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Magnetoplasmons in a two-dimensional electron fluid: Disk geometry
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A hydrodynamic model is used to study the magnetoplasma modes of a two-dimensional electron
fluid confined to a thin circular disk and screened by two parallel grounded planes. For arbitrary
values of the screening parameter, the equations are reduced to a single integral equation that is
solved by expanding in a complete set of polynomials. The smallest resulting eigenfrequency for
each angular quantum number represents the corresponding edge mode for this geometry.

I. INTRODUCTION

Recent experiments' on two-dimensional (2D) elec-
tron systems have found a new and unexpected magneto-
plasma mode. In contrast to the bulk resonance modes
whose squared frequency increases linearly with the
squared cyclotron frequency, these anomalous modes have
a frequency that decreases with increasing magnetic field.
Theoretical analyses suggest that these modes are lo-
calized at the boundary of the 2D system, and they have
therefore been called "edge modes" 4 or "perimeter
waves. "

In practice, comparison between experiment and theory
is complicated by several special features. Most impor-
tant is that the electrons on the surface of liquid He are
not charge compensated and thus require external electric
fields to maintain their equilibrium configuration. As a
result, the actual system contains electrodes above and
below the surface of the He; for simplicity, these can be
take as grounded and symmetrically placed a distance h
from the liquid's surface. A second important feature of
the geometry is the lateral dimension R of the electron
fluid. Much of the previous theoretical analysis has as-
sumed a semi-infinite halfplane, ' but this idealization
may allow charge flow from infinity, in contrast to the
fixed total charge of the actual bounded 2D system. Thus
the effect of finite R must be included, and the ratio h /R
determines the character of the magnetoplasma motions.
For h/R ~~1, the electrodes are unimportant and the
motion can be considered unscreened. For h/R «1,
however, the electrodes screen the electrostatic interaction,
significantly altering the dynamics; this latter limit is easi-
est to treat theoretically, but the actual physical configu-
ration involves important corrections arising from the
small but nonzero value of h/R. Consequently, detailed
analysis of the experiments has required considerable nu-
merical work.

The present paper provides an essentially exact treat-
ment of magnetoplasmons for a 20 electron Auid con-
fined to a disk of radius R. The single approximation is
to assume a uniform rigid charge-compensating positive
background, but the resulting formulation is valid for ar-
bitrary values of the dimensionless ratio h/R, allowing a
uniform study of the effect of screening by the grounded
electrodes. Section II formulates the problem and reduces

it to a single integral equation for the induced electron
density. An expansion in a suitable complete set of poly-
nomials (Sec. III) yields an equivalent matrix problem, in-

volving coefficients that are either known explicitly (for
h/R=O or ao) or readily calculated as one-dimensional
numerical integrals. A truncation scheme is studied in
Sec. IV, where the properties of the magnetoplasma
modes are studied in detail. Comparison with the exact
results for h/R=O supports this approximation scheme.
Section V considers the special features associated with
axisymmetric modes,

II. GENERAL FORMULATION

Consider a thin disk of radius R, placed in a perpendic-
ular magnetic field B. The disk contains a rigid positive
background with areal charge density eno and a compres-
sible electron fluid with areal charge density —e(no+ n),
where n is a small perturbation with a time dependence
e '"'. Charge neutrality requires that the integral of n

over the disk vanish. It is natural to introduce cylindrical
polar coordinates ( r, P,z), with the disk placed symmetri-
cally in the x-y plane. In addition, assume two infinite
grounded planes parallel to the disk and located at z =h i
and —h2. I use an undamped linearized hydrodynamic
model for the constitutive equations characterizing the
conservation of particle number and momentum:

icon+noV v=o

icov+s no—'Vn —em 'V4 ~0
—co,zXv=O. (2)

Here, v is the local velocity in the x-y plane, 4
~ 0 is the

electrostatic potential evaluated at the plane of the charge
(z=O), co, =eB/mc is the cyclotron frequency, s is an ef-
fective wave speed obtained from the compressibility of
the fiuid, and the gradients in Eq. (2) involve only the x
and y components. It is easy to see that the vertical com-
ponent of vorticity 0 V&& v is proportional to co„so that
the presence of a static magnetic field qualitatively alters
the hydrodynamic flow. A little manipulation readily
leads to the single dynamical equation

