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The theory of the scattering of a beam of particles by a corrugated surface potential is shown to
simplify dramatically in the semiclassical limit if the corrugation is not too strong and the direction
of the incoming beam is close to the surface normal. It is shown that in any scattering event by a
potential of quite general form the scattering amplitude is dominated by the potential corrugation
near vanishing potential. For a weakly corrugated Morse potential, it is found that under near-
normal-incidence conditions the classical scattering cross section is identical to the corresponding
cross section for scattering by a hard corrugated wall with the same corrugation. Quantum-
mechanical effects appear as small oscillations about the Kirchoff scattering amplitude. It is pro-
posed that the observation of pronounced neon diffraction from Ni{110) and Pd(110), reported re-

cently, may be reasonably explained if the corrugation function is defined at vanishing potential
rather than at the classical turning points.

I. INTRODUCTION

Recently, there has been significant progress in develop-
ing powerful numerical techniques for calculating cross
sections for scattering of atomic and molecular beams
from solid surfaces. ' ' This progress in the scattering
theory has already led to improved understanding of the
nature of the gas-surface interaction in the relevant range
of potential energies. 2 6

In particular, a sensitivity test made by Perreau and
I.apujoulade, using a method developed by Armand and
Manson, ' has shown that the scattering cross sections
obtained by using realistic model potentials can deviate
considerably from those obtained by using the highly
popular hard-corrugated-wall (HCW) model. "' Fur-
thermore, a comparison between the results obtained for a
soft potential which includes an attractive well (a corru-
gated Morse potential) and the results obtained for a pure-
ly repulsive, soft potential (a corrugated exponential po-
tential) has shown remarkable disagreement even for in-
cident beam energies much larger than the potential well
depth.

The great sensitivity of the gas-surface scattering pro-
cesses to the details of the atom-surface interaction poten-
tial, implied by these theoretical analyses, is unfortunate
in that it imphes that the structural information that one
hopes to extract from atom diffraction data' ' should
be obtained through large-scale numerical computations
with only little physical insight at the end of the computa-
tional process. The lack of physical insight is a far more
serious problem in cases where inelastic effects, '

which involve excitations of the solid degrees of freedom,
are of significant importance, since in most cases of in-

terest (except for very low incident energies ') only very
drastic approximations can avoid untractable computa-
tions.

In a recent paper we have shown, however, that a
search for a simple thtxiretical picture is not completely
hopeless; we have discovered that in the classical limit the
scattering amplitude from any potential is dominated by
the potential corrugation near vanishing potential (i.e.,
near the crossover of the potential from attraction to
repulsion). Under certain conditions (i.e., for incoming
beams very close to normal incidence and for surfaces
which are not too corrugated), the sensitivity of the
scattering process to the details of the potential is found
to be reduced considerably so that the scattering ampli-
tudes obtained for a soft potential are very close to those
obtained for an infinitely hard corrugated potential.

In this paper we present the theory which yields the an-
alytic results reported in Ref. 22 and discuss in greater de-
tail the validity and implications of these results. We also
present here some numerical results which greatly facili-
tate the above-mentioned discussions.

The organization of the paper is as follows: In Sec. II
we present the general semiclassical formulation used in
this paper and some important results of a general nature
(e.g., the vanishing potential theorem). In Sec. III we spe-
cialize our discussion to a model potential and describe an
iterative procedure for solving the corresponding
Hamilton-Jacobi equation for the phase of the scattering
wave functions. In Sec. IV we derive a simple Kirchoff-
like expression for the scattering T matrix, which is valid
for incident beams close to normal incidence and for
weakly corrugated potentials. In Sec. V we present our
numerical results and discuss their implications.
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II. THE SCATTERING AMPLITUDE
IN THE SEMICLASSICAL LIMIT

while the amplitude AK ~ is given by

The on-shell (elastic) scattering probability amplitude,

f(p, p'}, from the initial asymptotic momentum
p=—(P,p, }, p, &0, to the final asymptotic momentum
p'=(P', p,'},p,

'
& 0, is given by

(1)f(p p')= —&,., e

We consider the scattering of a monochromatic beam of
atoms by a corrugated surface potential V(R,z), where R
stands for the projection of the position vector r onto the
nominal surface plane. The scattering wave functions are
normalized in a three-dimensional rectangular box of
macroscopic sides L, L„,and L„where the nominal sur-
face plane at z =0 cuts the box into two equal regions.
The free-particle region corresponds to negative values of
z.

