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The amorphization of a crystalline Ising ferromagnet with a transverse field is investigated by the
use of the effective-field theory with correlations. It is proposed that a number of interesting phe-
nomena may be observable in the effect of a transverse field on the thermodynamic quantities for
amorphization, namely the longitudinal and transverse magnetizations and the initial parallel sus-
ceptibility, although at the present time we do not have any experimental results.

I. INTRODUCTION

The Ising model with a transverse field was originally
introduced by de Gennes' as a variable model for
hydrogen-bonded ferroelectrics such as the KH,PO, type.
Since then, it has been applied to several other systems;
for example, cooperative Jahn-Teller systems like DyVO,
(Ref. 2) and ferromagnets with strong uniaxial anisotropy
in a transverse magnetic field.> The model Hamiltonian is
given by

H=—3 0S"—+ 3 J;SS],
i ij

where S and S/ are spin-3 operators at site i, {);
represents a transverse field, Jij is an exchange interac-
tion, and the sums extend over the points of a lattice.

In two or more dimensions the transverse Ising model
has a finite transition temperature, which can be
depressed to zero temperature by increasing the transverse
field to a critical value Q.. An exact solution for the
one-dimensional case has been obtained,* where no phase
transition is verified at finite temperature, but at T =0
the system is ordered for Q less than some critical value
Q.. Thus, the critical frontier starts at some . for
T =0, and ends at the Ising critical point for 0 =0, and it
separates the paramagnetic region ({S?)=0) from the
ferromagnetic one ({S7)70) by a second-order phase
transition. At all temperatures, however, there is an order
with (S )5£0.

In the last decade, there has been interest in the prob-
lem of disorder in the transverse Ising model, which may
apply to KD,PO,-KH,PO, mixed systems® and diluted
vanadates.® The bond- and site-diluted transverse Ising
models have been studied by a variety of sophisticated
techniques.”~® For the diluted systems, attention has
been, in particular, directed to the Harris conjecture!” that
the critical transverse field as a function of concentration
at zero temperature should display discontinuity at the
percolation concentration.

On the other hand, the magnetism of structurally disor-
dered alloys has become a subject of both experimental
and theoretical interest in solid-state physics. A number
of experimental and theoretical investigations have led to
the conclusion that long-range magnetic order may exist
in amorphous systems. At the same time, because of the
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disordered structure, many interesting physical properties
not observed in the corresponding crystalline magnets are
now becoming apparent.!!

Theoretically, there exist a great number of sophisticat-
ed techniques for discussing amorphous magnets. Be-
cause of the difficulties inherent in theoretical description
of such complicated magnetic systems, it is sometimes
necessary to make some simplifications. For studying
such systems, therefore, the lattice model has often been
applied, in which the structural disorder is replaced by a
random distribution of the exchange integral.!?

In a series of works'> we have investigated the amorphi-
zation of pure and diluted crystalline Ising ferromagnets
by using both the effective-field theory with correlations
(EFT) (Ref. 14) and the lattice model of amorphous mag-
nets. Due to amorphization, some interesting effects on
the relevant thermodynamic quantities appear in the
thermal behavior; the susceptibility shows the effect of the
eventual coexistence, in the system, of an infinite cluster
with finite clusters. The magnetization exhibits reentrant
phenomena as a function of temperature for selected
values of the structural fluctuation. Except for this spe-
cial case, showing the reentrant phenomena, the reduced
magnetization curve falls below that of the corresponding
crystalline ferromagnets, a phenomenon which is general-
ly observed in amorphous and dilute ferromagnets.!!

In this paper the effect of a transverse field on the
amorphization of a pure crystalline Ising ferromagnet is
investigated, within the same framework as used in the
previous cases,'? in order to clarify how the relevant ther-
modynamic quantities, namely the phase diagram, mag-
netization, and initial susceptibility, are influenced by a
transverse field. From these investigations, a number of
interesting effects of amorphization appear in the thermal
behavior; the reduced longitudinal magnetization curve
for a small value of Q falls below that of the correspond-
ing crystalline ferromagnet upon increasing the structural
fluctuation, a phenomenon generally observed in amor-
phous ferromagnets with Q=0. For a large value of ,
on the other hand, the behavior of the reduced magnetiza-
tion curve is different from that for a small value of Q.
Only for small values of ) may the longitudinal magneti-
zation exhibit the effect of frustration, namely the reen-
trant phenomena. Thus, for a small value of Q, we find
some characteristic behavior in the thermodynamic quan-
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tities. For a mixture of weak bonds, in particular, the
longitudinal magnetization indicates the eventual coex-
istence of weakly coupled spins in the infinite strongly
coupled cluster. The initial parallel susceptibility exhibits
a peculiar behavior below the transition temperature, in
connection with the existence of weakly coupled spins.

