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The invariant-imbedding method provides a first-order differential equation for the complex re-

flection amplitude R (L) of a one-dimensional conductor of length L, in terms of the random poten-

tial V(L} at the edge of incidence for a particle of energy E. The Landauer formula is used to ex-

press the resistance p(L) and the conductance p '(L) in terms of R(L) and to derive an exact
second-order differential equation for p(L), from the above equation for R (L). This equation for
p(L ) emphasizes important aspects of the problem but has not been solved explicitly. However, two

types of explicit solutions, referred to as (a) and (b), have been derived, starting from the differential

equation for R (L). Solution (a) is valid in the special case where typical fluctuations of V(L) about

an average bamer V ~ 0 are comparable with 2E —V, Solution (b) is obtained by using an intuitive-

ly justified averaging over the phase angle of R {L)to derive an approximate first-order differential

equation for the resistance, valid for both signs of V and for arbitrary E. This equation yields an

expression for p(L } in terms of V(L }which is formally similar to that obtained in case (a). Averag-

ing solutions {a) and (b} for p{L) over Gaussian, 5-correlated variables V{L)—V yields generalized

Landauer expressions for (p(L)) and infinite average conductances {p '(L)), for arbitrary L.
Closed-form expressions for the higher moments (p"(L) ) can also be given and reveal that p(L) has

no central limit. The exact probabihty distributions of R (L) in case (a) and of both p(L) and p '(L)
in cases (a} and (b) are obtained for arbitrary L, using a moment method. It is found that the vari-

able In[(1—iR)(1+iR) '] in case (a) {V &0) and the variables 1np(lnp '), p »1, for V &0 in case
{b) have Gaussian distributions with mean values and variances that scale linearly with L. In partic-
ular, this confirms lnp as the correct scaling variable for large L in the case V & 0, but shows that
the analogous scaling variable for V &0 is the quantity 1n[(l iR)(1+—iR) ]. On the other hand,
the distributions of 1np(lnp ), p»1, for V &0, for both solutions (a} and (b} are rapidly decaying

exponentials, corresponding to weak Gaussian tails. Averages of
(
R (L)

~
and of

( R (L) ~, which

determine the average electron density outside the conductor, are also studied and their asymptotic,
length-dependent rates of exponential growth are obtained. In an appendix solution (a) is formally

generalized to include the effect of small deviations from the electron-energy range considered

above.

I. INTRODUCTION

It is well established that the slightest amount of disor-
der in a perfect lattice suffices to localize all electronic
states in one dimension. It follows, therefore, that a disor-
dered chain of infinite length has infinite electrical resis-
tance at zero temperature. On the other hand, due to the
exponential localization of the states, the average residual
resistance of long finite chains grows exponentially with
length L, as was first shown by Landauer. ' In the limit
of very short chains, the Landauer result reduces to the
linear length dependence which characterizes the classical
additive behavior of resistance. Landauer's analysis is
based on a general formula for the zero-temperature resis-
tance 6 ' of a one-dimensional conductor, the so-called
Landauer formula'

where the dimensionless resistance p is the ratio of the re-
flection and trcmsmission coefflcients of the system. In
recent years, the Landauer formula has been discussed

and rederived by many authors in attempts to
strengthen its theoretical basis.

Along with the exponential growth of the average resis-
tance with length, one finds that the relative mean-square
fluctuations also grow exponentially at an even faster rate
than the average value. This would indicate that viewing
a macroscopic chain of length L as an ensemble of statist-
ically equivalent, independent subunits of smaller size, as
in the usual ensemble description, is actually meaningless.
Indeed, since the relative mean dispersion of resistances of
such subunits would always be smaller than the relative
mean dispersion of resistances of different configurations
of the actual chain, many of the latter configurations of
high probability ~ould not be properiy represented in the
ensemble of independent subunits. This shows that, in ad-
dition to having a nonadditive average value correspond-
ing to the sum of average resistances of subunits, the
resistance of the chain is also non self aueraging in -that -it
may not be represented, in general, as a sum of resistances
of an ensemble corresponding to a large number of in-

dependent shorter units (which would imply that the actu-
al physical resistance would correspond very closely to the
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ensemble-averaged value). Equivalently, one may say that
the failure of the usual ensemble description, due to the
rapid growth of fluctuations with length, means that the
resistance does not obey the central-limit theorem. Due to
the effect of these very large fluctuations, one expects
differences, e.g., in the rates of exponential change for
averages of various quantities related to p.

In an important paper by Anderson et al. it was ob-
served that the problem of resistance of a disordered
linear conductor could actually be reformulated in terms
of a new variable (related to p), such that, for it, the con-
cepts of additivity, self-averaging, and central limit do
remain valid in the usual ensemble sense. Using a scale
transformation analogous to the one introduced earlier by
Landauer, ' Anderson et al. showed that for long samples
the new scaling variable of physical significance is 1np.