/1~ e (r)=det

x; —= (R,z), kj =(K,qe) . (8)

Using Eq. (5) in Eq. (4) and then substituting Eq. (4) into
Eq. (2},we obtain, after integrating over q„

T(p, p')= Ip, I(4)r 0) ' J d s(.'f(p;K)f'(p';K)/A'k, ,

where

f(p;K)=—(Mg/imp, )

X I d r V(r)AI,"'k (r)
where p=—

I p I, ez=))1 p /2Mg, Mg is the mass of the
atom, to is the time of a round trip for the atom from and
to the box edge plane z = —L, /2, and Tz(p, p') is the
on-shell T matrix:23

xexpt(t/fi)[p r S'—~ k(r)]I,

haik, =(2MgE —fi K )'/

(10)

Tz(p, p')=(to/A') f d r) Jd3rie

&& V(r) )GE(r), rz)
—(ili))p'. r&

(2)

To calculate G@ we shall use the spectral expansion

Gz(r), r2) =g g„'(r) )g„(r2)/(E„—E),

where t f„(r)I is a complete orthogonal set of eigenstates
with energies E„. A semiclassical wave function can be
written in the form

(J ra)S&~', (r)
itlK e (r)=(L LrL, )

'/ [AK'e (r)e

GE(ri, r2) is the propagator for the atom from ri to r2 at
energy E. The value of to can be readily obtained in
terms of L„p„and p,', i.e.,

to ——L,Mg ls, I /I pa' I

where

QS llle
2

K =2Mg[E —V(r)] =p —2Mg V(r), (12)

0 is the illuminated surface area ( =L,L„),and f'(p,', K)
is obtained by replacing p„A'"', and S"' in Eq. (10) by
p,', A, and S", respectively. Note that in Eq. (10)
f(p; K} is exclusively determined by the quantities charac-
terizing the incident wave. In general, however, the re-
flected wave should also contribute to f(p;K), but this
contribution is negligible under the semiclassical condi-
tions considered here (see below). Similarly, there is no
contribution to f'(p';K} from the incident wave within
the semiclassical approximation used here.

Let us now apply the stationary-phase (SP} method to
the three-dimensional integral in Eq. (10). This approxi-
mation is, of course, consistent with the semiclassical lim-
it. The corresponding stationary point ro satisfies the
equation

QS lllC
K

p
rp

so that, together with the Hamilton-Jacobi (HJ) equation
[Eq. (7)],

where

EKq = (E +q, ),
G

(i/4)S~re~ (r)

I
, =p

rp

one finds that ro should lie on the equipotential surface
V(t)=0.22 The argument for f(p', K) is similar: The
stationary point ro satisfies the equation

tref

Br
(11')

and fiK is the asymptotic momentum parallel to the nom-
inal surface plane. The action Sic e (r), with either of the

superscripts inc or ref, corresponding to either the in-
cident or to the reflected wave, resptx:tively, is the solution
of the Hamilton-Jacobi equation,

=2M [E —V(r)],

and the HJ equation reads
2

gS ref
K

Br
=p' —2Mg V(r), (12')

so that ro also lies on the surface V(r}=0.
Note that the basic integrand [Eq. (10)] vanishes at the

point of SP so that the leading contribution to the integral
from this point is zero. It is, therefore, required to carry
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out an unconventional SP integration, in which the preex-
ponential is expanded to higher orders about the point of
SP. As we shall show later in this paper, already the
first-order approximation yields the well-known exact re-
sult for the classical limit reflection coefficient in one-
dimensional systems.

Up to this point our analysis has been quite general,
provided the semiclassical limit is assumed. To proceed
along these general lines would be, however, a formidable
task. It would be therefore instructive to consider the
scattering in a one-dimensional (1D) system, for which
one may still keep the form of the potential V(z) quite
general when the SP integration is carried out. The result
of such a procedure should be universal [i.e., independent
of the specific form of V(z)] since the scattering proba-
bility (reflection coefficient) in one dimension equals unity
below the barrier in the semiclassical limit. In a 1D sys-
tem f(p„O) (which is just the reflection amplitude) is

l

given by

f(p„O)=(MG/imp, )J dz V(z)A'"(z)

{i/A')Q z —Sm (s)]
Qe (13)

where

gine(z) Ip /[p2 2M V(z)]1/2I i/2 (14)

Transforming the integral over the spatial variable z to an
integral over the potential, i.e., defining a new variable of
integration u—= V(z)/D, where D is the potential-well
depth, and then expanding the phase

(1/ii))[p, z(u) —5'"'(u) ]

to second order and the ainplitude A'"(u) to zeroth order
about the stationary point u =0, we have

—1 Z
f(p„'0)=(MGD/if@, ) f u e""'du+ J "u z+ e' " du exp —[p,z+(0)—S'"'(0)]

du
(15)

where

A, = ( MGD/2' AX),

and (16)

The functions z+ (u), appearing in Eq. (15},are the two
solutions of the equation V(z) =Du in the range
—1&u &0 (i.e., within the attractive well), z+(u) being
the solution for which dz/du ~0, while z (u) is the solu-
tion with dz/du &0 (we assume that the potential has
only a single minimum). Note that the stationary-phase
equation, u =0, has also two solutions, z (0}=—oo and
z+(0), which are located at the crossover point between
the attractive and the repulsive regions of the potential.
At the former point, however, the phase

—[p, ( ) —s'"'( )]

has an essential singularity since all the derivatives of u
with respect to z vanish there. Thus the only stationary
point around which an analytic expansion exists is the
latter one.