V2(noem '4
~ o—s n)+(co, to2)n =0, —

relating the electron density n and the electrostatic poten-
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tial 4
~ 0 at the plane of the disk, where V2 is the 2D La-

placian.
The remaining dynamical equation comes from

Maxwell's equations, which will here be treated in the
electrostatic (nonretarded) limit. Assume that uniform
dielectric materials surround the plane z=0, with dielec-
tric constants e~ and e2 above and below, respectively.
For z&0, the electrostatic potential satisfies Laplace's
equation, and it obeys the usual boundary conditions that
4 be continuous and that its normal derivative have the
following discontinuity at z= 0:

B4 B4
E) —ez 4~en——8(R r), —

'Bz o+ Bz o—
(4)

where 8 denotes the unit step function.
The axial symmetry of the problem allows the classifi-

cation of the normal modes according to the angular
dependence e"~, where 1 is an integer. The modes with
1=0 require a slightly different treatment (Sec. V), so that
the analysis in Secs. II—IV will assume 1&0. For z&0,
Laplace's equation becomes

r

1 8 8 I' 8'
r ——+ 4(r z)=0.

r ar Br r2 Bz2

1

x Bx ax

2

Q04 — N +(co~i co —)N =0,
R2

where Qo is a characteristic frequency given by

z 4nnoe tanh(h/R)
n02

mR (1+e)

(1 la)

(1 lb)

These last equations constitute a set of coupled integro-
differential equations for the two functions 4(x) and
N(x). Note that 4 is defined for all positive x, whereas
N (x) is defined only for 0 & x & 1. It is sufficient to solve
Eqs. (10a) and (1 la) for x & 1, however, because the poten-
tial for x ~ 1 then follows directly from Eq. (10a).

In addition, it is necessary to impose a boundary condi-
tion at the edge of the disk, and I assume that there is no
net flux of charge across the boundary, taking U, =O at
x =1 . Straightforward manipulations with Eqs. (1) and
(2) lead to the explicit condition

K(x,x') =coth(h/R) f dp tanh(ph/R)J~(px)Ji(px') .

(lob)

In terms of the same variables, Eq. (3) becomes

Take a Hankel transform in the variable r:

4(p,z)= dr re(pr)4(r, z) .
0

co + leo, Qok — N
3 2

s~

R' (12)

This function obeys the ordinary differential equation
(z&0)

r

—p 4(pz) =0
z2

(6b)

along with the boundary conditions that it vanish at
z =h ~ and —h 2. A combination with the Hankel
transform of Eq. (4} readily yields the explicit solution

4(p, z =0)= 4men(p)— .

p [ei coth(ph i )+e2coth(ph2)]

where

(7a)

In this way, the "density" N(x) determines the potential
4(x) through a nonlocal integral relation

C(x)+ J dx'x'K(x, x')N(x') =0,
where the kernel is real and symmetric,

(10a)

R
n(p)= f dr rJI(pr)n(r) (7b)

is the Hankel transform of the electron density. The in-
verse Hankel transform then gives the desired expression
for the potential at the plane of the disk

4(r) =—4(r, z =0)= f dp pJi(pr)4(p, z =0) .

For simplicity, I specialize to a symmetrical geometry
(hi ——h2 ——h), with liquid He below (ei ——e) and vacuum
above (e, =1), and introduce dimensionless units x =r/R
and the quantity

N(x)=4neR(1+e) 'n(r)tanh(h/R) .

K(x,x')= f dp JL(px)JI (px'),

Qo 4anoe /——mR(1+e) .

