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Point defects in ordered metallic compounds. II. Self-consistent studies
of vacancies in FeA1
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Ab initio self-consistent electronic-structure calculations of vacancies in ordered stoichiometric
FeAl w'thin the linear-muffin-tin-orbital atomic-sphere-approximation method are presented. The
potential and local densities of states on the defect and the charge perturbations on its neighboring
sites in the matrix are calculated and discussed in relation with numerous experimental results con-

cerning the effect of small departures from stoichiometry for this ordered compound.

I. INTRODUCTION

Many experimental studies on ordered metallic binary
compounds in a CsC1 structure have been performed dur-
ing the last 15 years especially on FeA1, CoA1, NiA1, and
CoGa. ' Near the stoichiometry, several types of defects
exist in these compounds. In particular, vacancies on
both sublattices and antistructural defects responsible for
the appearance of magnetism were found. We shall espe-
cially consider here the case of FeA1. At low temperature,
it has been shown that for iron concentrations higher than
0.5, the Fe atoms in excess occupy antisite positions on
the Al sublattice and form magnetic clusters with their
neighbors. s9 Different experimental values of the local
moment have been proposed, the interpretation of the
measurements being a quite difficult problem. ' For an
excess of aluminum, a quite different behavior is ob-
served. The Al atoms occupy Al sites whereas vacancies
appear on the Fe sublattice. Vacancy concentration in-
creases with increasing Al content up to 52% Al. Con-
trary to the cases of NiA1 and CoAl, antistructural Al de-
fects are present too and at 52%%uo Al the FeAli phase ap-
pears. "' In the equiatomic compound„ the vacancy con-
centration remains quite high even at low temperature.
This is thought to be due to the difficulty of formation
(and then elimination) of vacancy clusters in strongly or-
dered FeA1. Vacancy elimination occurs preferentially in
localized regions by interaction with dislocations. 'i '6 At
low temperature, the most probable vacancy is the vacan-
cy on the iron sublattice with eight Al nearest neighbors.
At high temperature, the increase of disorder leads to an
evolution of the vacancy distribution towards an equipar-
tition on both sublattices. "' %e are interested in the
theoretical study of vacancies in this compound as it is
the first step towards the understanding of its off-
stoichiometric states. The work presented here is one of
the first ab initio self-consistent calculations of the elec-
tronic structure of localized defects in ordered compounds
taking correctly into account the crystalline structure of
the host. The linear-muffin-tin —orbital (LMTO) formal-
ism applied to substitutional defects is described in great
detail in the preceding paper (I) (Ref. 17, denoted as KSK
hereafter} and the same notation is used in this paper.

The band structures of the "pure" host crystals are cal-
culated using the standard LMTO procedure including
the so-called "combined corrections" beyond the atomic-
sphere approximation (ASA). ' The electronic structure
of the hosts as well as the defect potentials are obtained
self-consistently within the density functional theory, ex-
change and correlation effects being included in the local-
density approximation. ' The electronic structure of de-
fects is calculated within the single-site approximation,
i.e., the perturbing potential is supposed to be localized in
the central sphere and the modifications induced in the
potentials on the neighbors are neglected. The ASA is not
corrected in the impurity (or vacancy) sphere but we show
in Sec. II with a few examples that this difference of
treatments leads to very small errors. In the same section
we also discuss some practical aspects of the numerical
calculation and give a brief description of a single vacancy
in pure Al and pure Fe. The most important part of this
paper is the study of single vacancies on each of the two
sublattices in FeA1, developed in Sec. III. The con-
clusions drawn from these calculations are given in the
last section.

II. NUMERICAL ASPECTS—ACCURACY

A. Complex contour integration

The determination of the spatial electronic charge den-
sity p(r), which is an essential physical quantity in the
density functional theory requires an integration of the
Green function over the energies up to the Fermi level Ez.

EF
p(r}=——Im I G(r, r;E)dE . (2.1)

The core states are treated apart and kept frozen in the
atomic potentials during the whole self-consistent pro-
cedure. To perform the integration (2.1) for the valence
states on the real axis with a sufficient accuracy, approxi-
mately 1000 points from the bottom of the band to Ez are
needed. As shown in detail in KSK, the extension of the
Green function to a complex argument z allows to replace
this integral by an integral along a contour in the upper
complex plane performed on a much smaller number of
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TABLE I. Total numbers of electrons in Fe and Al sites in FeA1 and charge perturbation 5q in-

duced by a single vacancy on one first neighbor in the host, calculated by integration along a complex

path with different numbers of z points.