Equation (15) shows that if the value of the parameter
A, [Eq. (16)] is of the order of unity or larger, the integrals
in Eq. (15) are very sensitive to the detailed shape of the
potential well as reflected by the values of dz+ /du in
the region —1 & u &O. This seems rather surprising since
one usually expects that the effect of the attractive poten-
tial well on the scattering process would be important
only if the values of the parameter y= D/E (E being- . .
the energy of the incident be un) become of the order uni-
ty or larger. In the semiclassical limit, however,
A, =y(p, /4W) &&y, so that large values of A, do not neces-
sarily mean large values for y. If Eu is sufficiently large,

t

however, such that A, « 1, the important region of in-
tegration in Eq. (15) (i.e., u &1/WA, ) is considerably
larger than the potential-well region, and the detailed
behavior of dz+ /du in the region —1&u &0 should
not affect the value of the integral in any significant way.
Under these circumstances we may replace both dz+/du
and dz /du in Eq. (15) by the value of dz+/du at the
stationary point z+(0) (i.e., by g '), so that

f(p„'0)= [exp(i—g)]2iAJu e,
' " du,

where

[ (0} Sine(0)]1

(17)

The integral appearing in Eq. (17) is ill behaved at the
upper limit of the integration due to the breakdown of the
expansion about u =0 for large values of u. Nevertheless,
by introducing a small, positive imaginary part into il to
destroy the artificial oscillations at large u, the trivial in-
tegration in Eq. (17) yields the result

I f(p. 'o}
I

'=
I

e'~
I

'=1
which is identical to the exact result for the reflection
coefficient below the barrier in 1D systems.

The accuracy of the simple SP procedure described
above can be further and more significantly tested by ap-
plying it to an analytically soluble problem such as a par-
ticle in a 10 Morse potential and comparing the result
with an exact numerical integration. As we shall see later
(see Sec. IVA), the two methods are in excellent agree-
ment provided that k « 1.

The major surprise of this result is the negligible role
played by the classical turning point. In fact, the exact in-
tegrand [see Eq. (13)] diverges at the classical turning
point, due to the breakdown of the semiclassical approxi-
mation there. In our approximate expression [Eq. (15)]
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we have replaced the term responsible for the singularity
[i.e., the amplitude A'"'(z), Eq. (14)] by its value at the
stationary point u =0. This replacement is a terrible ap-
proximation near the classical turning point. It turns out,
however, that in both the exact integral and the approxi-
mate one the contribution coming from the region around
the classical turning point is completely washed out by the
oscillations of the integrand there. This important point
is illustrated in Fig. l, where the exact integrand in Eq.
(13) for a 1D Morse potential (for which the solution of
the HJ equation is known analytically) is plotted together
with a modified version of the same integrand, in which
the amplitude A'"'(z) is replaced by the value of A'"'(z) at
the stationary point. It is clearly seen that both the exact
and the approximate integrands oscillate symmetrically
about zero near the classical turning point so that despite
the large difference between them in this region the
overall integrals are almost identical.

III. SOLVING THE HJ EQUATION
FOR A %'EAKLY CORRUGATED

MORSE POTENTIAL

V(R,z)=Dp 2Dp, , p(R,z)=e—(' (19)

where g(R) is the corrugation function of the potential, g

The general analysis of Sec. II implies that for realistic
potentials (i.e., soft potentials which include both attrac-
tive and repulsive parts) the scattering amplitudesf(p;K), f*(p',K) gain most of their contributions in a re-
stricted region of space, near the crossover of the potential
from attraction to repulsion, far away from the classical
turning point. In other words, due to mismatch between
the free-particle incident wave and the fully distorted in-
cident wave in regions where the potential is strong, there
is gross cancellation of scattering amplitude generated in
these regions, leaving a restricted region around the van-
ishing potential as important to the scattering process.

To calculate the scattering T matrix in Eq. (9) it is,
therefore, not necessary to solve the HJ equation in the
entire space but only to find an expansion for the action
Sit'k, which converges rapidly within the important re-

gion around the vanishing potential. Fortunately this re-
gion is located far away from the classical turning point,
where the use of the semiclassical approximation is quite
safe.

Our aim in this section is, therefore, to find an approxi-
mate analytic solution to the HJ equation [Eq. (12)] in the
surface region around V=O for a realistic model poten-
tial. We select a corrugated Morse (CM) potential of the
orm

le-

1SI

12 I-

9t-
6-

0—
-6-
-9-
-12—

- l5-
-18
p. 1.092 p, e5.8

I

p.el0.$4

is the softness parameter, and D is the potential-well
depth. We prefer to use this potential rather than the
more popular CM potential, i'5's 27 which is assumed to
be corrugated only in the repulsive part, because of its rel-
ative simplicity and because the latter potential neglects
the corrugation of the attractive part. This neglect yields,
of course, more realistic behavior in the far-field region
but introduces unrealistic behavior in the most important
region, namely near the vanishing potential, where both
the attractive and the repulsive parts of any model poten-
tial used should have the same corrugation to mimic
correctly the behavior of the actual potential there (see
below).

%e assume that the corrugation is weak, i.e., that

i Vg(R)
i «1, V=

R
and that the semiclassical approximation holds, i.e.,

kp=(2MGE; ji)i )' ))I .