(13a)

(13b)

This integral can be evaluated, but its explicit form is un-
necessary here. In contrast, the fully screened limit
(h/R «1) yields

K(x,x') = f dp pJi (px)JL(px') =x '5(x —x'), (14a)

Q0=4nnoe h/mR (1+. e)=cz/R- (14b)

where c~ is the characteristic wave speed introduced in
Ref. 3. Since the integral kernel now reduces to a 6 func-
tion, the interaction in the fully screened limit becomes lo-

which completes the specification of the problem. It is
notable that Eqs. (10) and (11) are invariant under the
separate transformations l~ —1 and co,~—co„so that
the basic dynamical equations do not distinguish right
and left helicity. In contrast, the boundary condition (12)
is invariant only under the simultaneous sign reversal of
both 1 and co, . Furthermore, the appearance of co in Eq.
(12} renders the problem non-self-adjoint. These features
imply that a finite magnetic field will split the normal
modes, lifting the degeneracy in

~

co ~. To avoid the
need for absolute value signs, it is convenient to introduce
the notation I. =

~
1

~
and Q, =co, sgnl. It is clear from

inspection that Eqs. (10)—(12) can be rewritten directly in
terms of these new variables.

Before proceeding with the analysis, it is instructive to
examine the limiting forms for large and small values of
h/R. In the unscreened case (h/R &y 1},the hyperbolic
functions can be replaced by 1, leading to the approximate
expressions
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cal. As a result, 4 is proportional to N and hence van-
ishes for x p 1, suggesting that the limit ii /R =0 is singu-
lar. This simple proportionality between 4 and N permits
an exact solution for all normal modes in any applied
field. In particular, the fully screened zero-field plasma
oscillations have frequencies given by

CO= +CXlm Qo, (15)

and the two boundary conditions that 6 (O,x') be bounded
and that

t0 +LQ, 6 (x,x') =0.

With these definitions, Eqs. (11) and (12) together are
equivalent to the single equation

where aL~ is the nith zero of JL, (x). For a given Lvt=O,

which determines the number of wavelengths around the
circumference and hence identifies the azimuthal wave
number as L /R, the integer rn equals the number of radi-
al nodes plus l.

For an arbitrary value of h/R, Eqs. (11) and (12) have
the important feature that the same quantity appears both
in the boundary condition and in the differential equation.
This suggests recasting them in a single integral form that
automatically incorporates the boundary condition. To be
specific, introduce a Green's function 6(x,x'} that satis-
fies the differential equation on the interval [0,1)

x — 6 (x,x') =—x 5(x —x')1 e a L'
x Bx Bx

y(x, x') =(2L) '(xx')

g (x,x') =(2L) '(x
& /x & )

(19a)

(19b)

where x & and x & are the smaller and larger of x and x',
the full solution becomes

6(x,x'}= c
y(x,x')+g(x, x') .

CO+ c
(20)

Equations (10a) and (18) can now be combined to give a
single integral equation for N(x) that holds throughout
the interval 0 ~ x & 1,

1

(s/R)'N(x)+Qo f dx'x'll. (x,x')X(x')

—(co' —Q,') f dx'x'6(x, x')E(x') =0 . (21)

Any solution of this equation determines the correspond-
ing potential for all positive x through Eq. (10a).

It is evident that Eq. (21) constitutes an eigenvalue
problem, for solutions exist only for certain allowed fre-
quencies. In contrast to the usual Hermitian small-
amplitude problem, however, a combination with Eq. (20)
shows that the eigenfrequency appears both linearly and
quadratically for any finite magnetic field

Qo24(x) —(s/R) E(x)

+(c0 —Q, ) f dx'x'6(x, x')N(x') =0 . (18)

The explicit construction of 6 is straightforward.
With the definitions of the auxiliary functions

1

(s/R) N(x)+Qo f dx'x'E(x, x')N(x') (co Q, ) f—dx—'x'y(x, x')N(x') (co Q,—) f d—x'x'g(x, x')N(x')=0.

(22)

This unusual feature reflects the non-Hermitian character
of the problem for co,&0. As will be seen, the magnetic
field splits each degenerate normal mode. Thus the posi-
tive and negative frequencies represent distinct physical
motions with different phase velocities and can no longer
be combined to form standing waves. Equation (22) also
shows that the eigenfrequencies change sign under the
separate sign reversal of i or t0, (which reverses the sign
of Q, =co, sgnl), and that they are invariant under the
simultaneous reversal of both of them (which leaves Q,
unchanged).

