvil cell
measurements. 6 It would be important for such an appli-
cation to consider possible structural transitions in the
standard, as for example the fcc~hcp transition predict-
@i here for Ar. Due to the exceedingly small hcp-fcc en-

ergy difference at low pressures, only an upper bound of
-230 GPa (2.3 Mbar) can be placed on this transition.
Only above this pressure does the hcp-fcc difference be-
come significantly larger than the uncertainties in the
present calculations, clearly establishing hcp as more
stable than the fcc structure observed at 1 atm. While
this is within the 300 Gpa range over which solid Ar is
recommended as a pressure standard, the differences in
equation of state between the two structures are found to
be sufficiently small so as not to compromise the desired
apphcation.

In the remainder of this paper the linear muffin-tin or-
bital (LMTO) calculations are described in Sec. II and the
hybridization mechanism in Sec. III. Discussion of these
results and conclusions are presented in Sec. IV.
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II. LMTO CALCULATIONS
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FIG. 1. LMTO calculated relative total energies of the fcc,
hcp, and bcc structures of solid Ar as a function or reduced
volume V/V, .

The I.MTO method has been described in detail else-
~here. ' The present calculations were nonrelativistic,
used the von Barth —Hedin exchange-correlation poten-
tial, and included Andersen's combined-correction
term. ' The metallization volumes and pressures in Table
II were obtained from self-consistent calculations for the
fcc, hcp, and bcc structures in which the 3s and 3p
valence bands were sampled with 89, 80, and 140 points
per irreducible wedge of the respective Brillouin zones.
Angular momentum components of s,p, d,f character
were retained. Core states were included in a self-
consistent atomic manner.

The LMTO zero-temperature structural energy differ-
ences, relative to the fcc structure, are presented in Fig. 1

as a function of reduced volume V/Vo, where Va ——37.45
A /atom is the observed' 1-atm T=O volume of the fcc
solid. These results were obtained using the force
theorem, " providing more accurate differences than
would be obtained from the separate self-consistent calcu-
lations just mentioned. In this approach, the total energy
differences are given by differences in one-electron eigen-
value sums obtained using the same (in this case the self-
consistent fcc) set of one-electron potentials for each of
the three structures. Only the valence eigenvalues are in-
volved, eliminating numerical uncertainties which can
arise from large core contributions to all-electron total en-

ergies. Such calculations are also less expensive, permit-
ting more dense sampling of the Brillouin zone than
would otherwise be practical. The force theorem has been
numerically tested for other third-period elements' and
has proved remarkably successful in previous LMTO
structural calculations. ' It also requires an electrostatic

Madelung contribution to the structural energy differ-
ences. " Although quite small, this contribution is includ-
ed here by means of the muffin-tin or Ewald correction. '

The one-electron eigenvalue sums used in the force
theorem calculations for the 3s and 3p valence electrons
were obtained with 240, 150, and 285 points in the irredu-
cible wedges of the fec, hcp, and bcc Brillouin zones,
respectively. Much coarser sampling is adequate in the
insulating regions. These sampling densities were chosen
to also yield convergence in the metallic regions, where a
further approximate doubling of these densities resulted in
change of the structural energy differences by less than
0.5 mRy/atom. Test calculations with the 2s and 2p elec-
trons included as bands showed negligible contribution to
the structural energy differences from these electrons over
the range plotted in Fig. 1.

Components through f character were retained in the
angular momentum basis used in calculating the results
shown in Fig. 1. By far the greatest sensitivity to basis
was found in the bcc-fcc curve for V/V0~0. 18. Its
minimum near V/V0-0. 13 in Fig. I, for example, has
been lowered by nearly 17 mRy/atom by the inclusion of
f components. ' Selected tests with the basis further aug-
mented to include g components indicated shifts an order
of magnitude smaller, but not entirely negligible in this re-
gion. For this reason, calculations including g com-
ponents were carried out in the vicinity of the transitions
to determine the transition volumes cited in Table I. They
are within 5% of values predicted by the s-f basis results
shown in Fig. 1.