The main purpose of subsequent work by Abrikosov
and Ryzhkin' and Abrikosov, " Mel'nikov, ' Peres
et al. ,

' and Kumar' has been to derive the above form
of the proper scaling variable from first principles, thus
avoiding the somewhat ad hoc scale transformation of
Refs. 1 and 3. In these treatments the interest is focused
on finding the probability distribution of the resistance
rather than average values. Among the mentioned stud-
ies, only those of Abrikosov" and Mel'nikov'i yield
Gaussian distributions for lnp centered at the value L /L,
(L, =localization length) and of variance 2L/L, as a
consequence of assuming a Gaussian 5-correlated random
potential. These results imply indeed that lnp has the
property of additive mean and is a self-averaging quantity
since its relative rms deviation goes to zero as L '~ for
L~co. In the other treatments, 'i'" similar results are
obtained by assuming, for mathematical convenience, that
quantities indirectly related to the potential, rather than
the potential itself, are Gaussian random variables.

On the other hand, the various analyses" ' do repro-
duce the Landauer result for the average resistance for
both large and small sample lengths. Actually, however,
the reduction of the results of Abrikosov" and of
Mel'nikov' to the Landauer expression requires replacing
their resistance formula p'=t '

by the I.andauer formula
p=p' —1 of Eq. (1). In their set of papers, which are
mathematically rigorous but somewhat difficult to
comprehend, Abrikosov and Rizhkin, ' Abrikosov, " and
Mel'nikov' also studied the average conductance (g')
and its higher moments, using the definition (g ) =(t).
Unlike their results for (p'), those for (g') cannot be
simply related to the correct I andauer expression
(g) =(t(1 t) ). Part of our i—nitial interest in this
problem arose in connection with the quantity (g ) which,
though being important, has not been analyzed in detail.

A particularly direct, first-principles approach to the
one-dimensional (1D) resistance problem is the one ap-
plied recently by Kumar. ' This approach is based on the
invariant-imbedding method, which yields a differential
equation of the Riccati type for the reflection amplitude
of an electron impinging on an inhomogeneous one-
dimensional medium, described by the Schrodinger wave
equation. The method of invariant imbedding which
developed from the work of G. G. Stokes on the intensity
of the light reflected and transmitted through a layered

medium (with layers of different refractive indices), and
some further basic work by Chandrasekhar, ' are fully
described in the excellent book by Bellman and Wing. '

The detailed form of the Riccati equation and of the asso-
ciated boundary condition depend, however, on the
behavior of the wave number (potential) in a small neigh-
borhood on both sides of the edge of incidence. In this re-

gard, the form of the Riccati equation used by Kumar'
involves continuity and differentiability assumptions
about the potential near the incidence edge which are not
expected to be met, in general, in a disordered conductor
connected to a current source via nondisordered conduct-
ing wires.

The purpose of this paper is to discuss an extensive
treatment of resistance (conductance) of a disordered 1D
conductor, starting from a Riccati equation for the reflec-
tion amplitude which is adapted to the physical situation
at hand. A considerable advantage of the Riccati equa-
tion used here is that it depends linearly on the random
potential, while the equation used by Kumar involved

both the potential and its derivative in a nonlinear, nonan-
alytic form. We also wish to consider the reflection prop-
erties of the conductor which determine the electron den-

sity in scattering states in the outside regions. The reflec-
tion amplitude and coefficient are more difficult to
analyze than the resistance but should reflect more direct-
ly the actual localization behavior of electronic states in
the disordered system. As in Refs. 10—14, emphasis is
put on finding the probability distributions of the quanti-
ties of interest, rather than just their mean values, which
are less meaningful as discussed above.

The paper is organized as follows. In Sec. II A we dis-
cuss the model and recall the stochastic Riccati equation
for the reflection amplitude 8 (L) of the disordered linear
conductor. A drawback of the latter equation is its depen-
dence on the phase of R (L) which is not of direct interest
since the definition of p(L) involves only the reflection
coefficient r =

~

R(L)
~

i. Therefore, using the Landauer
formula (1), we have converted the equation for R (L) into
an exact second-order differential equation for the resis-
tance p(L) itself. While this general equation for p(L) has
some interesting implications it is difficult to solve expli-
citly. Thus, in Sec. IIB we concentrate on the simpler
equation for R(L) to obtain explicit solutions for R(L)
and/or p(L) as a function of the random potential. In
Sec. IIB1 we discuss the exact solution for R(L) [re-
ferred to as solution (a)] in a limiting case where the in-
cident energy is defined within some interval about an
average value Eo V/2, such that 2——E —V is typically of
the order of the most probable potential fluctuations
about a systematic barrier V ~0. In this case E is less
than the random potential, which implies that conduction
takes place by tunneling only and that exponential at-
tenuation of electronic wave functions arises not only
from localizing effects of the random potential but also
from barrier penetration. As shown by our later analysis,
the above special solution does not lead to a scaling
behavior for lnp(L) of the form predicted by previous au-
th 3'o

This leads us, in Sec. II B2, to look for a more general
approxiinate solution [solution (b)] for p(L) which is
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valid, in particular, for potential fluctuations about an
average we/1, i.e., V &0. Solution (b) is obtained by first
averaging an appropriate form of the general equation for
R (L)=

~

R (L )
~
exp[i8(L)] over the random phase angle

8(L). This approximation amounts to transforming the
equation for R (L) into an exactly soluble, first-order dif-
ferential equation for p{L), which is valid for both signs
of V and for arbitrary energy E ~0. The averaging over
8(L) is justified, in part, by the fact that Eq. (1) for p(L)
does not directly depend on 8(L) On. the other hand, we
note that various types of phase averages have also been
invoked in previous analyses of resistance fluctua-
tions. ' '

In Sec. III the explicit solutions (a) and (b) are used to
construct exact probability distributions Pz(p, L )

[Ps(p ',L)] of p [p '] by a moment method, and to dis-
cuss the mean values (p), (p ), and (p '), assuming
Gaussian potential fluctuations with spatial 5 correlations.
While both solutions yield similar results for the above
mean values [which, in the case of solution (b}, are, in
fact, independent of the sign of V], the results for
Pz(p, L) are quite different depending on whether V is
positive or negative. In fact, only the form of P (p,L) ob-
tained for the case V &0 of solution (b) yields a scaling
behavior for lnp analogous to that predicted previous-
ly."" Detailed discussion of these results and compar-
ison with previous work is also presented in Sec. III.