(20)

We shall then solve Eq. (12) iteratively in the small pa-
rameter

l Vg l. To do so we shall transform the coordi-
nates (R,z) in Eq. (12) to a new set of coordinates (R,1M).
The new HJ equation then reads

FIG. 1. The solid hne represents the imaginary part Y(p) of
the integrand in Eq. {41)for k,,p={1/A)p„V(=0 ( U =1), cor-
responding to reflection by a one-dimensional (1D) Morse poten-
tial [see Eq. (19) with /=0], as a function of {u=e"'. The
dashed line represents the same function except that 8'(p) is re-
placed by unity. The parameters used are k~0/+=34. 36,
y =D/E& ——0.0102. The classical turning point corresponds to
p = 10.94. The corresponding reflection coefficients obtained by
integrating numerically Eq. (41) are

l
B

l
2=0.9975 for the ex-

act integrand and
~

B
l
2=0.957 for the integrand with

00

8'(p) = 1. Note that Y(p)d p = Y(p)d p = —4.866,
where p~ ——5.8.

BSK BSK
(Xp)'[1+(Vg) ]

'2
~SK—2(Xp)
Bp

BS~ .Vg =2MG [E;—V(p) ], (21)

where we use the shortened notation SK for SK k . Equation (21) will now be solved iteratively in the small quantities
Vg. To zeroth order we get
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I 'T

aS(0) aS(0)

ap.
'

aR.
=2MG [E;—V(p )], (22)

which is separable in R and p and can be readily integrated to yield

S(K)(R,p) =A'K. R+S((M ), (23)

S(p)= —J [()1 k, —2MG V(p)]' =(1)ik, /X) W'(p) —v y sin ' +lnI2p/[1+y)M+ W(p)])
X p V'1+y

y =D/(A ki/2MG} and W(p}—= (1+2y)M —ypi}'~2 . (24)

aS(1) aS(0) aS(0)
(XP) a„" —

aR
.Vg aR

aS(0)

R

Note that the plus sign in (23} corresponds to the incident wave while the minus sign corresponds to the reflected wave.

Note also that S((M} is the classical action for a particle with energy A k, /2MG in a one-dimensional Morse potential
V(p) =Dp2 2Dp.—In order to get SK to first order in Vg, we substitute the zeroth-order expression for aSK/aR (i.e.,

AX.) and neglect (Vg) in Eq. (21). The resulting equation is thus written as
~' 'I 2

Vg =2MG[E —V(p, }]— (25)

so that by neglecting the second-order term on the left-hand side of this equation we obtain

aS(1)
=%K Vg+fi[k, 2M—G V(p, )/fi ]'~2, (26)

which can be easily integrated to yield

S(K"(R(M)=A'K R+ —lnp, RK Vg+S(p) (27)

The solution of Eq. (21) to higher orders is considerably more complicated due to the appearance of terms including
second derivatives of g(R). For example, to obtain SK to second order in Vg we substitute the first-order expression for
aSit/aR [i.e., A'K+ ( I/X)(in@)RK VV/] into Eq. (21) and neglect all terms which are of order higher than (Vg) . Note
that VVg is considered here of the same order as Vg (see below). Under these circumstances one gets the equation

aS(2)
(X)M)[1+(Vg)']'/' =&k,(V( (K/k, )+lnp[Vg (VV//1) (Kik, )]

JM

+
I W (p, )—21np[(K/k, ) (VV(/X). (K/k, )]

+[V( (K/k, )] —(ln(M) [(K/k, ) VVg/X] J' ) . (28)

Note that Eq. (28) has the correct time-reversal symmetry
since all the terms on the right-hand side of Eq. (28) out-
side the square root are odd functions of K so that they
change sign by transforming K to —K, while all the
terms inside the square root are even functions of K, a
property which ensures that under time-reversal transfor-
mation (i.e., K~ —K and incident wave~reflected wave)
the action SK changes sign (time-reversal symmetry).
The iterative procedure described above does not yield a
systematic expansion of Sit in terms of a small parameter
associated with the corrugation. Equation (28), for exam-
ple, includes, in addition to the linear and quadratic terms
in Vg, a linear term (and higher-order terms) in VVg/X.
To compare the relative magnitudes of the various terms
appearing in Eq. (28}, we consider a 1D harmonic corru-
gation function of the form g(x) =h cos(2m.x/a), where Ii

is the corrugation amplitude and a is the size of the sur-
face unit cell.