Number of z
points XF,

8.294
8.309
8.394

2.7064
2.7063
2.7059

Vacancy at Fe site
10x5q'

—0.9238
—0.9238
—0.9236

Vacancy at Al site
10y5q'

—1.916
—1.908
—1.884

points. The valence part of the charge density is then

[KSK, Eq. (6.8)]:

p„(r)= ——Im z, G(r, r;z)dz .

, f &'«/Via(1) —Vou«&)1'
0

(2.3)

The chosen contour is of rectangular shape, starting below
the bottom of the valence band but above the upper core
states energy (i.e., Z;~=EF 1Ry f—or Al, Fe, and FeA1),
running at 0.3 Ry above the real axis and ending at EF.

As a numerical test, we have calculated the number of
electrons N"' and N ' in the Fe and Al spheres in or-
dered FeA1, using a complex contour integration with 97,
49, and 25 z points (Table I). They can be compared to
their "true" values in the ordered compound calculated
within the standard LMTO method and given in Table II.
The same test was done for the charge perturbation 5q'
induced on one first neighbor by a vacancy at a Fe and an
Al site in FeAl (see Sec. III). NA' and 5q' are very stable
and 50 z points are sufficient to get a good agreement be-
tween the two methods. When high densities of states
with sharp structures are present around the Fermi level,
more z points are necessary to perform an accurate in-

tegration and special care must be taken when approach-
ing E~ (along the third segment of the contour). This is
the case for the Fe site where it is obvious that N"' is less
stable with respect to the number of z points. For that
reason, we usually take 97 points along the path with a
finer grid along the third segment, i.e., with, respectively,
13, 49, . . . , and 37 equally spaced points along the three
segments, corresponding to energy intervals of 0.025,
0.021, and 0.008 Ry (the test given in Table I corresponds
to one-half or one-fourth of these points).

To control the convergence, the mean square difference
between the input and output potentials,

1/2

is calculated at each iteration. Typically, for paramagnet-
ic impurities, the iterative procedure is performed until D
becomes less than 10

B. Atomic-sphere approximation

As we have already mentioned, all of our calculations
are performed within the atomic-sphere approximation
which means that the radius S of the muffin-tin potential
spheres is taken to be equal to the Wigner-Seitz radius. In
ordered structures, the Hamiltonian matrix elements are
renormalized to correct the bad overlap of these spheres. "
In the dilute alloy, an impurity is substituted to an atom
of the compound in the same sphere with the same radius,
all relaxation effects being neglected; for the self-
consistent procedure in the defect sphere, the "combined
corrections" are not included (KSK).

The simplest way to get an idea of the errors caused by
this difference of treatment is to consider a pure metal or
an ordered compound and treat one of its atoms as a sub-
stitutional impurity at the same place. %e did this test
for four different fictitious alloys: we considered an Al
"impurity" in pure aluminum, a Fe and an Al "impurity"
on their own sublattices in FeAl, and a Fe impurity in fer-
romagnetic iron. In Table III, we compare the partial and
total numbers of electrons in the "host" and "impurity"
spheres. In the nonmagnetic cases, Al and FeA1, the er-
rors are negligible. Five to ten iterations on the impurity
site give modifications of less than 10 4 electrons in Al
and 10 electrons in FeAl. Ferromagnetic iron is the
most sensitive case: we find a departure of 0.018 electrons
in the total number of electrons and 0.036 Bohr magne-
tons in the total moment. Three remarks must be made.

(i) In the band-structure calculation of the hosts, the in-
tegrations in the Brillouin zone (BZ) are performed with a
grid of 946 k points in the —,', th of the BZ for fcc struc-
tures (aluminum), 969 for CsC1 structures (FeA1), and 506

TABLE II. Partial and total numbers of electrons in the Fe and Al sites in "pure" ordered FeA1 and
partial and total numbers of electrons in the defect sphere for a single vacancy on the Fe and the Al
sublattice, respectively.

Ordered compound
Fe site Al site

Dilute alloy
Vacancy at Fe site Vacancy at Al site

0.602
0.785
6.907
8.294

0.914
1.373
0.419
2.706

0.416
0.473
0.126
1.015

0.377
0.418
0.152
0.947
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TABLE III. Partial and total number of electrons and local magnetic moment (M) for Al, FeAl, and Fe calculated (1) within the
standard LMTO method and (2) as a fictitious impurity (see the text).