In Sec. IV we perform a similar analysis of the proba-
bility distribution of the reflection amplitude R(L) for
solution (a), and discuss in some detail the averages of
the real variable iR(L) and of

~

R(L) ~, which deter-
mine the average electron density outside the conduc-
tor. In particular, we find that the variable
lnI [1 iR (L)][—1+iR (L)] I has a Gaussian distribution
with additivity, and self-averaging properties similar to
lnp, p~&1, in the case V&0. It follows therefore that
in[[1 iR (L)][1—+iR (L)] ') replaces lnp as the ap-
propriate scaling variable (with the property of additive
mean and additive variance) in the case of an average bar-
rier V ~ 0. Section V contains some concluding remarks.
Finally, in the Appendix we discuss the formal generaliza-
tion of solution (a) of Sec. II to include small deviations
from the limiting energy range defined above.

II. REFLECTION AMPLITUDE AND RESISTANCE
OF A DISORDERED LINEAR CONDUCTOR

A. Differential equations

We consider electrons of kinetic energy E moving along
the x axis and impinging on a linear random conductor of
length L, confined to the region 0(x &L. The conductor
is described by a potential V(x) which fluctuates random-
ly about an average value V defined with respect to a zero
energy placed at the fixed constant potential of the outside
medium. The electron motion is described by the one-
electron Schrodinger equation

+K (x)/=0,
dx

where

K (x)—=k (x)= [E—V(x)], 0&x &L,201
(3)

K (x)—=ku —— E, x (Oorx ~L . (4)

In the region x ~I., we choose a scattering state corre-
sponding to an incident plane wave of unit amplitude
moving from x = ao towards the conductor. Thus,

P(x)=e ' +R(L)e ', x )L,

subject to the obvious boundary condition, R (0)=0. The
potential V(L) at the far end of the conductor is the sum
of a mean value V and a random part u(L} [with
(u(L)) =0],

V(L)=V+u(L) .

We note that the equation for R(L) used by Kumar'
[Eq. (6.31) of Ref. 16] is quite different from Eq. (7) and
describes a system where the wave vector K(x) and its
first derivative may be assumed to be continuous across
the incidence edge, x =L, of the conductor. One may
doubt that the latter equation would provide an adequate
description of our system, where K(x} is random for
x =L —0+ and takes a fixixl value ku for x =L +0+.

Equation (7) may be transformed into a close differen-
tial equation for the resistance p(L) which is the quantity
of direct physical interest. Such a transformation is quite
desirable, in principle, as Eq. (7) includes detailed infor-
mation about the evolution of the phase of R (L),

r

8=—8(L)=tan
ReR (L)

(9)

which is not of direct interest, since it does not enter ex-
plicitly in the definition (1) of p(L). From Eq. (7) and its
complex conjugate one easily arrives at the following re-
sult, using Eq. (1):

ImR (L)= t/r sin[8(L)] =— k0 ()p

2V{L)(p+1) dL
'

which defines 8(L) in terms of p(L) and V{L). By insert-
ing this expression, together with

(10)

1/2

ReR (L)=s —[ImR (L)]
p+ 1

(where the sign s =1 if n./2&8&ir/2 and —s = —1 if
ir/2 & 8 & 3n./2), in, e.g., the real part of Eq. (7) one ob-
tains the following exact differential equation for
p=p(L):

g(x) = T(L)e ', x (0, (6)

where R(L) and T(L) [with
~

R(L)
~

+
~

T(L)
(

=1
and

~

R(L)
~

=r] denote the complex reflection and
transmission amplitudes, which depend on the length of
the conductor. In the method of invariant imbedding, one
expresses the reflection (transmission) amplitude in a form
which does not involve the wave function inside the con-
ductor explicitly. In particular, R (L) is found to be given
by the Riccati ixluation' (see Sec. 10 of Chap. VI in Ref.
16)

ik0 —V(L)[1+R (L)]—2[ku —V(L))R (L), (7)
L
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T

+1 ' P =VI. 2—"'P+'
aL v(I. )(p+1) aL

= P+ p+1 V(L, } aL
=V L 4p+2—

'2

2 1/2

—4s[k, —V(L, )] p(p+1)—
2V L dL

The differential equation (12) differs from the simpler
equation (7) for R (L}by the fact that it is of second order
and that it involves not only the potential V(L) but also
its derivative. This latter feature only shows that the
resistance is more sensitive to details of the potential than
R(L) itself, which suggests that reasonable approxima-
tions for R (L) may yield poorer results for p(L). On the
other hand, the explicit solution of Eq. (12) requires an
additional boundary condition as compared to the first-
order equation (7). This additional boundary condition is
fixed by the value of the classical resistivity,