Separate panels were used for each of the nonoverlap-
ping 3s and 3p bands in the range V/Vo & 0.25. A single
panel was used at smaller volumes when these bands over-
lapped. Tests were carried out in the region V/Vo (0.25
where this procedure might be most inaccurate, by using
two overlapping panels. This required careful accounting
to insure neither duplication nor omission of any eigen-
values. These tests gave the bcc-fcc peak near V/Vo -0.2
and the hcp-fcc curve in the same volume range to within
5% and 1%, respectively, of the single panel results
shown in Fig. 1.

Linearization for each angular momentum component
was carried out within each panel in the manner described
by Skriver. Two cases required special treatment: First,
when separate panels were used for the 3s and 3p bands,
(P2 ) was set to 0 and D. &0 for the s linearization in

the upper, 3p panel. Second, c.,f was placed —1.5 Ry
above the f center of gravity for each panel in order to
shift the D„fbranch of the f var. iational logarithmic
derivative to a range which would not create f roots
within the panel. Similar treatment was used for s~.
These adjustments eliminate the possibility of unphysical
roots which might otherwise occur in certain easily iden-
tifiable circumstances, as discussed in detaH in Ref. 8.

The bcc-fcc and hcp-fcc pressure differences M at
fixed volume were determined by numerical differentia-
tion of the calculated structural energy differences. The
bulk modulus 8 for the fcc phase was also determined by
numerical differentiation of the fcc pressures mentioned
earlier. Volume changes at the transitions were then ob-
tained from hV/V =LP/Bf„. They are so small, as seen
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in Table I, that no attempt was made to locate the boun-
daries of the two-phase regions. Except for the first en-

try, the transition volumes listed in Table I are those
volumes at which the total energy curves cross, which lie
within the two-phase regions. For volumes V/Vo &0.25
the present hcp-fcc energy difference is larger than the
-0.5 mRy/atom numerical uncertainty in these structur-
al energy differences, indicating definite stability of the
hcp structure. The transition from the observed 1-atm
stable fcc structure to hcp should therefore occur at larger
volumes or pressures (possibly much) less than 230 GPa.

III. CANONICAL BANDS AND HYBRIDIZATION

Some insight into the cp~hcp~bcc sequence suggest-
ed by Fig. 1 is provided by Andersen's canonical band
theory along with the leading hybridization corrections to
this theory. ' The relevant equations are reviewed in the
Appendix, and have been previously used to discuss the
closely related problem of core contributions to the
structural energy differences in highly compressed alkali
metals. '

Within the atomic-phase approximation underlying the
I.MTO method, the one-electron eigenvalues c, may be ap-
proximated ' in the absence of hybridization by

F.
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Here, the canonical bands A«(k) depend only on k vec-
tor, angular momentum I, band index i, and crystal struc-
ture. They generate unhybridized bands for specific ma-
terials when centered about C~, scaled in width according
to the band mass pI, and distorted according to the pa-
rameter yi. All three of these (positive) potential parame-
ters are material-dependent and Wigner-Seitz radius S-
dependent, but structure independent.

Differences in Madelung energy between the structures
considered here are small, so the force theorem" gives the
total energy differences as just those between one-electron
eigenvalue sums. Since averages (A«(k)) =0 for full I
bands, the leading contribution to the unhybridized
structural energy difference b,E' ' is

b,E"'- ', b, ([~;(k)]')

i.e., proportional to the difference in canonical bandwidth
p'i squared. This is just the difference in &orn-Mayer
repulsion' between different structures, as those with
smaller near-neighbor distances generally have larger
bandwidths.

FIG. 2. Model calculation of the 3p contribution to the hcp-
fcc and bcc-fcc total energy differences in solid Ar. The dashed
curves are unhybridized results based on Eq. {1)of the text, and
they show the effects of Born-Mayer repulsion. The solid
curves include the leading hybridization corrections to the one-
electron eigenvalues given by Eq. (3).