III. REDUCTION TO A MATRIX
EIGENVALUE PROBLEM

Equation (22) reduces the problem to an integral equa-
tion over a finite domain, and there are several ways to at-
tempt a solution. In a previous study of magneto-
plasmons in a half-plane, ' the integral kernel analogous
to K was replaced by an approximate one that had the
same area and second moment, leading to an exactly solu-
ble model problem. Unfortunately, that approximation is
rather uncontrolled, for there is no simple way to improve
the solution systematically. Here, in contrast, I expand

+ , (L, +3)(L+4)x', —

and obey the following orthogonality relations:

dxx +'P' '(1 —2x )P' ' '(1 —2x )
0 J

(23)

= —,'5;i(L+2j+1) ' . (24)

I

the unknown function N(x) in a complete set of orthogo-
nal polynomials, reducing the basic equation to one in-
volving matrices; truncations that include successively
more terms should provide a systematic method to esti-
mate the accuracy of the procedure.

The basic question is the choice of the polynomials, and
it turns out to be convenient to use a special form of Jaco-
bi polynomials P~ 'o'(1 —2x ). For L=0, they reduce to
the usual I.egendre polynomials, and they can be con-
sidered suitable generalizations for L =1,2, . . . . They
have the following explicit form for j=0,1,2:

P' ' '(1 —2x2)=l,
P' ' '(1 2x )=L+1 (L—+2)x-
Pz' ' '(1 —2x )= , (L+1)(L+2)—(L—+2)(L+3)x



ALEXANDER L. FETTER 33

The reason for choosing this particular set of polynomials
is the following remarkable identity

].

dxx +'Ji(px)PJt ' '(1 —2x )=p 'JL+2J. +&(p),

metric and tridiagonal with nonzero elements

g;; = [4(L +2i)(L +2i +1)(L +2i+2)]

Si,i+] Ii+ 1,i

(33a)

(25)

which expresses its weighted definite integral with a
Bessel function as another Bessel function.

I now assume that the unknown function E(x) has an
expansion in this complete set

E(x)= g c~x PJ ' '(1 —2x )
j=0

where I c~ I is a set of coefficients to be determined from
Eq. (22). Direct substitution and use of Eq. (24) yields the
following set of linear algebraic equations:

2 . .s 5;,. 2+Q;J —(ro —0, ) y~j.
o 2R (L +21+1)

=[8(L +2i +1)(L +2i +2)(L +2i +3)] ' . (33b)

In this way, the original integral eigenvalue equation
has been reduced to a matrix equation with known ele-
ments. The eigenvalue condition for a solution is that the
determinant of coefficients in Eq. (27) vanish. A trunca-
tion that includes the first m terms in the expansion (26)
evidently yields a polynomial in co of order 2m. In zero
field, this system reduces to a polynomial in co of order
m, so that the corresponding roots occur in positive and
negative pairs. The application of a magnetic field splits
these roots, and I shall concentrate on the pair of modes
that develops from the smallest squared frequency in zero
field. These roots are the edge modes; the negative one
(for positive 0, ) is anomalous in that its absolute value
decreases for a large applied magnetic field.

(ri) —0—, }g;J c~ =0,2 (27)

IV. APPROXIMATE SOLUTION

involving the matrix

E"= dxx +' dyy +'P' ' '(1 2x )E(x—y)iJ 0 l

XP,{L"(1-2y'), (2

with similar definitions for y;J and g;i. Use of Eqs. (10b)
and (25) reduces. Eq. (28) to a single definite integral

EJ =coth(h /R) I dp p tanh(ph/R) Jl. +2;+,(p)

For simplicity, the dispersive correction associated with
the wave speed s in Eq. (2) will be omitted entirely, which
corresponds to studying the long-wavelength limit. '

Thus, I drop the term proportional to (s/R) in Eqs. (22)
and (27). The simplest approximation to the full matrix
equation is to retain only the lowest term in Eq. (26}. The
resulting determinant is a quadratic equation in ra:

(goo+ roo)oi' 2roo~—.oi &oof)—o (goo —yoo)fI—,' =o
XJL, +2)+i(p), (29)

whose limiting values are known' ' for h /R ~ ao,

PP JI.+2i+] P ~L. +2J+1 P

( 1)l —I+1

n.[4(i j)' 1](L + +ij +——,)(L—+ i +j + —, )

and for h /R =0,

ij= 0 ~~ JI.+2'+~ ~ JL+2j+

, 5~J.(L +2j+1)—

(30a)

(30b)

yoo
——[8L (L + 1) ] (31}

The remaining matrix g;J. is most simply evaluated with
the integral representation"

g(x,x')=(2L) '(x /x ) = f dpp 'JL(px)JL(px'),

and use of Eq. (25) then yields the result'2 that g;~ is sym-

The integrals for intermediate values of h/R can be
evaluated numerically with little difficulty.