2E —V=u(L} . (14)

iko ——V(L)[l+R (L)], (15)

whose solution subject to R (0)=0 is

L
R (L)= i ta—nh I V(L')dL'

ko 0
(16)

In this case, where V is necessarily a potential barrier (i.e.,
V & 0), Eq. (7) becomes, in lowest approximation

I.=O l
(13)

Using Eq. (16), the dimensionless resistance in Eq. (1)
takes the simple form

p(L) = cosh— J V(L')dL' —1
1 L

2 0

describing the classical, linearly additive, resistance of suf-
ficiently short samples (such that p«1). The classical
resistivity thus enters as a basic requirement for a general
treatment of resistance based on Eq. (12},in a similar way
as it does in the scaling theory of Anderson et al. In Eq.
(13) 1, denotes the mean free path for elastic backscatter-
ing which may be expected to differ from the localization
length L, of wave functions at energy E, although exist-
ing first-principles treatments"' ' (including the one of
Sec. III), all lead to (dp/dL)t. 0

—L, ' in the—classical
limit.

B. Detailed solutions

The solution of Eq. (12}for an arbitrary potential V(L)
is clearly very difficult and so we return to Eq. (7}for de-
tailed analysis. Equation (7) may be solved analytically,
for arbitrary E &0, only in the absence of disorder, i.e.,
for u (L}=0. In this case R (L) reduces to the well-known
result for scattering off a rectangular potential of width
L. In particular, for energies such that E»

~
V

~
one ob-

tains R (L)=0 from the condition R (0)=0, as required.
In Secs. II8 1 and IIB2 we present two types of solutions
incorporating the effect of the random part of V(L} in
cases of interest.

l. Solution (a): special exact solution

For the purpose of simplifying Eq. (7) we consider the
special case where E is defined within some energy inter-
val around a value Eo V/2 such that for——the most typi-
cal values of V(L) in Eq. (8) (i.e., those occurring with
sufficiently high probability) one has

ko-V(L) = V+u(L)

i.e.,

For later reference it is useful to note that p(L) obeys the
differential equation

P
t)L

4V (L)PP+

which follows from Eqs. (1) and (10) by observing that
Eq. (15) implies ReR (L)=0. On the other hand, we note
that the validity of Eq. (17) extends outside the range (14)
in the case of small L. In Sec. III we show indeed that,
for small L, it coincides with the general solution of (7)
for arbitrary V(L), for energies such that koL « 1.

Solutions (16) and (17) play an important role in the
analyses of Secs. III and IV where they are used to discuss
the probability distributions of R (L) and of p(L), as well
as averages of these and related quantities of interest, for.
V ~0. An important result is that, in the case V ~0, the
variable lnt[1 iR(L)][1—+iR(L)] 'J (rather than lnp) is
the physically significant scaling variable whose mean
value and variance scale additively with length L. In view
of the importance of Eqs. (16)—(17) it is of interest to con-
sider their generalization in the case of small departures
from the energy range (14). Such a generalization, valid
for small values of 2E —V(L), is discussed in the Appen-
dix where relatively simple formal expressions for the
corrections to Eqs. (16) and (17) are derived. Before con-
cluding this subsection, it may be useful to recall the ef-
fects of a finite barrier in the absence of disorder, at ener-

gy E=V/2. We obtain the limiting expressions (with
a =2 V/k ), 0

cf. I.
~R(L}~ =aI., p(I.)=, aL, «1,

2

~R(L)
~

=1, p(L)= —,e, aL&&1,

as expected as a result of the penetration of the finite bar-
rier to a depth of the order of a
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2. Solution (b): approximate general solution

While solution (a) is restricted to the ease of an average
potential barrier and describes pure tunneling conduction,
it is clearly desirable to derive an analogous solution valid
for a potential mell, V &0. Furthermore, since the solu-
tion (17) yields a distribution for lnp (Sec. III) which does
not have the properties predicted by the phenomenological
scaling theory, the question arises as to whether these
properties could be justified within an analysis for the
case V &0. For these reasons, we now discuss an approxi-
mate solution for p(L) which is valid for both signs of V
and for arbitrary energy E & 0.

Returning to Eq. (10) for the phase angle 8(L), we note
that the latter is a random quantity which is completely
determined, in terms of the random variables V(L) and
d V(L }/dL, by the solution of Eq. (12). In the following
we shall make the crude assumption that, due to the
dependence on d V (L)/dL, 8(L) may be treated effectively
as a new random variable, independent of V(L), and, for
convenience, we take its distribution to be uniform in the
range 0& 8(2m. On the other handas , observed earlier,
8(L) does not enter directly in the definition (1) of the
resistance although it enters, of course, indirectly in deter-
mining the form of Eq. (12), via Eq (7) .for R(L) or,
equivalently, the coupled Eqs. (7) for v r and 8. This im-
plies, in particular, that averaging over 8(L) would leave
Eq. (1) invariant. Both the randomness of 8(L) discussed
above and its nonappearance in explicit form in Eq. (1}
suggest that an intuitively reasonable procedure would be
to average appropriately over phase angles 8(L). Since
Eq. (1) involves (ItnR)2, the simplest such averaging con-
sists in averaging the equation obtained by squaring both
sides of (10}. Since the averse of sin28 over the assumed
uniform distribution of 8 is —, we thus obtain, from Eqs.
(1) and (10),