A convergence criterion for the expansion appearing in

Eq. (28) can be expressed in terms of the parameter

(29}

The structure of Eq. (28) clearly indicates, however, that
such a criterion (e.g., @&&1) would not be sufficient in
general. All the derivatives of g(x) with respect to x,
which should appear in the expansion to higher orders in
the iteration process, are of first order in e. For example,
the dominant term of this type [appearing in Eq. (28)] can
be represented by the parameter
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2%
X

Xa
(30)

which is linear in e. Higher-order terms of this type,
which should be represented by the parameters

d "g(x)
dx

2m

Xa

are all linear in e.
Thus, the convergence of our expansion would depend

not only on the smallness of e but also on the smallness of
another parameter (2n/Xa). The latter is small if g is

sufficiently large (i.e. if the potential is hard on the length

scale a) such that

gQ Q)27' . (31)

Unfortunately this is not the situation in a typical scatter-

ing experiment.
Considering Eq. (28) more closely, however, it is seen to

be the beginning of a systematic expansion in the parame-
ter (K/k, ). The magnitude of this parameter for the
most important values of K in the scattering from p to p'

can be estimated from the SP condition discussed in detail
in Sec. II. In Appendix A we show that the most impor-
tant value of K is related to the value of Vg at the sta-

tionary point via

K——P =—p, Vg(R0),
1 1

fi ' (32)

K/k, =V((RO) . (33)

Note that if the incident angle is finite but sufficiently
small such that

I P/p, I
&

I
Vg(RO) I, Eq. (33) is still

where Ro stands for the lateral coordinates of the station-

ary point. Thus if we take P=O (i.e., normal-incident
conditions), K =(1/iri)p, Vg and

~k, =(pz-drCz)'"=p, [i-(Vg)z]'"=p,

so that

essentially correct.
The above analysis shows that under near-normal-

incidence conditions, the important values of K/k, are of
the order of the small parameter e, so that the whole ex-
pansion represented by Eq. (28) can be regarded as a sys-
tematic expansion in e. In particular, all the terms in Eq.
(28) which include second derivatives of g(R) are at least
of the order e .

It turns out that the actual convergence of this expan-
sion at the stationary point is significantly faster. This is
due to the fact that at the stationary point the terms in

Eq. (28) which include VVg cancel each other to fourth
order in e (see Appendix B). In conclusion of this section
it is found that Eq. (28) provides a systematic expansion
of the action Sz, which converges quite rapidly at the sta-

tionary point under near-normal-incidence conditions.

IV. A SIMPLE KIRCHOFF-LIKE EXPRESSION
FOR THE T MATRIX

In this section we shall derive an approximate analytic
expression for the T matrix, assuming weak corrugation
and near-normal-incidence conditions. These assumptions
will allow us to use a simplified version of Eq. (28), which
can be easily integrated analytically, and then, by plugging
the resulting expressions for SP'" into Eq. (10},to derive
a very simple expression for the T matrix. Physically the
assumptions mentioned above amount to minimizing
multiple-scattering effects. Within the HCW model, for
which there is a complete localization of the sources gen-
erating the scatters waves in a two-dimensional surface,
these assumptions lead to the well-known Kirchoff formu-

11,12

In the light of our discovery (Sec. II) that soft potentials
tend also to localize the scattering sources, it is therefore
expected that a Kirchoff-like formula can be derived in
this case under the above simplifying assumptions.

Following the discussion of Sec. III we neglect all the
terms in Eq. (28) which include VVg. We then expand
the square roots to second order in Vg and integrate the
equation over p. The result can be written as

inc ref—SK' "f(R,p) =K R+ —lniu(K Vg)+ [——,(Vg) ]—S(iu)+ ln
1 1- 1 2p (K Vg) 2

2Xk, 1+8'(p)+yp,
(34)

We know from Sec. II that the dominant contributions to the scattering amplitude come from values of p near p =2 (i.e.,
V =0), where W(p) = 1 [see Eq. (24)]. Since we assume that y « 1 (i.e., E; much larger than D), 1+ W(p)+ yp 2, and
we may replace the logarithm in the last term on the right-hand side of Eqs. (34) by in@. Using the resulting expressions
for S~'" in Eqs. (9) and (10) we obtain

'2

T(p p'}=( Ip. I /Ip. p' I
) Jo dpi(vi —2)/[~(s»l'" J, diaz(vz —2)Qi, p() u z)/[~(vz)l'" (35}
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d K
Q~~(p~, p2)= f f d'R~ f d R2exp —[P.R~ —P' R2+p, g(R, )—p,'g(R2)]PiP

Xexp[i[K.(R2 —R~)+(k, /X)(U~ (K,R~)in@& —U, (K,R2)in@2

—
t 1 —

2 [V@&i}]'I@(vl)

Uq (K,Ri)—= —p, —K Vg(Ri) —[K Vg(Ri)] /2k,
1 (37)

U~ (K,Rg)= —p,
' —K Vg(R2)+[K Vg(Rg)] /2k,

1 (37')

and

4(}u,)= W(p)+inI2p/[1+yp+ W(p)] I
—~y sin '[~y(1 —p)/&1+y] =—(X/k, )S(p, ) .

fi
(38)

Transforming the integration variables R&,Rz to

R:——,(Ri+Rg), p=Ri —R2 (39)

0

&& n 'f d'Z-aaVik, ,exp —[(P—P') R

+(p, —p,')g(R)]

we expand g(R~), g(R2) and Vg(R&), VJ(Rq) about the
mean position R in every place they appear in Eqs. (36)
and (37). The expansion parameter p is essentially the
lateral distance traveled by the particle within the scatter-
ing region. Under the simplifying conditions assumed
above (i.e., weak corrugation and normal incidence} the
important values of

~ p ~

should be much smaller than the
size of the surface unit cell a (see later for a justification
of this point). We may therefore linearize the expansion,
a procedure which is consistent with our use of the trun-
cated expansion of S~ in derivatives of g(R). Performing
the integrations over p and over K in Eq. (36) by the SP
method, Eq. (35) is reduced to

W(p) = U/[1 ——,
'

( Vg)'] —=U,

yielding for the stationary point po

po ——1+[1+(1—U )/y]'~

(43)

(44.)