In a similar way, Eqs. (19a}, (24), and the first of Eq.
(23) show that y;J vanishes unless i =j=O, in which case
it has the value

It is easy to see that the positive root increases monotoni-
cally with increasing field (assuming 0, ~0); the negative
root also increases initially in accordance with the con-
clusions of Refs. 1—4, but it reaches a maximum and then
decreases to —oo in the high-field limit (since
goo —yoo~O). This latter behavior refiects the present
severe truncation, and the inclusion of more terms shifts
this maximum to steadily higher fields. Such behavior is
to be expected, because the edge mode becomes more lo-
calized with increasing magnetic field, requiring many
terms in the polynomial expansion. Thus any finite trun-
cation will provide a better description for small fields
than for large ones. In fact, even the very crude approxi-
mation in Eq. (34) does surprisingly well at reproducing
the known zero-field value for complete screening
( h /R =0). For L= 1, for example, Eq. (34) yields
=1.8516 for the fully screened dimensionless frequency,
which should be compared to the exact value a~& -1.8412.
The corresponding approximate values for I.=2, 3, and 4
are all within a few percent of the exact ones.

Equation (27) with s=O has been solved in successive
approximations including 1, 2, and 3 terms in the expan-
sion. For the unscreened (h/R —woo) and fully screened
(h/R=O) cases, the exact values of E;J [Eq. (30)] were
used, and for other cases ( h /R =0.1, 0.2, 0.5, and 1.0), the
relevant integrals in Eq. (29) were evaluated numerically.
Figure 1 shows the results of a three-term truncation for
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V. AXISYMMETRIC MODES

The preceding sections considered only modes with an-
gular dependence, whose azimuthal nodes ensure that
there is no net induced charge density. The situation for
axisymmetric modes is slightly different, since the condi-
tion that the perturbation in the electron density n have a
zero integral over the surface of the disk now requires the
presence of at least one radial node. Thus, it is necessary
to reformulate the problem for L=0, as is clear from the
apparent divergence in the Green's function [Eq. (19)].

The basic analysis leading to Eqs. (10) and (11) remains
correct with 1=0, and the integral of the corresponding
Eq. (11a) over the surface of the disk leads to the condi-
tion (1=0)

G(x,x')=g(x, x')= —lnx& . (36a)

In this case, however, it is not possible to impose a boun-
dary condition at x =1, analogous to that in Eq. (17).
For this reason, Green's theorem must be used explicitly
to find the integral relation analogous to Eq. (18). For
simplicity, I consider only the limit (s/RQo) &&1, and a
straightforward calculation gives

Qo[4(x) —4(1)]+(co —co, ) f dx'x'g(x, x')N(x')=0,

(36b)

where the additional constant 4(1) arises from the altered
boundary condition on g(x,x') at the upper limit. A
combination with Eq. (10a) yields the final integral equa-
tion

1

Qo f dx'x'[K(x, x') E( l,x')]N(x')—
—(co —co, ) f dx'x'g (x,x')N(x') =0 (37)

that holds on the interval 0 ~ x ~ 1.
The derivation of the matrix eigenvalue problem is

similar to that in Sec. III, and the polynomials for /=0
are just the familiar I.egendre polynomials. To ensure the
conservation of charge, however, the expansion of the in-

&o'+'—
Ox

1

=(co —co, ) f dx'x'N(x') =0, (35)

where the right-hand side vanishes because of charge con-
servation. Thus this relation provides the appropriate
boundary condition for axisymmetric modes, which also
agrees with Eq. (12) if I is set equal to 0. Note that nei-
ther the frequency nor the cyclotron frequency actually
appears in the boundary condition (35). Thus they enter
only in the combination co —m, [see Eq. (11a)], ensuring
that all axisymmetric modes necessarily obey the usual
rule that the squared magnetoplasma frequency varies
linearly with the squared cyclotron frequency. Conse-
quently, axisymmetric modes have no anomalous behavior
of the sort found for l&0; as a corollary, all edge modes
or perimeter waves have angular dependence.