The outline of this paper is as follows. In Sec. II we
present the formulation of this model in the EFT. In Sec.
III the theory is applied to the amorphization of the crys-
talline ferromagnet in a square lattice, in order to discuss
the effect of a transverse field on the amorphization. In
Sec. IV the numerical results are shown and discussed. In
Sec. IV A the results of the results of the pure system are
compared with those obtained from the standard mean-
field approximation and other techniques, in order to clar-
ify the present framework.

II. FORMULATION

The system consists of N identical spins, which is now
described by the following Hamiltonian:

H=—3 0SF—+ 3 J,;SiS]— 3 HS?, ()
i ij i

where Si° and S} are defined as before and H is the ap-
plied magnetic field. Jj; is the exchange interaction be-
tween spins at sites / and j. In order to describe the
structural disorder in a simple way, the lattice model of
amorphous magnets is used; the nearest-neighbor ex-
change interactions are given by independent random
variables as

P(J)=5[8(J;—J —AN+8(J;; —J +AD] . ©)

In a series of works on the amorphization of pure and
diluted crystalline Ising ferromagnets with Q;=0,'* the
starting point for the statistics of the systems was the ex-
act relations due to Callen.!* However, when we include
the transverse field in the problems, or when we take the
Hamiltonian (1), we cannot apply the Callen identities to
the present problem. For the Ising model in a transverse
field, as discussed in the Appendix, the expectation values
including the longitudinal and transverse spin operators
S and S7 at a site i are approximately given by'®

z 6; 1
<{f,-}u,~>=<{f.-}7tanh< ;BH,-)> , (3)
. 2Q; .
<{fi].ui)=<{fi}_ﬁ“tanh(TBHi)> ) (4)
where { --- ) indicates the canonical thermal average,

ui=2S7, u7=2S7, and B=1/kgT. 6; and H; are defined
by

J

and
H;=(4Q2+62)'/2 (6)

The parameter {f;} represents any function of the Ising
variables so long as it is not a function of the site i. In the
limit of Q,;=0, {{f;}uf)=0, H;=86;, and Eq. (3) repro-
duces the Callen identity for the Ising model.

In particular, setting {f;}=1, the equations reduce to
the longitudinal and transverse magnetizations for the Is-
ing model in a transverse field. Expanding the functions
appearing on the right-hand sides of Eqs. (3) and (4) as a
formal series in the spin variables and neglecting correla-
tions of H;, the mean-field-approximation (MFA) result is
also obtained;!”

27595
of=(ui) = | ~pvFa | tanh(BH™) )
oF=(u)= ;I-ﬁgx tanh(4+BHM) , (8)
with
21172
H,'MFA= 4ﬂ,+ 2.’,}07 forH=0.

J

Thus, the relations (3) and (4) approximately derived are
expected to give fairly nice results for small values of Q;
(for more detailed discussions, see following sections).

In order to write Egs. (3) and (4) in a form which is
particularly amenable to approximation, let us introduce
the differential-operator technique'® as follows:

W =(few DSy )| . o
J
x =0
<1f.-1ui-‘>=({f,-;exp D3I, )Gi(x) . (10
J
x=0
with
<{f.~]eXP D3 Jyu; >
J

- (g £:) T [cosh(DJ;)+ 42} sinh(DJ); )]) :

J
where the functions F;(x) and G;(x) are given by
2H +x

Fix)=
= 402+ 2H +x 7172

X tanh

g—[40,3+(2H +x)2]“2} : (11)

20,

G,' )=
= a0l s oH 127

X tanh

—f—[m%+(2}1 +x)2]”2] , (12)

and D =3/3x is a differential operator.
When the formulation is applied to an isotropic lattice,
the operator functions can be generally written as

(If:] exp |D 3 Jj; >=K(D)+L (D), (13)
j

where K (D) and L (D) are given by even and odd func-
tions of the operator D; for a square lattice with nearest-
neighbor interactions, the functions are
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4
8[11 cosh(DJ; ;. 5)

K(D)={({f;})

<(,I1 cosh(DJ,-+,>]+({f,-} alillui+a)