Al site in FeAl
(1) (2)

Fe site in FeAl
(1) (2)

Ferromagnetic Fe
~(1)t ~(2)&

Xp

M
D

1.1257
1.4531
0.4212
3.0000
0

1.1257
1.4530
0.4212
2.9999
0
&10

0.9135
1.3733
0.4194
2.7062
0

0.9139
1.3741
0.4195
2.7075
0
&10 '

0.6022
0.7848
6.9068
8.2938
0

0.6045
0.7889
6.9001
8.2935
0
& 10-'

0.328
0.425
2.140

0.317
0.372
4.418

8.000
2.414

0.328
0.427
2.165

0.316
0.374
4.408

8.018
2.178
&10 '

for bcc structures (iron). More accuracy may be achieved
for Fe by using a finer k points grid.

(ii) Besides, it is well known that the combined correc-
tions have a more important effect for open structures like
the bcc (or CsC1) crystals than for closed-packed fcc
structures. Hence, the difference in the treatment of the
host and impurity atoms is more pronounced in Fe or
FeAl compared to Al. Nevertheless, the results in FeAl
are quite good even for the Fe d states.

(iii) For a nonmagnetic defect, the Madelung term in
the self-consistent potential has to be determined at each
iteration as an additional constant V~ to satisfy Friedel s
screening rule (KSK). This constant converges and be-
comes stable after five to ten iterations. In ferromagnetic
defects, the total displaced charge is the sum of the two
different displaced charges hZ'(E~) and &Z'(EF). It is
obvious that the determination of two constants V~, and

V~, insuring together that

IV where the two spins in the case of a Fe host have not
been separated because the local magnetic moment calcu-
lated on the vacancy is negligibly small. They are con-
sistent with previous studies of vacancies in Al, treated in
the jellium or the pseudopotential ' approximations al-
though a detailed comparison is difficult since the total
charge in the vacancy Wagner-Seitz sphere is not clearly
indicated in these latter works. They are also of the same
order of magnitude as those recently obtained by the
Green-function method22' for vacancies in copper, yield-
ing a charge of 0.67 electrons in the vacancy sphere in the
single-site approximation and 1.1 electrons for a cluster
calculation. We recall, as discussed in KSK, that in these
KKR calculations, Friedel's screening rule is only insured
in the cluster scheme, whereas it is always satisfied in our
calculations.

III. VACANCIES IN FeA1

bZ'(EF)+bZ'(EF) =Z Z— (2.4)
A. Stoichiometric ordered FeA1

[KSK Eq. (5.2)] is a more unstable procedure. This is cer-
tainly the main origin to the larger inaccuracy observed in
ferromagnetic iron. During the self-consistent procedure,
V~, and V~, converge indeed towards a unique couple of
stable values but the convergence is slower than in the
paramagnetic case.

C. Vacancies in pure aluminum and iron

Before presenting the study of vacancies in the ordered
binary compound FeA1, we give briefiy some results con-
cerning single vacancies in pure aluminum and pure fer-
romagnetic iron. It will be interesting to compare the
numbers of electrons in the vacancy spheres to those in
FeAl. We obtain 0.532 electrons in the Wigner-Seitz
sphere for the vacancy in Al and 0.541 electrons for a va-
cancy in Fe. The corresponding results are given in Table

The electronic band structure of ordered FeA1 in CsC1
structure calculated within the LMTO method has al-
ready been published. i The present results differ slightly
from the previous ones mainly because of the inclusion of
the combined corrections and the scalar relativistic ef-
ects.

The partial and total densities of states (DOS) on Fe
and Al are shown in Fig. 1. They present the general
characteristics of transition-metal aluminides ( TAI).

(i) Two d peaks separated by a deep minimum in the
transition-metal density.

(ii) A strong hybridization between the Al p states and
the T d states and a repulsion effect between the Al s
states and the T d states pointed out by a very lour s den-
sity in regions of high Fe d peaks.

TABLE IV. Partial and tota1 numbers of electrons in pure Al and Fe, and for a single vacancy in Al
and Fe.