Expanding f(IJ, ) about p, o to second order and replacing
V'W(p) in the denominator of the integrand in Eq. (41)
by its value at the stationary point po we obtain

8 = —[2Ai/(U)'~ ]f dp(p 2)e—

point Ko for the integration over K is approximately
gi~~~ by gK, = —,'(P+P'),
while the stationary point po for the integration over p is
roughly po (Kp/kz o)/X. For near-normal incidence this

~ po ~

/a —
~
Vg

~
/aX & e/(aX ) && 1, justifying

our linearization assumption made previously in this sec-
tion.

The classical limit of the T matrix, given by Eq. (40), is
obtained when the integrals over p [Eq. (41)] and over R
[Eq. (40)] are performed by the SP method. The SP equa-
tion for the former integral is

where

B:2(ki, oy hX) f d—p(p 2)— (40}

where

A,
—=k, oy/4X

i(k 0/X)f(po)X~ (45)

(46a)

Xexp[i(k, o/X)f(p)]/&W(P ) «1) and

f(p, )=Ulna —tl ——,'[Vg(R)] J4(p) . a =—2(po —1)/poU

U and U' are shortened notations for U~ (KO, R) and

U~ (KO,R}, respectively, and 8' is obtained from Eq. (41)

by replacing U with —U' in Eq. (42). The stationary

The SP equation for the integral over R is, to first order
in e, given by

( P —P')+(p, —p,')Vg(R) =0 .
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Using this equation we obtain that, to second order in e,
U= —U '= 1, po ——po ——2, and a =a'= 1. For these
values of the parameters the integral in Eq. (45) can be
readily calculated with the results

8 =8'=expIi [(k, o/g)f (2)+4k]J, (41')

so that the T matrix in the classical limit takes the simple
Kirchoff-like form" '2

; (p,p'}=( le. I /Im' I
} —f„d'«xp —[(P—P') &+(& —~"&( (48)

Note that for a flat potential [i.e., Vg(R) =0) Eq. (45) for
8 coincides with Eq. (15) for the reflection amplitude

f(p, ;0} in one dimension. As already mentioned in Sec.
II, we have tested the validity of the approximation made
in deriving Eq. (45} from the exact formula for 8 [Eq.
(41)] by comparing the result of an exact numerical in-
tegration applied to Eq. (41) with the result of integrating
a modified version of Eq. (41), in which W(p, ) is replaced
by unity [see Fig. (1)]. Despite the large difference be-
tween the two integrands near the classical turning point
[where W(}u)=0], the results of the integrations are very
close, both yielding almost unity for the reflection coeffi-
cient.

Furthermore, we have also tested the validity of the SP
procedure applied to Eq. (41) in the classical limit [see Eq.
(45) with )Mo ——2, a =1]by comparing the result [Eq. (41')]
to that obtained by applying exact numerical integration
to Eq. (41). For k, ou =107.35, Xa =3.124, y=0.0102, so
that A, =0.0878, Eq. (41') yields

ReB = —0.8548, ImB = —0.519,
while the exact numerical integration yields in this case

ReB = —0.855, Ima = —0.517

in excellent agreement!

In Table I we present the results of such tests for
k/a =0.012. As expected, the deviation of the numeri-

cally computed value of
I
8(0}B'(0)

I
from unity is found

to decrease systematically with increasing values of the in-

cident wave number k;. The unitarity test shows essen-
tially the same behavior as a function of k;.

The results exhibited in Fig. 2 clearly show that for a
weak corrugation [Fig. 2(a}] the QM scattering probabili-
ties for our soft potential are very close to the correspond-
ing QM Kirchoff probabilities. In Fig. 2(b) we present
similar results for a corrugation amplitude twice as large
as in Fig. 2(a) (i.e., k /a =0.024). Our unitarity tests for
this relatively large corrugation yield quite reasonable re-

I.O
09-
0
0.7
0.6

0.4-
03
I',
O. I

00
1.0 RO RS M} 5.5 40 45 50 I 60

22.82 k;a

V. RESULTS AND DISCUSSION 0.5

The result of the classical approximation used in Sec.
IV [Eq. (48)] shows that the scattering cross section from
a weakly corrugated Morse potential, defined by Eq. (19),
follows, on the average, the classical envelope of the corre-
sponding diffraction pattern from a HCW for the same
corrugation function, provided that the incident beam is
perpendicular to the nominal surface plane.

It is therefore of interest to compare the results ob-
tained from the two model potentials under similar condi-
tions when quantum-mechanical (QM) effects are taken
into account. In Fig. 2 we plot the results of diffraction
intensities obtained by applying numerical integration to
Eqs. (40) and (41}; we use a 1D harmonic corrugation
function g(x)=h os(c2n /ax) and typical values for the
parameters corresponding to He diffraction by Cu(110).
We also plot in this figure the results obtained from the
corresponding HCW model in the Kirchoff approxima-
tion.