'2

(19)2 p(p+1) .2V (L)
ko2

This first-order equation defines an effective resistance via
the averaging over phases discussed above. Its solution
such that p(0) =0 is

p(L) =—cosh J V(L')dL' —1
1 I
2 ko o

The random potential fluctuations in Eq. (8) are as-
sumed to be Gaussian and to be 5 correlated in I. space:

(21)

We emphasize that Eqs. (19)—(20) for solution (b), while
differing only by numerical factors from the correspond-
ing equations (17)—(18) for solution (a), are valid for arbi-
trary energy and for both signs of V. We note that the
averaging over phase angles 8 used in the present solution
is similar to the one employed by Kumar in his deriva-
tion of a Fokker-Planck equation for the probability dis-
tribution of resistance, I'z(p, L).

III. PROBASII.ITY DISTRIBUTION
OF RESISTANCE

As shown by Anderson et al. , the average resistance of a
long sample is not a representative physical quantity be-
cause fluctuations prevent the central-limit theorem from
being obeyed. This conclusion readily follows from Eqs.
(17) and (20), using a well-known result for averages over
Gaussian, 5-correlated variables s

a I.
exp +a U L' I.' =exp

2g
(22)

By averaging successively Eqs. (17), (20), and their
squares, using Eq. (15), we get

(p(L) }= —,
' [e2'cosh(aL) —1] (23)

(p (L))= —,[e 'cosh(2ttL) —4e 'cosh(aL)+3] .

where

(24)

(25)

L, =ko2(', a.= for solution (a),2V
(26a)

L, =2k go2, tt= V
for solution (b), (26b)

L, being the localization length, which is seen to be twice
as large for solution (b} than for solution (a). Equation
(23) for it=0 coincides with the Landauer result, ' which is
generally regarded as a direct expression of exponential lo-
calization of electronic states when L is much larger than
the localization length. We shall return to this point in
Sec. IV. When x&0, Eq. (23) reduces to the Landauer
form only in a range of large but finite sample lengths,
such that

~

n
~
L && 1. However, purely exponential

growth of resistance is obtained when L is large compared
to both L, and

~
tt

~

'. Finally, for very short samples,
such that L «L, and L «

~

a.
~

', Eq. (23) leads exactly
to the Landauer result (p(L) )= l, in agreement with other
treatments2""" (see Ref. 19). We note that the Eq.
(p(L) }=l with L, given by (26a) is, in fact, more general
than solution (a} from which it has been derived, since it
remains valid for all energies E, independent of the ran-
dom potential V(L}, such that koL «1. This is shown
by transforming Eq. (7) in the form

Q(L)= — f V(L')dL' 1+ f V(L')dL'
ko 0 ko

(28)

leads to an expression for p(L) which coincides with the
lowest-order term of the expansion of (17) for L ~0. The
Landauer result (p(L)) =l readily follows from this
lowest-order term, using (22).

Comparison of Eqs. (23) and (24) shows that (p (L)}
grows faster than (p(L)), which implies the non-self-

dL

and noting that the solution for koL « 1 [with
Q(L =0)=0],
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averaging property of resistance and the nonexistence of a
central limit for large L. Therefore, a proper description
of the system requires knowledge of the actual probability
distribution Pz(p(L), L ) of p rather than its lowest-order
moments. The latter may be obtained as follows. We
rewrite Eqs. (17) and (20), using (8) and (26a) and (26b) in
terms of the quantity

y(L) =exp ——f U(L')dL'
0

'
2N '2n

([lny(L)]'") = — f U(L')&L'
0

fl

~L
(2n —1)!!.

p'2

It then follows that for both solutions (a) and (b},
Il

(ik)" «L
P(k)= g, =exp( —21k ),

n. 2Vg

(31)

(32)

1.e.,

p(L)= 4[y (L)e" +y(L)e "L 2],— (30)

whose inverse Fourier transform yields Pi„~(lny, L)
=yP„(y,L), with

and first obtain the probability density Pi„~(lny, L) of the
logarithm of y(L). The latter may be calculated by con-
structing the characteristic or moment-generating func-
tion P(k). Since ( v (L) ) =0, the odd moments vanish and
the even moments are given by

P (y (L ),L }= [2&2m ly (L)] ' exp
iny (L)]

y 81
(33)

which obeys the proper normalization condition. Finally,
Pz(p(L },L ), for both solutions (a) and (b), is given by

Pp(p(L) L)= f

dykey(y,

L)5 p — e"~— e—
x+

exp
I &+ —1I

(iny+ +«L) y+ 2 exp
(lny +~L)2

8I
(34)

where

y+(L) =2p(L)+ I+2Ip(L)[p(L)+1]I ' ' .