Pure Fe

N,
Np

Ng

1.126
1.453
0.421
3.000

Vacancy in pure Al

0.163
0.249
0.120
0.532

0.328
0.425
2.140
2.893

0.317
0.372
4.418
5.107

Vacancy in pure Fe

0.228
0.214
0.099
0.541
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surements did not show a pure paramagnetic behavior; the
experimental value of the specific-heat coefficient was
separated into a pure electronic contribution y and a mag-
netic contribution y . No precise determination of y
has been performed. In FeA1, even at exact stoichiometry
and low temperature, few magnetic clusters are present.
This is confirmed by the position of EF in the first d reso-
nance which indicates that the paramagnetic situation
must be quite unstable.

O -08 -QG -0A -02
I

0 02
E(Ry)

S. Single vacancies in FeAl

We have considered both types of vacancies existing in
FeAl: a vacancy at a Fe site and a vacancy at an Al site.

1. Vacancy charge —Friedel's screening rule

E0
f4

~3:—

N 2.—

C)
Q

T 1 ~ f ' I $ I 1

I

l

EF

The partial and total numbers of electrons in the defect
sphere are shown in Table II. The vacancy is essentially
screened by electrons with locally "s" and "p" symmetry
and the total vacancy charges, 1.015 and 0.947 electrons,
respectively, for Fe and Al sites, are again quite high, even

higher than what was found in pure iron and aluminum
(Sec. II C).

In our calculations, the vacancy potential satisfies
Friedel's screening rule (2.4), and we wish to emphasize
here the essential part played by this rule in the deter-
mination of the defect charge. We recall [KSK Eq. (5.6)]
that, in the paramagnetic case, the total displaced charge
up to the energy E is given by

0'
-Q8 -0.6 -04 -Q2 0 Q2

E(Ry )

(iii) An electron transfer from the Al site to the
transition-metal site, this transfer being equal to 0.294
electrons in the case of FeA1 (Table II).

FIG. 1. Partia1 DOS in ordered FeA1 (s, s +p, s +p +d): (a)

on a Fe site and (b) on an A1 site.

b, Z(E) = rhA, +—g AL (E),2
(3.2)

~, being the difference between the numbers of core
electrons in the defect and the host atoms (for a vacancy,
b,X,= N, on the co—nsidered host site). The generalized
phase shift AL (E) is defined as

Pi(E)
A (E)= —Imln I XII (E)[Pi (E) P (iE)] +1I-

Pi (E)

+n b NL'(E), (3.3)
The position of the Fermi level, whether it is situated in

one of the two d peaks or in the minimum, will have im-
portant consequences on the physical properties of the
considered TAl compound. In FeA1, E~ lies in the upper
verge of the first d peak and the density of states at E~ is
therefore quite high: n(EF)=41.0 statesRy ' FeA1
compared to n(E~)=40. 1 statesRy ' FeA1 ' in Ref. 24.
The electronic specific-heat coefficient may be evaluated
from n(EF) by

n k~2

y= n (Ep)
3

(3.1)

when the electron-phonon interaction is neglected (kii
is the Boltzman constant). We find y =7. 1

mJmole K, whjch is higher than the only es-
timation available from experiment: y =5.5
mJmole ' K . It seems to be clear now that this
discrepancy between theory and experience for FeA1 is
due to magnetic effects. The samples used for the mea-

where ~i is the difference per spin of the additional
bound states appearing below E at energies EI' in the
LMTO potentials for the defect and the host atoms. In
(3.3), Pi(E) and PI(E) are monotonic increasing func-
tions of the energy, depending only upon the potential of
the defect and the host atom, respectively. ' The matrix
elements XII (E) are directly related to the densities of
states n r (E) on the central site in the host and their Hil-
bert transforms [KSK, Eq. (4.10)]. Equation (3.3)
shows that the value of the total displaced charge up to
the Fermi level [bZ(EF)] results from the combined ef-
fects of the relative heights of the defect and host poten-
tials and the characteristics of the band structure of the
host crystal at the Fermi level.

PP(E&) and EN''(EF ) are the only quantities in (3.3) de-

pending upon the nature of the defect. For a vacancy,
Pi(E+) is the only one which varies during the self-
consistent procedure. Actually, P&(Ez) is much more
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sensitive to the height of the potential than to the details
of its shape. To illustrate this point, we have represented
in Fig. 2 the self-consistent vacancy potentials for both
types of vacancies in FeA1 and compare them to the
repulsive square barrier potentials which subtract the
same charge from the conduction band: eight electrons
for a vacancy at a Fe site and three electrons for a vacan-
cy at an Al site. In the case of the square barrier, the va-

cancy contains 1.07 electrons and 1.00 electrons, respec-
tively, at a Fe site and an Al site. Obviously, this simple
square barrier model already gives a good estimation of
the vacancy charge, provided that Friedel's screening rule
is satisfied.