To proceed, it is first necessary to construct the Green's
function for 1=0, analogous to that for Eq. (16). A
straightforward calculation gives

duced electron density [the analog of Eq. (26)] omits the
constant term

N(x)= g cJPJ(1—2x ) .
j=l

(38a)

To find the linear algebraic equations that determine the
coefficients of the truncated basis, Eq. (37) is orthogonal-
ized to the same polynomials (a Galerkin procedure),
which gives

g [QpK" —(co —co )g"]c =0.
j=l

(38b)

A detailed analysis shows that Eqs. (29), (30), and (33)
remain correct for /=0, and the matrix elements are all
bounded since i and j now start from 1. Furthermore, for
any fixed value of h /R, the elements E;~ are simply relat-
ed to those evaluated previously for L =2.

As noted above, the magnetic field dependence of the
axisymmetric modes is trivial, and only the zero-field
plasma frequency needs to be determined. In the fully
screened case ( h /R =0), a three-term approximation gives
the lowest dimensionless zero-field frequency 3.83172,
which should be compared tc the exact value
Q'02= 3.831 71. As an additional check on the convergence
of the truncation scheme, the zero-field dimensionless fre-
quency of the lowest mode in the unscreened limit
(h/R~ao) was 1.8635 and 1.8610 for three and five
terms, respectively. For comparison, Fig. 1 includes the
field dependence of the lowest axisymmetric mode (shown
as dashed curves), which differs from the split behavior of
those for nonzero L. In addition, Fig. 2 includes the
dependence on h /R of the lowest axisymmetric zero-field
frequency (shown as a dashed curve).

VI. DISCUSSION

The present work considers the magnetoplasma modes
of a 2D electron fluid on the surface of liquid He confined
to a disk of radius R and screened by parallel grounded
planes a distance li above and below. For any fixed h/R,
it provides an exact reformulation in terms of a homo-
geneous integral equation that has solutions only for
discrete eigenfrequencies. An expansion in a complete set
of orthogonal polynomials yields an equivalent matrix
problem, and successively larger truncations allow a sys-
tematic study of the accuracy of the solutions. This ap-
proach holds for any value of the screening parameter
h/R; it differs from that of Ref. 3, which includes only
the leading correction in an expansion for small h /R. On
the other hand, Ref. 3 also considers the effect of spatial
inhomogeneity in the static electron density„which can be
important in obtaining quantitative fits to the measured
eigenfrequencies. A systematic experimental study of the
dependence on the ratio h /R would be of great interest.

As noted by %u et al. ,
' the rnagnetoplasma modes of

a layered array differ from those of a single 2D electron
fluid only in the specific form of the screening function.
Thus the present method also applies to a stack of identi-
cal disks, separated by a distance a with an insulating
dielectric between adjacent layers. In this case, the hyper-
bolic functions in Eqs. (10b) and (29) are replaced by



33 MAGNETOPLASMONS IN A TAO-DIMENSIONAL ELECTRON FLUID: . . .

s;„h(pa /R ) cosh(a /R ) —cos(q, a)
sinh(a/R) cosh(pa/R) —cos(q, a)

'

where q, is the wave number for propagation along the
axis of the system. In particular, if q, =O, this screening
function reduces to tanh(a/2R)coth(pa/2R), and the lim-
it a/R~O then yields the soluble behavior for three-
dimensional (3D) modes in a continuous cylinder [because
the integral kernel then is just the Green's function in Eq.
(32)]. The solution for general values of a/R and q, has
not been examined, but it presents no fundamental diffi-
culty.