The limiting forms of Pz(p(L },L ) are

Pz(p(L), L }=(2v'2@i ) 'p ' exp — (lnp+zL)—
8l

p»1, (36a)

—exp ——(inp —4I +«L)
2v'2m I p2 81

(36b)

P (p(L},L }=(8mlp) ' exp — (2Vp «L)— —

+exp — (2~p+ «L)—
81

p « I . (3&)

Equation (36a) reveals a qualitatively different behavior
depending on whether the average potential V (related to
«) describes a barrier ( V &0) or a well ( V &0). Thus in
the case of solution (a) and in the case V &0 of solution
(b}, the probability density of inp,

P)~(lnp, }L=pPp(p, L},
for large L (p » 1) is a rapidly decaying exponential hav-
ing the form of a weak Gaussian tail. On the other hand,

I

Eq. (36a) in the case of solution (b} for V & 0 (i.e., «& 0},
shows that inp, rather than p itself, is a proper scaling
variable of physical significance for large L (p» 1), as

suggested originally by Anderson et a1.3: In this case
Pi~(lnp, L), p &&1, is a Gaussian centered at a mean (most
probable) value

( lnp j = (lnp) = «.L » 1, — (38)

which shows that (1np) scales additively with length for

p »1; furthermore, the relative rms deviation

[(In p) —((inp) )']'~' 2

|,'1~) K(LL )' 2
(39)

decreases with increasing length L, which means that lnp
has a central limit.

Our results for the distribution of resistance for large
L, in the case V &0 (x&0) of solution (b), agree only
qualitatively with previous work. "' ' This is because
our scaling parameter for (lnp) is —~, while being L,
(i.e., the scaling parameter of the variance) in earlier anal-
yses. "' ' In particular, the most probable value (38) of
lnp (p»1) yields a typical or scale resistance (in the
language of Anderson et al. )

ps =& (40}

whose rate of exponential growth does not involve the lo-
calization length, in contrast to the asymptotic form of
the average resistance (23). Different scaling parameters
for scale and mean resistances have also been found by
Peres et al. ' in their strong scattering case and by Ku-
mar and Mello. %e note that, in a sense, it is quite
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natural that if the variance of lnp is determined by the
variance of the potential fluctuations (related to L, ') its
average should correspondingly be determined by the
average potential (related to «), as we do indeed find.
However, this is contrary to the findings in Refs. 11, 12,
and 14. Finally, the probability density (27) for p&~1
leads to the classical behavior (p(L)) -L/L„ in agree-
ment with the I.andauer result.

Our results for P~(p(L), L ), Eqs. (34)—(37), provide the
first detailed analytical description of the crossover from
the strong localization, large resistance regime for suffi-
ciently long samples to the classical low resistance regime
for short samples. The qi~)itatively different behavior of
the distribution of resistance for long samples in the cases
of average potential wells or barriers is also shown for the
first time. We note that, by combining our results for
large and small p, for V&0, one might introduce the
quantity 1n(1+p) as an effective scaling variable, such
that both its mean value and its variance scale linearly, for
both small and large L, as in the treatment of Anderson
et al. ~ However, while the distribution of 1n(1+p), for
solution (b) with V ~0, is Gaussian for p &&1, it deviates
markedly from a Gaussian for p&~ 1, as shown by Eq.
(37).

We now turn to the discussion of the dimensionless
conductance g (L)=p '(L) whose probability distribution
is given in terms of Eq. (34) by

We shall reach the surprising conclusion that the average
conductance (g ) is infinite as a direct consequence of the
Landauer definition of resistance, rather than of the ex-
istence of large statistical fluctuations. Indeed the exact
expression (30) for p(L), which is based on Eq. (1) and
yields the generalized I.andauer expression (23) for
(p(L) ), now leads to the result

&g(L)) = (41)

for samples of finite length and for arbitrary «. This fol-
lows immediately from Eqs. (30) and (33) and is a conse-
quence of the second-order pole at y =e" in p '(L),
which is itself due to the form of I.andauer's equation {1).
In fact, Eqs. (30) and (33) imply that the higher moments
(g") are also infinite. An infinite ensemble-averaged con-
ductance was, however, also found in the early treatment
by I.andauer. ' Now, for «=0, in the absence of disorder,
g(L) is infinite, as is well known. The result (41) then
implies that the average conductance is not affected by the
disorder for «=0. On the other hand, for «+0 the or-
dered conductance has the finite value g (L )

=2[cosh(«L) —1] '. In this case, therefore, the average
conductance is made infinite by the effect of the disorder.
Again, this is a consequence of the singular behavior of
the Landauer formula, as revealed by Eq. (30).

Equations (30) and (33) show that the infinite average
conductance is due to a narrow range of y values near the
pole of p '(L). In the case «=0, these values correspond
to most probable values, while for «&0, they correspond
to values of increasingly smaller probabilities as L is in-
creased. In contrast to this, the average resistance sam-
ples a region of the order of the width of the y distribu-

tion, which increases linearly with L. On the other hand,
the corrections to p(L) studied in the Appendix [for solu-
tion (a)] are expected to shift the pole of p '(L} some-
what, without basically cbanging the above conclusions.

Finally, we recaB that, due to inelastic processes, the
average conductance is not generally expected to be ob-
servable in actual systems. Rather, the observed quantity
in sufficiently long samples is the scale conductance

p, '(L), which is well behaved. On the other hand, we
also note that the finite value for (g(L)) obtained by
Abrikosov" is due entirely to his use of g (L )
=1—

~
R(L)

~
as the definition of conductance. ' In

contrast to the I.andauer definition, the latter expression
remains nonsingular as seen, e.g., by substituting Eq. (16)
[solution (a)] into it.