The dashed curves in Fig. 2 show bcc-fcc and hcp-fcc
differences &F. ' ' for the 3p band of Ar. Differences be-
tween sums over the eigenvalues given by Eq. (1) were
used, in order to provide more accurate results than would
be obtained from the leading term Eq. (2). It is not
surprising to see the bcc structure unstable relative to the
two close-packed phases, given its smaller near-neighbor
distance. With identical first- and second-neighbor dis-
tances, the hcp and fcc structures have nearly degenerate
energies in these unhybridized calculations, although the
fcc structure is slightly favored. There are no phase tran-
sitions here.

It requires the effects of hybridization to introduce the
sequence of phase transitions indicated in Fig. 1. As de-
rived in the Appendix, the leading correction to Eq. (1),
designated e'i; '{k), is second order in the hybridization
matrix elements W« i~(k), which couple angular momen-
tum / with A, , for band indices i and j, respectively:

eI,"(k)= e« VI 1
—s5, —Vx e« —Vi. I ~ax, {k)

I

(0) 0) (0) 2

„p' C, —V, „,. pp C, —V, . ,Sj
(3)



33 STRUCTURAL TRANSITIONS AND MBTALLIZATION IN. . . SOLID ARGON

20 ~ ~ ~ g I ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ I I ~ \ IS ~ ~ ~ ~ ~ ~ ~ I ~ ~ 4 I ~ ~ ~ ~ ~ Ct ~ '~ ~ ~ ~ Vt ~
'

~ ~ IC ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~
I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I ~ I ~ ~ ~ ~ ~ jt \ I ~ ~ tg \10 ~ ~ gt ~ ~ I I ~ ~ tl ~ ~ ttt ~'~ ~ ~ ~ ~ I $O ~ ~ ~ '~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ IQ ft ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ OIO ~ ~ ~ ~ ~ ~ \ ~ ~ I $ \ ~ ~ 4~0 ~ ~ 31 ~ ~ t ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

4f '" """'t~~ ~ ~ ~ ~ gt ~ ~ ~ ~ ~
'I ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ I 40 ~ ~ ~ ~ ~ I ~ ~ ~ ~ OP ~ ~ ~ ~ ~ t ~ A ~ ~ ~ ~ Ii

~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ '~ ~ ~ ~ ~ ~ ~ ~ \14 ~ It I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ I 1010 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I

~ ~ I I I I ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ I ~ ~ t ~ ~

~ ~ ~ ~ I I ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~I-~

—
~

—~ ~-I-~ I-~-I-~-I ~ ~ apt ~ I ~ ~ ~ ~ ~ ~ ~ ~ I ~ I ~ ~ ~ ~ I I I ~ I ~ ~ ~ I I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ I ~~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ I I I ~ I ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~jj ~ jjtjjjj~j~g~ + 111 ~ III+I ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~I ~ ~ I ~ ~ ~ ~ ~ ~ ~. I ttttt %f00 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ I ~ 'I ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 %%@ha %.~ ~ ~ ~ 444 I f I ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ I I ~ ~ ~ I 1 ~ ~ ~ ~ I I II ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ tt~t ~~ OOOO ~~ ~ ~ I ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ t ~ ~ ~ 0 ~ ~ ~ I ~ ~

S ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ I ~ I ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ 'I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ - — ~ ~ ~ ~ ~ ~ ~ I I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~I I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ I I I I I ~ I t ~ I I I I ~ ~ I I I I I — I ~ ~ « ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~
I ~ ~ 10~ ~ '101110tOt ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ..~ ~ ~

'I I'I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I'I'i
~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ \ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~,0,1,~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ » ~ ~ ~ ~ I I ~ ~ ~ 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~

~ ~ ~ * I I I I I ~ I I I I I I I I ~ I I I I I I I I t I I ~ I I I 110 I I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~* ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I I I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 111 I\044111011 ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ \ ~ ~ ~ I ~ ~ ~ ~ ~ ~ I I~ ~ ~ ~ I ~ ~ ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~ ~ ~
~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~~ ~ ~ ~ ~ ~ I ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ \ ~ ~ ~ ~ ~ ~ ~ ~ » ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ 0*f ~ I I I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ I,~
, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ ~~t ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I I I ~ ~ ~ ~ ~ I ~ ~ I ~ ~