1(s£8,8")

and
4

L(D)= 3, {{fi}pi,s)sinh(DJ; 5) { I cosh(DJi+5)]+
5=1 8 (1)

where the subscripts 8 refer to the nearest-neighbor sites
of the ith site. Equations (9) and (10) can generate many
kinds of equations for spin-correlation functions, upon
substituting appropriate Ising variable functions for {f;}.
Among them, upon setting {f;}=1, Egs. (9) and (10)
reduce to

of=(uf) = (exp ) Fitx)

D 3 Jijuj
]

x=0

=L(D)Fo(x) | x=o+HK (D)F(x) | x —o (16)

and

J

x=0

=K (D)Gy(x) | x—o+HL(D)G(x) |x—o, (17

where the last lines of Egs. (16) and (17) were derived by
expanding F;(x) and G;(x) with H and retaining terms
linear in H. The functions Fy(x) and Gy(x) are given by
setting H =0 into F;(x) and G;(x). The functions Fi(x)
and G,(x) are defined by

—  OFi(x)
F|=
oH |y,
and
- aG,(X)
G,= .
oH H=0

Now, in a quenched random-bond magnet, the disorder
lies in the exchange bonds; the equations given above are
then the expressions for a particular configuration of ex-
change bonds, and hence it is necessary to take the ran-
dom average ( --- ), over all possible bond configura-
tions. However, it is clear that, if we try to treat exactly
all the spin-spin correlations present in Egs. (16) and (17),
and to perform properly the configurational averages
which are still to be done, the problem becomes

1 4
32

1 & z . .
o0 > X ({filuivsni s ) sinh(DJ; ) sinh(DJ; 1 )
Yé=16=s

(14)

4
8[[ sinh(DJ; , 5)
=1

CUfi b bl o 1af 460
=1 65(=5) 8" (£5,8)

X sinh(DJ; ,5) sinh(DJ; +8) sinh(DJ; , )

x[ [l coshDJi p], (15)

1(+£5,8,8")

mathematically intractable. We shall therefore proceed as
follows; as discussed in the previous works,'>*1° we take
the configurational average of both sides of Egs. (16) and
(17), then completely decouple the multispin-correlation
functions, namely

Cpipd - pil,=CuiN, e, - Kpid,

and use the fact that the distribution laws associated with
different bonds are independent of each other. Within
these approximations it is clear that the strict criticality of
the system is lost (in particular, the critical exponents are
going to be the classical ones, and the real dimensionality
of the system is only partially taken into account through
the coordination number z). Nevertheless, the present
framework is, as already mentioned in a number of
works,'>»!41% quite superior to the standard MFA; this
point has been verified in several models'>!° and, for the
present one, will be exhibited further on.

For the ferromagnetic square lattice with random
nearest-neighbor interactions, the averaged magnetizations
then satisfy, upon using Eqgs. (14) and (15),

m*=(o}),
=44 ,m*+44,(m**+ H[B,+6B,(m?*?+B;(m*?*

18
and 18

m*=(o7),
=C,4+6C,(m*?*+C3(m?* for H=0, (19)

where the coefficients 4; (i =1,2), B; (i =1-3), and C;
(i =1-3) are given by

A =[{cosh(DJ;; 5)),]’(sinh(DJ;; 4 5)),Fo(x) | x =0 »
A,=[(sinh(DJ;; ;5)),1*(cosh(DJ;; ;5)),Fo(x) | x =0 »
By =[{cosh(DJ;; 1§)),1*F{(x) | x =0 ,
B, =[{cosh(DJ;; ;5)),1*[(sinh(DJ;; ,5)),]?

XF(x)| x=0 »
B3 =[(sinh(DJ;; ,5)),1*F1(x) | x =0 ,
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and (20)
Cy=[{cosh(DJ;; 5)),1*Go(x) | x =0 »
C,=[{cosh(DJ;; +5)), [ {sinh(DJ;; ;5)),]

XGo(x) | x=0 »
C3=[(sinh(DJ;; +5)),]*Go(x) | x =0 -

In the Ising model with a transverse field, at high tem-
peratures the S* components are disordered, and at tem-
peratures below a critical value 7, an ordered phase is set
up with m?s£0, although in all temperature regions there
exists an order with m*s£0. Therefore, it is interesting to
study the behavior of the initial parallel susceptibility in
connection with the phase change. The initial parallel
susceptibility X, is defined by

om?
3H ] . (21)

X n= lim
H—0
In this section we have discussed the effective-field
theory with correlations in a transverse Ising ferromagnet
with random bonds. In the following sections, for simpli-
city, we shall study the thermodynamic quantities of the
amorphization of the transverse Ising ferromagnet in a
square lattice using this framework.