IV. PROSAMLITY DENSITY OF REFLECTION
AMPLITUDE

The interesting effects concerning the resistance of a
1D conductor discussed in the preceding section are relat-
ed to the fact that statistical fluctuations are very large
and grow faster with sample length than the mean resis-
tance itself. These features are not restricted to the resis-
tance and should also reflect in related physical quantities.
In addition, a direct consequence of the large fluctuations
is that averaging of different quantities over the random
potential will lead to different rates (which may be length
dependent) of exponential change for long samples. ~ It is
therefore of interest to study physical quantities other
than the resistance as well. Here, we apply solution (a) of
Sec. II to analyze in some detail the reflection amplitude
(coefficient) R (L) [R (L) ], which determines the electron
probability density in the region outside the conductor:

~
f(x,L)

~

i=i+
~

R(L)
~
2+2Re[R(L)e ' ],

x &L . (42)

Because of this interpretation of R (L), one might expect
the localization aspects of electronic states to reflect more
directly in the averages (R(L)) and (

~
R(L)

~
) than in

the average resistance itself. However, due to the unlimit-
ed growth of the relative fluctuations with L, these aver-
ages, like the average resistance, are not otherwise of
physical interest.

It is straightforward to obtain the probability density of
the reflection amplitude whose expression has been found
explicitly in solution (a) valid for V&0. From Eq. (16),
and by defining R'(L) =iR (L), we have

Pa(R'(L), L)= J dyP~(y, L)5 R'—
0 ~

1 +~ —lfLy

(43)
and by inserting Eq. {33)and performing the integral, we
obtain

Pa (R'(L),L)= 1 1

2m'I 1 —R '2

1 1 —8'
Xexp ~ ——ln, +pcI

8I

(44)
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We thus find that the quantity 8:—ln[(1 —R')(1+R'} '],
which may take all values from —ao to ao, has a Gauss-

ian distribution,

Pit(B,L)= i (1 R—' )Pti (R',L),
centered about a mean value

t =to ——ln
Sp, l

apl
ln( . . )

and of variance equal to 4L/L„where a and L, are given

by (26a). It follows therefore that in the case of an aver-

age barrier ( V &0}the variable ln[(1 —iR)(1+iR) '] un-

like inp itself, is a proper scaling variable such that its
mean and its variance scale additively with length L. By
analogy with Eq. (40) we are led, in the present case
( V & 0), to define a scale amplitude R, by

1 —iR,S
~

-]cL
1+i',

from which we deduce a scale resistance

of which an approximation valid to better than a few per-
cents, for pl & 5, is

Sp, l
h [Sl.l/ln(sl l)]

The asymptotic forms of (49) and (50) valid for 1»1,
xr. &g1 are then

( R'(L) )-—r, (l) exp ——ln
1 81

(54)

p,
' = = —,

' (coslML —1) . (48) 1 161

8l ln(161 /ln161)
While the definition (48} is valid for arbitrary L it
reduces, for ~L &&1, to the form (40) up to the factor ~2
between the scaling parameters (26a) and (26b).

Using Eq. (43), the mean values of R'(L) and R' (L)
may be written in the form

t
(R'(L)) = f dt exp — (t+—«L)'

2v'2ml —~ 1+e' Sl
I 4

(49)
'2

&R'(L) &=
2v'2n l

Xexp — (t +L)—1

Sl

Asymptotic forms of these expressions may be obtained
using the saddle-point method. The saddle points of the
integrands are given by the transcendental equation

(t +ttL) sinht =4pl, (51)

where @=1 in the case of (49) and p, =2 in the case of
(50). Since our main interest lies in the effects of localiza-
tion induced by disorder, and for the sake of brevity, we

restrict ourselves to the situation corresponding to
L/L, »1 and aL «1, where localization effects should
be most prominent. In this case, the solution of (51) may
be written in the convergent form

where

r&(l) ln
Sp, l

lnSpl

—]/2

p=1,2 .

(55)

(56)

These results show that (R' ) increases less rapidly than
(R ) as l is increased, which implies that the relative rms
deviation increases with I, within the above range. Equa-
tions (42), (54), and (55) completely determine the aver-

aged probability density (
~
f(x,L)

~
) in the region x & L

and, in particular, the average density 1+ (
~

R (L)
~

) at
the incidence edge of the 1D conductor. We note, howev-

er, that their relatively complicated dependence on sample
length (involving length-dependent rather than constant
rates of exponential increase) is less suggestive of simple
exponential localization than Landauer's expression for
the mean resistance. This suggests that the interpretation
of various physical quantities for such systems, in terms
of exponential localization, may not be as straightforward
as is usually believed.

Finally, a quantity far more significant than
(

~
g(x,L)

~
) for describing the particle density is the sta-

tistical density of
~
g(x,L}

~

. For completeness, we
display the relatively simple form of this probability den-

sity at x =L. Putting A =
~
g(L,L}~, we obtain from

Eq. (44),

Pq(A(L), L)= f dR'P„(R', L}5(A —1 R' )=-
2&2m l (2—A )v'A —1

1
exp ——ln

8I
1 —v'A —1 +xl.
1+&A —1

8l 1+v'A —1

(57)
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V. CONCLUDING REMARKS

We have applied the method of invariant imbedding to
study resistance fluctuations of a 10 disordered conductor
of length L, in the fr.miework of the Landauer formula.
We have derived explicit expressions for the reflection
amplitude R (L) and the dimensionless resistance p(L) [or
conductance g(L) =p '(L)] in terms of a random poten-
tial with an average barrier, for a certain range of electron
energies [solution (a)]. A similar expression for
p(L)[p '(L)] valid for arbitrary energy and for both aver-
age barriers and wells has been derived by averaging over
phases of R (L) [solution (b)]. From these expressions we
have obtained the general forms of the probability distri-
butions of p(L) and of R (L), as well as various averages
of interest, for Gaussian 5-correlated potential fluctua-
tions. In particular, we have derived generalized I.an-
dauer expressions for (p(L}) (and corresponding infinite
conductances) for both signs of the average potential.