~ ~ ~ ~ ~ I ~t ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ttttf I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ I ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ 001 ttt ~ ~ ~ ~ ~ ~ ~ ~~'A~It~I ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 01 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0-1 ~ ~ 0~++~+~f~—-~Pry~I VIV I ~ f~& ~ ~ ~ ~ ~ ~ ~ ~,
~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I ~ ~ ~ ~ ~ ~ t~ Off «IIIO ~ ~ ~ ~ ~ ttO ~ ~ ~ ~ I ~ ~ ~ ~ ~0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

'
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ t ~ ~ '~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ \ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ I ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I \ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ I~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ I ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ \ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ \ ~ ~ ~ ~ I ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ \ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~I 1 ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I ~ ~ ~ ~ I I I I I I I
~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~
~ 0 I I I I I 4 ~ 0 0 I I I I I ~ I I I I I I I I I ~ 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ 4 ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0+ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ f0 4 ~~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I ~ ~ ~ 1*1 ~ ~ I I I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I I I I 1 I I I I I I I I ~ I I I 0 I I I I I ~ I I t ~ I I I ~ I I I I I I 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I
~

I I I I I I I 0 I I I ~ I I It I I I It I I I 0 0 I I I I ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ I — ~ ~ ~ ~ ~ ~ ~ ~ \ ~ I

~ I ~ ~ I I I ~ I I 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ I I I ~ ~ ~ ~ ~ ~ I 4~ ~ ~ ~ I ~ I ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ I ~ ~ ~ I I ~ ~ ~ \ ~ ~ ~ ~ ~ ~ I I ~ ~ ~ ~ ~ I ~ ~ ~ ~ I I ~ ~ I ~ ~ ~ ~ ~ I
~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I 0 ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 ~ I ~ ~ ~ I I I I ~ ~ ~ ~ ~ ~ ~ « I +I ~ ~ ~ ~ ~ I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ \ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ tttt I ~~ ~ ~ ~ ~ ~ ~ I ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ 10,1t ~ ~ ~ It ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~.\ \ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ I ~I ~ ~ ~ ~ ~ ~ ~ OIOIOO ~ ~ I ~ I ~ ~ ~ 00 ~ ~ ~ ~ ~ ~ ~ I ~ I I I I I I

-10
0.08 0.'l 0.2

V/Vo

0.4

FIG. 3. Energy parameters a entering Eqs. {1)aud (3) of the
text, as a function of reduced volume. The dimensionless prod-
uct cS~2m /A is shown. The unhybridized eigenvalues ajP lie in
the shaded regions which are bounded by the solid lines, cen-
tered about the C~ (dashed curves), and of width ~@I '. The
dotted lines are the energies V~.

The sum excludes A, =I. The parameters in this uation
are illustrated for Ar in Fig. 3. The eigenvalues sI, (k) lie
in the shaded I bands centered about the dashed lines CI
with width related to the band masses p~. The actual
boundaries here in Fig. 3 (solid lines) are energies where
the logarithmic derivatives Dt =0 and ao.

Equation (3) clearly shows the repulsion between levels
which is associated with the concept of hybridization.
Whether, for example, the 3s levels are pushed down by
the 3p band above (see Fig. 3) or pushed up by the 2p
band below (not shown) is determined by which of the p
bands is closer. In Andersen's canonical band theory this
boundary is estabhshed by the parameters (dotted lines) Vt

defined as the energies for which Dt ——I ( V, coincides with
the bottom of the s bands). 7's Thus the factor eIo' —Vi in
Eq. (3) is quite important. It is interesting to note that
levels such as the 3p near V/Vo ——1, which lie below V3g
and V4f (dotted lines labeled d and f), are pushed up by
pd and pf hybridization just as if there were 2d and 3f
bands below.

The solid lines in Fig. 2 show the bcc-fcc and hcp-fcc
structural energy differences for the 3p band obtained us-

ing the sum of Eqs. (1) and (3) for the one-electron eigen-
values. The downward turn of both the bce-fcc and hep-
fcc curves for V/Vo ~OA is due to hybridization with the
3d band {the 4f as well in the first case). These effects are
small at larger volumes due to the large 3p-3d separation
[the quotient sI,

' —e() in Eq. (3)], and kept small for de-
creasing volume until after V3~ has cut through most of
the 3p band (the factor e'i; ' —V3$).