A second point which has to be distinguished is the
strong dependence of the vacancy charge upon the band
structure of the host, i.e., upon the values of I' I and XL,L
at Ez. For example, in the pure metals Al and Fe, we ob-
tain roughly half the charge found for the corresponding
vacancies in FeA1. To understand this fact, we consider
again a square barrier to describe the vacancy. Figure 3
compares the evolution of the total displaced charge
b,Z(E~) —bN, versus the height of the square barrier for
a vacancy in pure Fe and at a Fe site in FeA1 [Fig. 3(a)] as

well as for a vacancy in pure Al and at an Al site in FeA1
[Fig. 3(b)j. This evolution is approximately linear but the
positions and the slopes of the straight lines are quite dif-
ferent in the compound compared to the pure metals,
which is essentially an effect of the differences in the elec-
tronic structures of the hosts. It is clear that a more
repulsive barrier is necessary in pure Al and Fe to repel
the same charge as in FeAI. Therefore, the local charges
in the vacancy spheres are smaller. On the other hand,
the rather steep slope of the four curves illustrates the sen-
sitivity of the total displaced charge rhÃ(E~) (hence also
the local charge) to the height of the barrier.

0
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I

0

+
1 I ~ I I I I

1-9
0

O5 t
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2
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I i l I I I I I
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FIG. 2. Vacancy potentials in FeAl. The bold solid line is
the self-consistent potential on the vacancy and the solid line is
the square barrier necessary to repell the same charge. The ori-
gin of potentials is taken at the muffin-tin value ( VMTz). Com-
mon VAgner-Seitz radius: S =2.706 a.u. (a) Vacancy at Fe site.
(b) Vacancy at Al site.

'
0.6' '

i
' '

1.~
' '

HEIGHT OF SQUARE
BARR lER ( Ry)

FIG. 3. Variation of the total displaced charge
AZ(EF) —ddV, with respect to the potential height for a square
barrier: (a) Simple vacancy in Fe (+ ) and at a Fe site in FeA1
( o ). Friedel's screening rule is satisfied for
hZ(E~) —hN, = —8. (b) Single vacancy in Al {+ ) and at an Al
site in FeAl (0). Friedel's screening rule is satisfied for
hZ(EF ) —hX, = —3.
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2. Density of states —phase shifts

In order to get a more detailed understanding of the
electronic structure of the vacancy, the partial densities of
states on the defect site (Fig. 4) and the corresponding
phase shifts (Fig. 5) have been represented for the s, p,
and d symmetries. For each type of vacancy, three DOS
curves are given: the "s"density, the sum of the "s" and
"p" densities [g~, nL(E)] and the total "s+p+d"
density [g~, nL, (E)]. The generalized phase shifts

AL (E) have been gathered into the four irreducible repre-
sentations of the group 0!!. s,p (threefold degenerated),
d25 and d&2 (respectively, threefold and twofold degen-
erated), Aq(E) = QL ~r AL, (E). The vacancy potential be-

ing more repulsive than the host potentials, these phase
shifts are negative. In the local DOS, two different types
of behavior can be clearly distinguished.

(i) In energy regions where the potential functions
P~(E) and I'I(E) calculated in the defect and host
spheres, respectively, are close to each other, the partial
density of states on the vacancy nL (E) follows the varia-
tion of the corresponding density on the substituted host
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FIG. 4. Local DOS on the vacancy (s, s+p, s+p+d). (a)

Vacancy at Fe site. {b)Vacancy at Al site.

FIG. 5. Generalized phase shifts (x degeneracy /m). The lit-

tle horizontal strokes indicate the energies EL. solutions of the
resonance condition (3.4). (a) Vacancy at Fe site: s (solid line)
and p {dashed line). (b) Vacancy at Fe site: d~5 (solid line) and
dl2 (dashed line). (c) Vacancy at Al site: s (solid line) and p
(dashed line). (d) Vacancy at Al site: d2q (solid linc) and d~2
(dashed line).
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atom n L (E). This is transparent in the equation relating
the defect DOS neo(E) to the host DOS n i.(E):

e

(Pi/Pi )nL (E)n'E =
[1+RCXLL {Pi P—

g )] + [ImZLL (pi p/—)]

gy contributions to the physical situation have not been
taken into account.