Our results for the case of an average mell agree quali-
tatively with previous analytical results for the distribu-
tion of resistance. An important difference hes in the fact
that our results require two length scales, L, and

~

x
~

in Eq. (26b), while previous ones involve only L, .»" i4 In
particular, the scaling ~Iiarameter ensuring the property of
additive mean for lnp" is

~
a

~

' in our treatment while
being L, in the previous ones. On the other hand, in the
case of solution (a) for an average potential barrier, our re-
sults differ qualitatively from those of previous analy-
ses" '~ in that the proper scaling variable is now
ln[(1 iR)(1+—iR) '] rather than lnp. These properties
of the distiibution of the reflection amplitude, as well as
the moments (R(L)} and (R (L)) discussed in Sec. IV
would seem to deserve further study in the framework of
the perturbation formalism discussed in the Appendix.

Finally, a further significant difference between the
present treatment and the ones of Abrikosov" and of Ku-
mar' is seen by considering the evolution equation for the
distribution of resistance, Pz(p, L}, as a function of the
generalized coordinates p and L. Using an elaborate
perturbation-theoretic analysis Abrikosov derived a
Fokker-Planck equation for Pz(p, L) valid for arbitrary p.
On the other hand, starting from the stochastic I.iouville
equation associated with the "dynamical equation (7)" in
the framework of Van Kampen's general formalism, Ku-
mar' obtained a Fokker-Planck equation„similar to that
of Abrikosov, by using the same type of averaging over
phase angles 8(L} as in solution (b} above. However, it
appears that our explicit distributions of resistance [given
by Eq. (34)] for solutions (a) and (b) do not obey a simple
Fokker-Planck equation in general. Indeed, by recalling
that the variable z—:lny(L) in Eq. (29) has a Gaussian
distribution so that

ap,
aL.

= ap, a'p,
L. p L, ap ap2

+x P + 3 +p, p»1.

(60)

This equation differs, however, from the limit for p » I
of the Fokker-Planck equations derived in Refs. 11 and
14. The difference between the results for Pz(p, L) based
on angular averaging in the present work and in Ref. 14
might be due to the fact that the angular average of the
Liouville equation could only be performed approximate-
ly

14

APPENDIX: GENERALIZATION OF SOLUTION
FOR R(L}

Here we generalize the solution (a) for the reflection
amplitude R (L) obtained in Sec. II when the last term in
Eq. (7) is assumed to be nonzero but small. We recall that
this solution was obtained for energies

2E=V+u(L), (A 1)

for which the term in question was negligible. For our
purposes it is convenient to look for a solution of Eq. (7}
in the form

R (L)= i tanh —— (2 (L)+g (L)
1 2
2 kp

I

(L)=vVL+ J v(L')dL',

so that g (L)=0 when the perturbation parameter

e(L)=kp 1—V(L)
2E

(A2a)

(A2b)

(A3)

is zero. The function g (L) obeys the exact equation

dg(L) . . 2=2ie(L) sinh (2 (L)+g (L)
dL ko

(A4)

The solution of this equation to second order in e(L) is

g(L) =gi(L)+g2(L),
where

(A5a)

and the distribution of resistance is expressed in terms of
Pz(y, L) by the first line of Eq. (34). From the nonlinear
relation (30}between the variables p and y it then follows
that Eq. (59) cannot be converted into an ordinary partial
differential equation {of the Fokker-Planck type) for
Pz(p, L) except for p »1, where Eqs. (34)—(35) yield

P&(p,L)=4e" P~(4e"p,L),
which leads to

BP
aL.

8 Pz

az2
(58) g~(L) =2i f dL'e(L') sinh a (L')

ko
(A5b)

one easily verifies that Pz(y, L) obeys the following exact
generalized Fokker-Planck equation:

v

L I.'
g2(L) = —4 f dL' f dL "e(L')e(L")cosh a (L')

0 0 ko

Py +3/ +g
Le

'
~X ~y'

(59) X sinh a (L")
0

v

(A5c)
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The evaluation of p(L) =
~

R (L)
~

[1—
~

R (L) { ] ' to second order in e then yields

p( L )=—cosh a (L) —1 ——g i (L ) cosh a (L ) —2g2(L }sinh a (L)1 2 I 2 2 2

2 ko 4 kc ko
(A6)

Equation (A6) shows that p(L) is affected only to second order by small deviations from Eq. (Al). We have not been

able to obtain explicit results for the effect of the correction terms in (A6) on the average resistance (p(L) ) for a Gauss-

ian distribution of U (L). However, Eq. (A6} might provide a useful starting point for numerical studies of these correc-
tions.
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