III. AMORPHIZATION OF THE FERROMAGNETIC
SQUARE LATTICE

By means of Eq. (2), the random-bond averages are
then given by

(cosh(DJ;; ,5)), =cosh(2DJ8) cosh(DJ) ,
(22)
(sinh(DJ;; , 5)), =cosh(2DJ8)sinh(DJ) ,

where the parameter 6 is defined by §=AJ/2J. As men-
tioned in Ref. 13, the result (22) can also be obtained by
using the so-called “lattice model” of amorphous mag-
nets. In the model, the parameter 8 is called the structur-
al fluctuation and measures the amount of fluctuation of
the exchange interactions coming from the structural dis-
order in amorphous magnets.

For H=0 the averaged magnetization m?* in the
amorphization of the ferromagnetic square lattice is given
by, from Eq. (18),

1—44, |2

44,

m*=

(23)

On the other hand, the averaged transverse magnetiza-
tion m* can be evaluated from Eq. (19), upon substituting
Eq. (23) into it. Therefore, the critical ferromagnetic
frontiers can be derived from the condition

44,—1=0, (24)

by which the phase diagrams and transition temperatures
can be determined as functions of Q; = and 8. Then, by
applying a mathematical relation e®?f (x)=f(x +a), the
coefficients 4;, B;, and C; in Eqs. (23) and (19) can be ex-
pressed as a sum of the functions Fy(x), F(x), and G(x)
with an appropriate argument x. For instance, the coeffi-
cient A4, is given by

Ay =(5){Fo(4J +8J8)+4F(4J +4J8)+6F(4J) +4F (4] —4J8) + F,o(4J —8J8)
+2[Fo(2J +8J8)+4F,(2J +4J8)+6F,(2J)+4Fo(2J —4J8)+ Fo(2J —8J8)]} . (25)

Differentiating both sides of Eq. (18) with H, we obtain
the initial parallel susceptibility as
B, +6B,(m*+ B3(m?*)*

I 1-44,—124,(m??

(26)

We are now in a position to examine numerically the
physical properties of the amorphization of the Ising fer-
romagnetic square lattice with a transverse field. The nu-
merical results will be given in the next section.

IV. NUMERICAL RESULTS
AND DISCUSSIONS

In this section the effects of a transverse field on the
physical properties of the amorphization of the ferromag-
netic square lattice are studied numerically. Before dis-
cussing the effects, however, it will be worthwhile to ex-
amine the pure Ising ferromagnetic square lattice with a
transverse field within the present formulation, in order to
clarify our results and compare them with those obtained

from the MFA and other methods. Therefore, in Sec.
IV A we show the numerical results for the pure Ising fer-
romagnetic square lattice with a transverse field, and then
the effects of a transverse field on the amorphization are
examined in Secs. IVB and IV C. In particular, some new
phenomena for the amorphization are obtained in Sec.
IVC.

A. Pure case

As has been discussed by many authors, when Q in-
creases from zero, the transition temperature T, falls
from its value in the Ising model and reaches zero at a
critical value Q.. Therefore, in order to compare our re-
sult with those of other works, the critical temperature is
plotted against transverse field  in Fig. 1 by solving Eq.
(24) for the pure system with §=0. In Fig. 1 the results
obtained from the MFA, the high-temperature-series ex-
pansion (SE),” and the renormalization-group® (RG) re-
sults are also depicted. For comparison, the critical
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FIG. 1. Transition temperature for the pure (§=0) square
lattice plotted as a function of transverse field . EFT denotes
the result for the present approximation. For comparison, the
standard molecular-field approximation (MFA), series expan-
sion (SE), and real-space renormalization-group (RG) results are
also plotted.

values of {2, obtained from such methods are collected in
Table I. As seen from the figure, within the present for-
mulation, near the critical transverse field we obtain a
considerably more pronounced rate of decrease of T, with
) than the corresponding decrease predicted by SE. The
result comes from the starting formulas (3) and (4) we
took; in deriving (3) and (4) we introduced a decoupling
approximation (A6) (see Appendix), as if the contribution
from the transverse field could be treated as a “mean-
field” type of contribution. However, the overall behavior
of our result (EFT) is considerably better than that of RG,
in comparison with those of SE. Moreover, for the spe-
cial case of the pure Ising model (2=0), Eq. (24) reduces
to

BJ

tanh(BJ)+-2 tanh BN ]=2 , 27

which is nothing but the equation obtained from the Zer-
nike approximation,?! as discussed in Refs. 13 and 19.
The transition temperature of (27) is determined to be
4kpT,./J =3.0898, which is to be compared with the ex-
act result 4kpT./J=2.2692,> as well as 4kyT,/J
=2.8854 of the Bethe-Peierls approximation (the MFA
leads to 4kpT./J =4). Thus, the present formulation
based on the approximate relations (3) and (4) is expected
to give fairly good results for small values of . In the
following, therefore, the numerical results are obtained for
the values of Q less than Q..