The accuracy of the method used is tested by checking
two quantities: (1) The value of

I
BB'

I [Eq. (41)] for the
specular peak at a point x where dg/dx =0 (e.g., x =0),
(2) The sum over all diffraction probabilities. Both (1)
and (2) are known in general to be exactly equal to unity.

0.2

O. I

2.0
39.53 k;a

FIG. &. Diffraction probabilities
I S„I, obtained by in-

tegrating numerically Eqs. (40) and (41} [solid lines in (a) and
empty circles in {b)]and as obtained from the Kirchoff formula,
i.e., from Eq. (40) with B(R)B'(R)=1 [dashed lines in (a} and
solid circles in (b)], for the specular peak ( n =0) and the first
two diffraction peaks (n =1,2), as functions of the wave num-
ber k; of the incident beam. The angle of incidence is 8;=0. A
lD harmonic corrugation function g(x)=h c s(2 o/ ~i)xis aused.
with h /a =0.012 in (a) and h /a =0.024 in (b}. The other po-
tential parameters used are ga =3.78 and D =6.3 meV. The
value of the incident energy E; corresponding to k;a =39.53 is
E;=63 meV.
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TABLE I. Accuracy tests for the Kirchoff-like formula [Eq.
(40)]; values of ~8(0)8'(0)

~

for the specular channel are

presented in the second column. The corresponding unitarity

tests are given in the third column. For comparison, we give in

the fourth column the corresponding unitarity tests for the
Kirchoff formula [Eq. (40)] with 8(x)8'(x)=1. The potential

parameters used in these tests are Xa =3.78, D =6.3 meV, and

h /a =0.012. (E;=21 meV for k;a =22.82.)

].4-
l.2-

[.0'
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0,4
0.2
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( 8{a ) 8'(x )}
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I

I

I

I

I

I

I

I

22.82
34.23
45.64
57.06
68.47
79.88
91.29

102.70
114.11
125.52
156.94

~

8 (0)8'(0)
(

(Spec ular)

0.9105
1.0278
0.9539
0.9927
0.9931
0.9909
0.9955
0.9960
0.9965
0.9974
0.9977

0.864
1.087
0.928
0.998
0.997
0.990
0.998
0.998
0.999
1.001
1.001

0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997
0.997

Unitarity
CM HCW
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FIG. 3. The imaginary part of the exponential

Yo(x)=—exp —[(p„—p„')x +(p, —p,')g(x)], p, =0

(solid line) and the absolute value of the preexponential factor
8{x)8'(x) (dashed line), as functions of x within the surface
unit cell —a/2&x &a/2, for the third diffraction channel. A
10 harmonic corrugation function is used with h/a =0.0132.
The other parameters used are k;a =135.36, ga =3.015, and

yp=D/E; =0.067 75.

suits (5% deviation in the worst case). The differences be-
tween the diffraction probabilities obtained for our soft
potential and those obtained from the Kirchoff formula
are significantly larger than before. Yet these differences
remain small compared to the probabilities themselves so
that one can conclude that even for such a larger corruga-
tion amplitude the HCW model is still a good approxima-
tion. The reason for this rather surprising agreement be-

tween the two model potentials may be illuminated by
considering the integrand in Eq. (40). In Fig. 3 we plot
the amplitude 8(x)8'(x) and the exponential

T

exp —(p —p„')x +(p, —p,')g(x)

in a typical case. We select a sufficiently larger value for
the incident wave number k; such that the exponential
completes several osciiiations within the surface unit cell.
The Kirchoff result is obtained if 8(x)8'(x)=1 every-
where. For our soft potential the amplitude 8(x)8'(x) is
not constant; its variation increases with increasing k; or
with the corrugation amplitude.

As can be clearly seen in Fig. 3,
~

8 (x)8'(x)
~

oscillates
almost symmetrically about its value at the stationary
point xo. The latter value is found in our exact numerical
calculation to be equal to unity, in agreement with the
classical result [Eq. (41')]. Thus the integral over x in Eq.
(40} is not significantly different from the corresponding
integral in the Kirchoff formula due to cancellation of
contributions originating to the left and to the right of the
stationary point xo.

The remarkable similarity between the scattering from
our CM potential and the scattering by a HCW, found
here, may be indicative of the existence of universality not
only in refiection from 1D potentials but also in scattering
by three-dimensional (3D), weakly corrugated potentials
under normal incidence conditions. Some supportive evi-

dence for this conjecture is very encouraging. z For exam-

ple, numerical computations of diffraction probabilities
for a somewhat different version of the CM potential; that
is, a Morse potential corrugated only in the repulsive part,

V(R z)=De (' ~' 'l 2De '— (49)

have been reported by several authors. ' 26 In Table II
we present the results of such an exact numerical coinpu-
tation as applied to a model of Ne/W(110). In the weak
corrugation limit Eq. (49) coincides with the model poten-
tial used in Ref. 28.