From the change in the total number of states due to
the vacancy, the change hy in the electronic specific-heat
coefficient can be estimated:

(3.4)
Cn kg~

hy= hZ(E) (3.6)

For instance, the partial "s" and "p" local DOS on the
vacancy at a Fe site in FeA1 [Fig. 4(a)] reproduce the
structures existing in the "s"and "P"DOS on the Fe sites
in "pure" FeA1 [Fig. 1(a)]; this is also the case for the d
states on the vacancy at an Al site. This type of behavior
corresponds to low values of the phase shifts.

(ii) Some of the peaks in the local DOS on the defect
are due to resonances, occurring in regions of low host
densities of states n I (E) at energies EL satisfying the res
onance condition [KSK, Eg. (4.11)]

where C is the vacancy concentration per molecule of
FeA1. We find hy= —1 2XC mJmole ' K and
&y = 15.1 XC mJ mole ' K, respectively, for vacancies
on the Fe sublattice and the Al sublattice. In the most
probable case at low temperature, vacancies at Fe sites,
the tendency is to lower the electronic specific-heat coeffi-
cient, but it must be noticed that in both cases, the values
of hy are very small.

1+ReX~ (P( —P i )=0 . (3.5) 3. Charge perturbation on the neighbors

This situation corresponds to higher absolute values of the
phase shifts and at each energy Er solution of (3.5),
Al. (EI.) is equal to n/2. —In Fig. 5, these energies are
indicated with a horizontal mark. Notice that a resonance
will occur only if n r, (Ei ) is sufficiently low, as can be
easily deduced from (3 4). For the vacancy at an Al site,
two solutions to (3.5) were found for the s symmetry and
four solutions for the p symmetry; sharp resonances are
observed in the local s states at E,= —0.18 Ry and in the
local P states at Ez ———0. 16 Ry and E~ = —0.07 Ry. No
resonance occurs in the d states since they are less impor-
tant and close to the host d states.

For the vacancy at an Fe site, the situation is inverted:
the local "s" and "p" states are close to those of the host
Fe atom whereas one solution EL for the di& representa-
tion and 7 solutions for d i2 were found. The most visible
resonances in these "d" states correspond to the solutions

E~„,———0.08 Ry and E~, ———0.005 Ry.
Once more, the band structure of the host plays a con-

siderable role in the behavior of the vacancy. For in-

stance, the hybridization of the Al s states with the Fe d
states in ordered FeA1 gives rise to a drastic decrease in
the Al s density in regions of important Fe d peaks, al-
lowing possible resonances in the local vacancy s states at
these energies. On the contrary in pure Al, the s density
is much more regular and no resonance occurs in the va-
cancy DOS; this observation is coherent with the fact that
the vacancy charge in pure Al is lower. The resonant
behavior of the vacancy DOS in the compound can be in-
terpreted as an enhancement of the penetration of elec-
trons into the vacancy by tunneling effect. A comparable
resonant behavior was obtained by Klima et a/. for a
single vacancy in TiN. A last remark can be made on the
local DOS concerning the stability of vacancies in the
compound FeAl: For the vacancy on the Al sublattice,
the total density of states has greater peaks placed at
higher energies than for the vacancy on the Fe sublattice;
this indicates that the vacancy has probably a higher total
energy when situated on the Al sublattice. This is in
agreement with the fact that the vacancy seems to be less
stable at an Al site than at a Fe site, although all the ener-

2 3
I

4

Q 'I 2 3

FIG. 6. Departure from neutrality in each sphere around the
vacancy site, for atoms belonging to the first four neighboring
shells (solid lines), compared to the situation in ordered FeAl
(dashed lines). (a) Vacancy at Fe site. (1) Vacancy at Al site.

The charge perturbation 5q' induced by the vacancy in
each neighboring sphere in the host is given by the in-
tegration along the complex contour of the difference be-
tween the imaginary parts of the defect and host Green
functions in the sphere r:



5326 J. M. KOCH, N. STEFANOU, AND C. KOENIG 33

TABLE V. Charge perturbation induced by the vacancy in the central site (5q(0) } and the first four
neighboring shells (5q'"', n =1,4}. N„ is the number of neighbors in shell n and +„5q( ' is the sum of
the charge perturbation up to the nth shell.