In Figs. 2 and 3 the thermal behavior of the longitudi-
nal and transverse magnetizations (o and o*) and the ini-
tial parallel susceptibility are presented for some values of
Q, by solving Egs. (23), (19), and (26) with §=0. The re-

TABLE 1. Critical values of Q.
RG EFT SE MFA
Q. /J 0.77 1.37 1.52 2.0

140

JXu(T)

AN\
’)\\\20

1.0

ReT/J

FIG. 2. Thermal behavior of longitudinal magnetization o*
tsolid line) and initial parallel susceptibility X| (dashed line) for
the pure (§=0) ferromagnetic square lattice with selected values
of Q: (a) 2=0.1J, (b) 2=0.3J, (c) 2=0.5J, (d) @=0.7J, and
(e) 2=0.9J

sults clearly show that the larger the transverse field, the
smaller the longitudinal magnetization o% the role of the
transverse field is essentially to inhibit the ordering of the
S* component. Thus, the values of the initial parallel sus-
ceptibility and transverse magnetization o* increase even
at T =0, upon increasing the value of Q. The initial
parallel susceptibility diverges at each transition tempera-
ture, in connection with the phase transition.

§=00

o 05 Re T/ 10
FIG. 3. Thermal behavior of transverse magnetization o™ for
the pure (6=0) ferromagnetic square lattice with the corre-
sponding values of Q in Fig. 2: (a) 0=0.1J, (b) 2=0.3J, (c)
01=0.5J, and (d) =0.7J.



33 AMORPHIZATION OF THE ISING FERROMAGNET WITHA . .. 531

GH(T)

ox(T)

° ReT/J

FIG. 4. Thermal dependences of longitudinal and transverse
magnetizations (o and ¢o*) for the pure (§=0) ferromagnetic
square lattice with (a) 2=0.1J and (b) 2=0.3J. The solid lines
are the results of the MFA and the dashed lines are the present
results (EFT).

In Fig. 4 the MFA results (o” and 0*) for two selected
values of Q (=0.1J and 0.3J) are shown for the sake of
comparison. As seen from the figure, the present results
for o* are qualitatively different from the MFA behavior;
below the transition temperature of o* the transverse mag-
netization o* is very sensitive to temperature, in contrast
with the constant behavior predicted by the MFA, namely
Eqgs. (7) and (8). Our effective-field results should be com-
pared with the Monte Carlo calculations reported by
Prelovsek and Sega?® for the special case of spin o, which
show similar behavior (see Fig. 3 of Ref. 23).

B. Amorphization

In a series of works!® we have studied the amorphiza-
tion of the Ising ferromagnetic square lattice with Q=0.

ReTc/J

[¢] [eX] 0.2 03 04 05

8

FIG. 5. Phase diagrams in the ( 7,58) space for the amorphi-
zation of the transverse Ising ferromagnetic square lattice with
selected values of Q: (a) 2=0.1J, (b) 2=0.3J, (c) 2=0.5J, (d)
0=0.6J, (e) 2=1.0J, and (f) @=1.2J. The dashed line is the
result for =0 (Ref. 13).

In this subsection we will investigate the effects of a
transverse field on the amorphization.

By solving Eq. (24), the critical frontiers in the (T,8)
space are plotted in Fig. 5 for selected values of Q. In a
series of works with no transverse field,'> we discussed
that two possible different values of T, exist for a given
value of 8 in the range 0.5 <8 <0.565 (the dotted curve in
Fig. 5); for 8> 0.5 one bond in (2) becomes negative, so
that the effect of frustration may appear in the system. If
we admit the existence of a spin-glass phase slightly below
the two T.’s, the result may support the reentrant
phenomenon, that is, the transition from the spin-glass
phase to the paramagnetic phase passing through the fer-
romagnetic one is possible. On the other hand, as seen
from Fig. 5, the possibility of the reentrant phenomenon
is at first preserved for small values of Q, but it disap-
pears at a value near =0.6J; if the reentrant
phenomenon exists in a system, the result implies that
when we apply an appropriate transverse field to the sys-
tem, there exists a critical transverse field at which the
reentrant phenomenon disappears.