This model potential provides an interesting test for our
conjecture. For potential energies between zero and D,
the shape of the equipotential surfaces is a strong function
of energy. Only for sufficiently high values of V, such
that V»D, does the corrugation g(R) of the equipoten-
tial surfaces become identical to the corrugation function
P(R} of the repulsive part of the potential. At vanishing
potential, g(R)=2/(R)+const. For the case considered
in Table II, the corrugation g(R} of the classical turning
surface (V =E;=63 meV) is given by g(R)=1.21$(R)
+const.

In the light of the large difference between the two cor-
rugation functions it is very interesting to compare the re-
sults of computations based on the Kirchoff formula for
each of the corrugation functions mentioned above with
the result of the exact numerical calculation. The out-
come of such a comparison is remarkable: While the use
of the corrugation function at the classical tuning surface
yields very poor agreement with the exact diffraction
probabilities, our vanishing potential criterion for the cor-
rugation function yields diffraction probabilities which
agree quantitatively with the exact ones. Additional evi-
dence which supports our conjecture can be found in Refs.
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Peak
(nm)

00
10
20
30
11
22
21

Exact

0.4016
0.1099
0.0061
0.000 14
0.0299
0.0001
0.0017

HC%'

g(R}=2${R}

0.4309
0.1068
0.0056
0.000 12
0.0265
0.00007
0.001 38

HC%
g{R}=1.2${R}

0.741 77
0.0585
0.0011
~10

TABLE II. Comparison between diffraction probabilities ob-

tained by solving exactly close coupling equations for the CM
potential given by Eq. (49) (Ref. 28) and the corresponding dif-

fraction probabilities obtained from the Kirchoff formula. A
harmonic corrugation function P{x,y}= ii cos{2nx /a }

+ h cos(2~/a) is used in the Morse potential vnth

h/a =0.0033. Two sets of data are presented for the HC%
model. The first corresponds to a corrugation function

g{R}=2${R}(the corrugation at vanishing potential), while the

second corresponds to g{R)= 1.2/{ R} (the corrugation at the

classical turning surface). The other parameters used are

ga =3.015, k;a =67.68, yo=D/E; =0.271, and 8; =0.

cent surprising observation of pronounced neon diffrac-
tion from Ni(110) and Pd(110), which indicates that the
corrugation amplitudes are much larger for Ne than for
He! We believe that such an effect may be due to the fact
that the well depth for Ne/Ni(110) is considerably (about
twice) larger than the well depth for the He/Ni(110).
Such a large increase in the potential well should have a
big effect on the location (and shape) of the vanishing po-
tential surface, much more significant than on the classi-
cal turning surface.

As pointed out recently by Liebsch and Harris, ' a
larger well depth D may cause the physisorption
minimum and therefore the classical turning points to lie
closer to the surface-ion cores, so that a slightly stronger
corrugation is expected if the corrugation function is de-
fined at the classical turning surface. The dramatic in-
crease in the corrugation reported experimentally indi-
cates, however, that the definition proposed in the present
paper for the corrugation function (i.e., at V=O) is more
appropriate.

APPENDIX A

22 and 6.
Finally, we would like to point out that the importance

of the potential corrugation near vanishing potential, as
emerges from our work, seems to be in accord with the re-

In this appendix we derive the relation (32). To do so
we shall use the first-order approximation for Sit' [Eq.
(27)] in Eq. (10). The corresponding expression for
f(p, K) can be written in the form

f(p;K)=(~GDh+, X)J d 8 exp —P —K R+ —p, g(R)
1 1

fi *

X I dp(p, —2)exp i (k, /X)Ulnp, ——S(p, ) v' w(p, ), (A 1)

with

U—= —p —K Vg(R)
1

fi
' (A2)

The last term on the right-hand side of Eq. (A4) is of
second order. The neglect of this term yields the desired
equation, (32).

The stationary point for the integral over p is determined
from

W({tt,o) = U,

while the SP equation for the integral over R is

—P —K +—p, .Vg(R)
1 1

fi

—k (K/k } [VV/(R)/X]lnIi=0 . (A4)

APPENDIX B

In this appendix we show that under normal-incidence
conditions the linear terms in VVg in Eq. (28) cancel each
other to fourth order in e. To show this let us neglect the
last two terms within the square root in Eq. (28) since
they are of the order e . %e then expand, to lowest order,
the square root about W(p). The result is

=Ac, IV/. (K/k, }+$V(p)+in}u(K/k, ) (VVg/X)-[Vg —(K/k, )/8'(p)]I .
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Now at the stationary point po [see Eq. (A3)], W(pz) = U,
while at Ro, Vg(Ro)=K/k, [Eq. (33)]. Therefore, by Eq.
(A2) one has

so that at the stationary point (Ro,po)

Vg(Ro) —(K/k, )/W(p ) —Vg(Ro)[1 —I/U(Ro)]

=O(Vg(Vg) ) . (82)
U( Ro) = —p, —k, (V()2 kg ——1+0(V() Thus under normal-incidence conditions the last term on

the right-hand side of Eq. (Bl) is of the order of e .
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