The 3p-Imnd model calculations in Fig. 2 predict an
fcc~hcp~bcc sequence in qualitative agreement with

Fig. 1, however, with the transitions at larger volumes.
Addition of the 3s-band contributions to Fig. 2 only
slightly shifts these volumes. A more important source of
the difference is inclusion of the combined correction ' in
the full LMTO calculations, which does shift the transi-
tions to smaller volumes as well as making the bcc-fcc
maximum more sharply peaked. It corrects for the fact
that the Hamiltonian and overlap matrix elements should
be evaluated over the Wigner-Seitz polyhedron, and not
sphere, as is the case in the atomic-sphere approximation
on which the formalism in the Appendix is based.

The largest difference between Figs. 1 and 2 is simply
the breakdown of the perturbation treatment usei to ob-
tain Eq. (3) as the bands move close together. The solid
lines in Fig. 2 are in fact in close agreement with LMTO
results for the 3p band carried out without the combined
correction for V/Vo &0.35. However, as the 3p and 3d
levels approach one another, Eq. (3) diverges, exaggerating
the pd-hybridization effect due to the energy denomina-
to& (Kp(0)-Kd(oj)). The myel us~ to obtMn Fig. 2 ~so
omits the effects of 3p-band depopulation following
metallization, which are responsible for the return to fcc
stability in Fig. 1 for V/V&& & 0.1.

Results for the 3s-band contribution to the structural
energy differences as obtained by Eqs. (1) and (3) are qual-
itatively the same as those for the 3p band in Fig. 2, ex-

cept that the important hybridization effect driving the
bcc-fcc and hcp-fcc curves downward is due to the nearby

3p band, and not the more distant 3d band. This is en-

tirely consistent with the fact that LMTO calculations for
He also gave an fcc~hcp~bcc transition in the vicinity
of metallization.

IV. DISCUSSION

Both the present calculation for Ar and earlier LMTO
work2 on He predict ep~hcp~bce structural sequences
for these compressed rare gas solids, with metallization
occurring during the interval of hcp stability. Perturba-
tion theory correctly predicts the ultimate high-pressure
structure of He to be bcc; 's however, the theory breaks
down at lower pressures where the 1 s shell is fully intact.
Were the hcp structure omitted, both He and Ar would
undergo fee~bee transitions near (although just after)
metallization, in qualitative agreement with work for
Xe which did not include this structure. The combined
work for He, Ar, and Xe thus appears to be in substantial
qualitative agreement, suggesting that the cp~hcp~bcc
sequence found here for Ar may well be a generalized
structural sequence for all of the rare-gas solids.

The theoretical prediction of any structural sequence is
of course subject to the caveat that the set of structures
considered is complete. In this regard it might be noted
that the rare-gas cores dominate the structural energy
differences of highly compressed alkali metals, and that
Cs is indeed predicted to undergo an hcp~bcc transition
at a compression slightly beyond where the Sp core and
5d valence bands begin to overlap. ' For Rb and K, on
the other hand, this sequence is interrupted by small sta-
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bility regions of Sm-type and of both Sm-type and dhcp
(double hcp) structures, respectively. ' While it is beyond
the scope of this paper to consider these structures for Ar,
the possibility of intermediate stability for these more
complex close-packed phases between the hcp and bcc
phases suggested above for the rare-gas solids must be ac-
knowledged.

Despite its lack of p valence electrons, He is expected
to undergo the same hcp~bcc transition found here for
Ar. The model calculations reported in Sec. III corro-
borate this behavior, and offer insight into the origin of
the full cp~hcp-+bee sequence itself. They suggest that
the transitions are driven by the effects of hybridization
between an I valence band and an upper lying I + 1 con-
duction or valence band. Whether I =s or p, these hy-
bridization shifts in the I valence band serve to favor bcc
and hcp structures (in that order) over fec as the gap be-

tween the I and the I+ 1 bands decreases. As this effect
must first overcome the Born-Mayer repulsion penalty in
the bcc case, the hcp structure has an intermediate range
of stability where this hybridization contribution dom-

inates the energy difference between the two close-packed
phases.