By solving Eq. (23), the thermal behavior of m? for two
systems with 2=0.1J and 1.0J is depicted in Figs. 6 and
7, upon changing the value of 8. As seen from Fig. 6, for
the system with §=0.55 in Fig. 5, the magnetization,
which does not exist until a certain temperature, starts to
increase, passes through a maximum value, and decreases
to zero with increasing temperature; as mentioned above,
the reentrant phenomena may be obtained for Q=0.1J,
although it is impossible for Q=1.0J, as shown in Fig. 7.

In Fig. 8 the reduced magnetization curves of m?* are
depicted for the two systems (2=0.1J and 1.0J). For the
small value of Q (Q2=0.1J), as observed in the amorphi-
zation of Ising ferromagnets with ©=0,' the reduced

1.0 Q:=01J

I

(o] 03 0.5

ReT/J

FIG. 6. Thermal dependences of the average magnetization
m?* for the amorphization of the ferromagnetic square lattice
with 2=0.1J: (a) §=0, (b) §=0.3, (c) §=0.4, (d) 6=0.45, (e)
8=0.495, (f) 6=0.5, and (g) §=0.55.



532 T. KANEYOSHI 33

m#(T)and M X(T)

° 05 ReT/g
FIG. 7. Thermal dependences of the averaged magnetizations
m? (solid line) and m* (dashed line) for the amorphization of
the ferromagnetic square lattice with Q=1.0J: (a) §=0.0, (b)
86=0.25, (c) §=0.35, and (d) §=0.55.

magnetization curve falls below that of the corresponding
crystalline ferromagnet with =0 upon increasing the
structural fluctuation 8 (except §=0.5, which corresponds
to bond dilution), a phenomenon which is, in general, ob-
served in amorphous ferromagnets.!! For the large value
of Q (2=1.0J), however, the behavior is completely dif-
ferent from that for the small value of Q; the reduced
magnetization curve (§=0.35) is above that of §=0.

By solving Egs. (23) and (19), in Figs. 9 and 7 the
thermal dependences of m* are depicted for the two sys-
tems (2=0.1J and 1.0J), upon changing the value of 6.
The curve labeled 6=0.5 in Fig. 9 corresponds to the

mz (T)/m2(0)

0.5

FIG. 8. Reduced magnetization curves of m? for the two sys-
tems with Q=0.1J (solid line) and Q= 1.0J (dashed line).

bond-diluted system with the bond concentration p =+.
Curve (d) in Fig. 7 decreases monotonically with increas-
ing temperature, since the system is in the paramagnetic
state for whole temperature range.

In Fig. 10 the thermal dependences of the initial paral-
lel susceptibility (or inverse parallel susceptibility) for
Q=0.1J are shown by solving Eq. (26) for the corre-
sponding values of 8 in Fig. 6. Above the transition tem-
perature the inverse parallel susceptibility changes almost
linearly with temperature, except for the very narrow re-
gion near T, independent of the value of & we take. On
the other hand, in Fig. 11 the thermal dependences of the
inverse parallel susceptibility for Q= 1.0J are depicted for
the corresponding values of 8 in Fig. 7. For a large value
of Q, however, the deviation from linearity in the vicinity
of T, is more clearly observed than that for a small value
of Q, when the structural fluctuation 6 increases. Such a
deviation from linearity in the vicinity of 7, was also ob-
served in the bond- (or site-) diluted Ising model with a
transverse field.” Curve (d) in Fig. 11 corresponds to the
paramagnetic phase, so that the inverse parallel suscepti-
bility does not go to zero.

As shown in Figs. 6 and 10, the thermal behavior of m?*
and X expresses some characteristic behavior when the
structural fluctuation & increases from §=0.4 to §=0.5.
For instance, the curve labeled §=0.495 in Fig. 6 at first
decreases rather rapidly from the saturation value at
T =0, and then follows the curve of §=0.5. This type of
behavior was also seen more clearly in the amorphization

015

m%(T)

0.05

ReT/g '°

FIG. 9. Thermal dependences of m* for the system Q=0.1J
with (a) §=0.1, (b) §=0.3, (c) §=0.4, and (d) §=0.5.
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of the Ising ferromagnet with Q=0 (Ref. 13) or in the
bond-mixing Ising ferromagnet with Q=0 (Ref. 24); in
the bond-mixed Ising ferromagnet, the probability distri-
bution function P (Jj;) is, instead of (2), given by