Vacancy at Fe site
5 (n) g5 (n)

Vacancy at Al site
5 (n) g5 (n)

n=0
n=1
Pl =2
n=3
n=4

1

8

6
12
24

0.721
—0.739

0.404
—0.514
—0.074

0.721
—0.018

0.386
—0.128
—0.202

1.241
—1.530

0.073
—0.078
—0.104

1.241
—0.289
—0.216
—0.294
—0.398

5q'= ——J d rIm J dz[G(r, r;z) —G(r, r;z)] . (3.7)

It must be noticed that 5q' is not computed by a numeri-
cal difference of 6 and 6, since the LMTO theory
developed in KSK provides the analytical expression of
this difference [KSK, Eq. (6.9)]. Therefore the values of
5q', although they are quite small as can be seen in Fig. 6,
are still significant. On the other hand, the small values
of 5q' justify the single-site approximation, neglecting the
modifications in the neighboring potentials. The charge
perturbation in the whole nth shell is then

5q'"'= g 5q'.
wEn

The values of 5q'"' (n =1,4) are given in Table V. Of
course, it must be noticed that the values of 5q' ' on the
24 atoms of the fourth shell is only qualitative, the nu-
merical uncertainty being of the order of magnitude of the
value 5q' on each atom. By adding the charge perturba-
tions 5q'"' to the value 5q' ' of the total charge variation
in the defect sphere with respect to the host crystal, we
get an idea of the extension of the perturbation, since the
total sum must be equal to zero. The results given in
Table V show clearly that a vacancy at a Fe site is more
rapidly screened than a vacancy at an Al site. In the first
case, the charge perturbation induced by the vacancy in
the central site is nearly cancelled by the variation in its
first neighboring shell, and only 2 5'Fo of th. e total screen-
ing charge ( —8 electrons) are missing in the first four
shells. For a vacancy at an Al site, the perturbation is
more extended and 0.4 electrons are missing in the first
four shells which represents 13.3% of the total screening
charge ( —3 electrons).

This conclusion is confirmed when looking at the
departure from neutrality q'=q'+5q' in each sphere
around the vacancy (Fig. 6). In the ordered stoichiometric
compound, the charge transfer from Al to Fe leaves an
extra number of electrons q "'=0.294 electrons on the Fe
sites and q '= —0.294 electrons on the Al sites. Vfhen a
vacancy is created on the Fe sublattice, the departure
from neutrality in the central sphere q, which is equal to
the vacancy charge, has the same sign and is increased
with respect to the corresponding value q

' in the host.
This enhancement is compensated by an opposite varia-
tion of q' on the first Al neighbors. In this case, the
charge perturbation due to the vacancy follows the ten-

dency induced in the host by the respective electronega-
tivities of the two constituents and even reinforces it. On
the contrary, when the vacancy is created on the Al sub-
lattice, the sign of the central charge is reversed and, con-
sequently, the positive q' on the first Fe neighbors is
lowered. This is opposed to the natural charge transfer in
the compound and hence represents a much more impor-
tant perturbation to the FeA1 crystal. It explains clearly
why the Al vacancies are more extended defects and less
likely to appear in this compound. This result confirms
what was observed in the local density of states and is in
complete agreement with the experimental data. "'

IV. CONCLUSION

The I.MTO-ASA method is well-suited to the studies
of ordered compounds and dilute alloys with several
atoms per unit cell. With the technique of complex in-
tegration, the Green function has to be determined for
only 100 or even less complex arguments. Energy-
dependent quantities such as the local density of states
and the phase shifts are calculated once when self-
consistency is achieved.

As a first step in the study of small departure from
stoichiometry in TA1 compounds, we examined the case
of vacancies in FeA1 and showed that the vacancy at an
Al site, which is less stable than the vacancy at a Fe site,
is a more important perturbation to the ordered FeA1
crystal. The vacancy charge is quite high in both cases
and its sensitivity to the electronic structure of the host
has been discussed. Our results show clearly that a vacan-
cy cannot be described by an infinite square barrier.

A quite different behavior can be expected for vacancies
in other TA1 compounds, since the position of the Fermi
level with respect to the low-density region between the
two d peaks varies from one case to the other. A more
detailed study of TA1 and other CsC1 compounds includ-
ing Al antistructural defects will be published in the near
future. Calculation of interaction energy of point defects
is also under progress.
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