The hcp-fec energy difference found here for Ar near

V/Vo ——1 is more than an order of magnitude smaller
than the uncertainties in the present calculations. Only
above -230 GPa does this difference become sufficiently
large to clearly establish high-pressure hcp stability. The
anticipated fcc~hcp transition in Ar could occur well

below this upper bound in pressure. While within the
300-GPa range over which solid Ar has been proposed for
a standard, 6 the small volume change (&0.1%) at the
transition, and small equation of state differences ( & 0.4%
in pressure at fixed volume) between the two close-packed
phases should not compromise the use of Ar as a stan-
dard. In fact, the fcc~hcp transition might provide a
convenient fixed point as part of the pressure calibration.
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APPENDIX

case of interest here, the structure constants Wi i (k)
are energy independent, and

Pi(e) =2(21 + 1)[Di(E)+I+ 1]/[Di(e) —I],

where Di(s) are logarithmic derivatives of the radial wave
functions evaluated at the Wigner-Seitz sphere radius S.

An excellent fit to the functions P&(E) may be obtained
in the vicinity of the unhybridized I-band centers Ci, by
the three-parameter ( Ci,pi, yi) form

p,s'(e c,)—
Pi(e)—

1+yiv iS'« C—i)
(A2)

Given this expression for Pi(e), the eigenvalues of Eq.
(Al) are then identically those of Andersen's second-order
Hamiltonian

H =C+()Lis )
'i P'(1 —y5 ) '(ps )

where

C =[Ci&((& ] Ii = [Iii&u & ] y= [yi&ir& ]

Ho=C+(IiS') '~o(1 —y~o) ' (A4)

where P'o is just P' with all matrix elements coupling dis-
similar Is set to zero. The eigenvalues P'i;(k) (I is the
band index) of Ho itself are Andersen's canonical
bands. 's In the remainder of this Appendix, all matrices
will be considered in a basis within which P'o and thus
Ho are diagonal.

It is straightforward to expand H about Ho in
powers of the hybridization matrix
= [&u,iJ.(k}(1—~i~, }]

are diagonal matrices in Irn, and P' is the k-dependent
structure constant matrix. The eigenvalues of Eq. (A3)
are accurate to second order in e, —C, compared to those
obtained from the exact expression for Pi(e), thence the
reference to second-order Hamiltonian.

The unhybridized one-electron energies eIo' given by
Eq. (1) of the text are eigenvalues of

This appendix reviews the derivation of Andersen's
"second-order" Hamiltonian, ' followed by an expansion
of this quantity to obtain Eqs. (1}and (3) of the text. The
starting point is the secular equation for the one-electron
eigenvalues e,

det[P, (e}5u5 —A, ,, (k)]=0,

H =Ho+A, T g [(1—yP'o)yes hT]",
m=0

where

(A5)

(A6)

which is formally common to both the Korringa-Kohn-
Rostoker method' as well as the atomic-sphere approxi-
mation underlying the I.MTO method. ' In the latter

The leading correction c»;.
' to the unhybridized eigen-

values c~~,
' is quadratic in the hybridization matrix ele-

ments Wi; ii(k), and is given by

1 1 2
2 , I ~a,i, (k} I

ViS (1—yi~a) i,j IiiS (1 yi~ij}—
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where the first (second) term in the large parentheses
comes from a second- (first-) order perturbation treatment
of the n =0 ( n = 1) term in Eq. (A5}.

Equation (A7) may be put in the form given by Eq. (3)
of the text using

(AS}

(A9)

Equation (AS} is an approximation consistent with that of
Eq. (A2), since Vi is defined to be the energy e where
Dt(s)=l and thus Pi(s) diverges. The parameters Vt de-
fine the boundaries between l bands of different principal
quantum number and are crucial to the treatment of hy-
bridization using Eq. (3). Thus it is best to choose yi in
Eq. (A7) such that Eq. (AS) yields an accurate value for
Vi, rather than to give an improved fit to the true Pi (s)
in the vicinity of the A, -band center Ci.
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