P(Jy)=P8(J;j —))+(1-P)8(J;;—J") ,

where P is the concentration of the bond mixture. When
we define a parameter a as a=J'/J, the amorphization
discussed in this work corresponds to P =3 and

_1-28

=1+2

As mentioned above, 8=0.5 just corresponds to the
bond-dilution problem at P =+. That the structural fluc-
tuation 8 is near the value of §=0.5 indicates a mixture
of very weak bonds in the system. Therefore, the charac-
teristic behavior of m? seen in the curve labeled §=0.495
implies that two types of spins exist, the weakly coupled
spins and the spins in the infinite cluster. As discussed in
the previous work with Q=0,2* the existence of weakly
coupled spins in the infinite strongly coupled cluster has
shown some particularly interesting behavior of the ther-
modynamic quantities. In the following we investigate
the effect of a transverse field on the characteristic
behavior of some thermodynamic quantities, namely long-
itudinal and transverse magnetizations (m? and m*) and
the initial parallel susceptibility.

C. New phenomena

Now, let us investigate in detail the system with
0 =0.1J for values of 6 in the ranges 0.4 <8 <0.5 and
8>0.5 since, as shown in Fig. 5, the critical frontier in
the (T,8) space becomes narrow upon increasing the value
of Q, and for a value larger than =0.6J it is impossible
to find the ferromagnetic phase in the vicinity of §=0.5.

As shown in Fig. 12, when the value of 8 (a) changes
from §=0.4 (a=+) to §=0.5 (a=0), the longitudinal
magnetization m? rapidly decreases from the saturation
value at T =0 and then follows the magnetization curve
of §=0.5 (a=0); as mentioned above, the result implies
that two types of spins exist, the weakly coupled spins and
the spins in the infinite cluster. The initial susceptibility
diverges at each critical temperature. However, when the
value of & (a) changes from §=0.4 (a=7) to 6§=0.5
(a=0), the initial susceptibility exhibits a peculiar
behavior below its critical temperature, in connection with
the characteristic behavior of m? for instance, the curve
labeled (c) expresses a maximum and a minimum below
its critical temperature. Moreover, the behavior of m* for
Q=0.1J is depicted in Fig. 13. As shown in the figure,
the transverse magnetization m* also expresses a charac-
teristic behavior below each transition temperature of m?
in particular, the results labeled §=0.42 and 0.45 show
weak minima below the transition temperatures. Thus, as
discussed in the previous works with 2=0,'3?* the pecu-
liar behavior of magnetization and susceptibility is closely
related to the appearance of the weakly coupled spins in
the system, upon decreasing the value of a toward zero,
although the effects of a transverse field on the quantities
are very different from those of systems with Q=0.

J XulT)

20}

ReT/J

FIG. 10. Thermal dependences of X, (solid line) and Xj;'
(dashed line) for the system Q=0.1J with (a) §=0.0, (b) §=0.3,
(c) 8=0.4, and (d) §=0.45.
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FIG. 11. Thermal dependences of Xjj' (solid line) and X,
(dashed line) for the system Q=1.0J with (a) §=0.0, (b)
8=0.25, (c) $=0.35, and (d) §=0.55.
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40

J X u(T)
m*(T)

105

FIG. 12. Averaged magnetization m* (dashed line) and paral-
lel susceptibility (solid line) versus temperature for the system
0=0.1J with (a) §=0.43, (b) §=0.46, (c) §=0.48, (d) 6=0.49,
and (e) 5=0.5.

As discussed above, when the value of 6 becomes larger
than 0.5, one bond in (2) becomes negative. The effect of
frustration starts to appear in the system with small
values of ; as shown in Fig. 5, the reentrant phenomenon
is obtained, for instance, for the system =0.1J with
8=0.55. Therefore, in Fig. 14, the thermal behavior of
m?*, m?*, and the inverse parallel susceptibility is depicted

m=(T)

005

ReT/J

FIG. 13. Averaged magnetization m* versus temperature for
the system Q=0.1J with (a) §=0.42, (b) §=0.45, (c) §=0.48,
and (d) 6=0.49.

0.5
/
/ _
/=
/) E
/ =
- / &
= / >
- /
/o
/
/ 1025
/
/
/
0
ReT/J 8

FIG. 14. Thermal dependences of m* (solid line) and Xjj'
(dashed line) for the system Q=0.1J with §=0.55. The
behavior of Xjj' for the system Q=0.1J with §=0.5 is also de-
picted.

for the system =0.1J with §=0.55. The initial suscep-
tibility diverges at two transition temperatures at which
the magnetization m? starts to appear. The transverse
magnetization m* exhibits two kinks at the transition
temperatures of m?.

Finally, the thermal behavior of m* and X, for
0 =0.1J are depicted in Fig. 15 for selected values of §,
namely 0.6, 0.8, and 1.0, for which the magnetization m?*

0.3

-10.2

m% . T)

RaT/J

FIG. 15. Thermal dependences of Xﬁ' (dashed line) and m*
(solid line) for the system Q=0.1J with §=0.6, 0.8, and 1.0.
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reduces to m?=0. As seen from the figure, even if
m?*=0, the initial susceptibility expresses a peculiar
behavior for §=0.6 and 0.8, although the transverse mag-
netization m* decreases monotonically with temperature;
the resylts for §=0.6 and 0.8 may be related to the reoc-
currence of reentrant phenomena. In fact, the result of X
for §=0.1 does not express such a behavior and is similar
to curve (d) in Fig. 7.

V. CONCLUSIONS

In this work we have studied the amorphization of the
Ising ferromagnetic square lattice with a transverse field
by starting from relations (3) and (4) and using the
effective-field theory with corrections introduced by the
present author. In Secs. II and III we have proved that
relations (3) and (4) derived approximately give fairly nice
results, especially for small values of , and thermo-
dynamic quantities beyond the MFA can be obtained.

In this work some interesting effects on the amorphiza-
tion for the transverse Ising ferromagnetic square lattice
arise in the thermal behavior. As far as we know, the re-
sults obtained in Sec. IV C are the first. The longitudinal
magnetization may exhibit reentrant phenomena only for
small values of 2. Upon increasing the structural fluctua-
tion §, the reduced magnetization curves for a small value
of  fall below those of the corresponding crystalline fer-
romagnet with §=0, a phenomenon which is generally ob-
served in amorphous ferromagnets with Q=0. However,
for a large value of (2, the behavior of the reduced mag-
netization curve is different from that for a small value of
Q. For a value of § in the range 0.4 < <0.5, the longitu-
dinal magnetization for a small value of  indicates the

J

TrSi” exp( — BX;)

eventual coexistence of weakly coupled spins in the infin-
ite strongly coupled cluster. In the range of 8, the initial
parallel susceptibility for a small value of () exhibits a
peculiar behavior below the transition temperature of m?,
in connection with the existence of weakly coupled spins.
Thus, we would like to propose that a number of interest-
ing phenomena may be included in the effect of a trans-
verse field on the amorphization of a crystalline Ising fer-
romagnet, although at the present time we do not have
any experimental observation.

APPENDIX

In this appendix, we derive Egs. (3) and (4) following
Ref. 16. The expectation value including the longitudinal
or transverse spin operator at a site i is given by

C{fi)SF) =Tr[{f;}SF exp( —B#)]/Trexp(—BH#)] ,
(A1)

where a=z or x. The total Hamiltonian given by (1) can
be separated into two parts,

H=H,+X", (A2)
where J7; includes all parts of # associated with the lat-

tice site i,

= — SF—Q,S*, (A3)

H+ Ji;S}
i

and ' represents the remaining part of the Hamiltonian
and does not contain spin variables on the site i. By not-
icing that #; and #°' do not commute, we can obtain the
following result for the expectation value,

<{fi}Sia)=<{fi] Tr[,-]S,f'exp(—Bﬁfi)>_<{ :

Tr;) exp(—B¥;)

with

A=1—exp(—BH;)exp(—BH¥')exp[B(H¥;+X"')],

Tr“} exp( —BZ’,)

K> , (A4)

(AS)

where Tr(;; means the partial trace with respect to lattice site i.
Equation (A4) is an exact relation, although it is difficult to deal with owing to the presence of the second thermal
average. Accordingly, let us introduce an approximation as follows:

Tr;)Si” exp( — B¥;)

Tr;Si" exp( — BF;)

<{f'] Try;y exp(—BF;)

—s¢ ]K)e({m

from which we can obtain a relation

(A7)

Tr 1 S% exp( — B,
({f.-}S,")=<[fi} r(i)Si” exp( ,g;f')>

Try;) exp(—B#;)

The decoupling (A6) can then be viewed as a zeroth-order
approximation of the exact relation. In other words, (A7)

TI'“] exp( —By,)

-8 )(Z) , (A6)

can be assumed to be obtained from the approximation
((fi}(SF—sP =0, (A8)
where
Sa_ Tr(; S exp( — B¥;)
Tr(;) exp(—B¥;)
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