A related geometry is a 2D electron fluid in a halfplane
placed between a pair of grounded planes or a stack of
such 2D electron fluids. References 4 and 16 construct an

approximate solution to the associated edge magneto-
plasmons with wave number q along the boundary, and
the Wiener-Hopf technique in principle provides the cor-
responding exact dispersion relation. Since this latter

method is cumbersome, however, it is important to note
that these problems can also be reduced to a single in-
tegral equation of the sort studied in Secs. II—IV. In par-
ticular, an expansion in a complete set of polynomials
again yields a matrix eigenvalue problem, but the conver-
gence with successive truncations is slower than for the
disk. This question is under investigation. It offers the
appealing possibility of an effectively exact solution for
any value of the screening parameter (which is now given
for a single layer by qh). Comparison with the approxi-
mate solutions ' will be most valuable.

ACKN0%'LED GMENTS

I am grateful to A. J. Dahm and D. B. Mast for valu-

able comments, and to J.-W. Wu for providing a copy of
Ref. 16 prior to publication and for helpful correspon-
dence. This research has been supported in part by the
National Science Foundation (NSF) through Grants No.
DMR-81-18386 and No. DMR-84-18865.

'D. B.Mast and A. J. Dahm, Physics 126&kc 457 (1984).
2D. B. Mast, A. J. Dahm, and A. L. Fetter, Phys. Rev. Lett. 54,

1706 {198S).
D. C. Glattli, E. Y. Andrei, G. Deville, J. Poitrensud, snd F. I.

B. Williams, Phys. Rev. Lett. 54, 1710 (1985).
4A. L. Fetter, Phys. Rev. B 32, 7676 (1985).
sC. J. Tranter, Integra/ Transforms in Mathematical Physics,

3rd ed. (Methuen, London, 1966), Chap. IV.
6See, for example, F. Sauter, Z. Physik 203, 488 (1967); A. R.

Melnyk snd M. J. Harrison, Phys. Rev. B 2, 83S (1970); and
A. D. Boardman, in Electromagnetic Surface Modes, edited

by A. D. Boardman (Wiley, New York, 1982), pp. 49—53. An
alternative approach is to take the view of macroscopic elec-

trodynamics snd require the usual boundary conditions on the
horizontal components of 0 snd E at the edge of the disk.
For r ~R, the conductivity tensor of the electrons is propor-
tional to 5{z) and thus dominates the effective dielectric ten-

sor 1+4'~ '~. The continuity of D, =(eE), at r =E. and
the singularity in o thus imply that (oE),=0 at the edge of
the disk, which is equivalent to the previous hnearized condi-

tion that v„=Oat r =R.
~A. L. Fetter and J. D. Walecka, Theoretical Mechanics ofParti

cles and Continuua {McGraw-Hill, New York, 1980), Sec. 43.
sWith the following trick [R. B. Laughlin (private "ommunica-

tion)], the problem can be reduced to a conventional but non-

self-adjoint eigenvalue problem. Equation (22} is an integral
equation of the form AN +cuBN =~2', where A, 8, and C

are integral operators. Define M =coCN —8% and introduce
the two-component vector V with components M and ¹

Straightforward manipulation reduces the problem to the usu-

al form PV=coQV, where P and Q are real 2X2 matrices,

with P explicitly not symmetric (¹.te added in proof. R.
Geller (private communication) has pointed out that P and Q
can be made symmetric if A, B, and C are self-adjoint [P.
Lancaster, Lambda-Matrices and Vibrating Systems (Per-

gamon, Oxford, 1968), Sec. 4.2].)
9The notation is that of M. Abramowitz and I. A. Stegun (edi-

tors) Handbook of Mathematical Functions, National Bureau
of Standards AMS No. 55 (U.S. GPO, Washington, D.C.,
1964), Chap. 22.

'tjIntegral Transforms in Mathematical Physics, Ref. 5, Chap.
VIII.

'~I. S. Gradsteyn and I. M. Ryzhik, Tables of Integrals, Series
and Products (Academic, New York, 1965), formula 6.512.4.

'2G. N. Watson, Theory ofBessel Functions, 2nd ed (Cambridg. e

University Press, Cambridge, England, 1966), Secs. 13.41,
13.42.

Tables and Integrals, Series and Products, Ref. 11, formula

6.538.2.
&4Handbook ofMathematical Functions, Ref. 9, p. 371.
5A. L. Fetter, Phys. Rev. B 33, 3717 (1986).

~6J.-W. Wu, P. Hawrylak, and J. J. Quinn, Phys. Rev. Lett. 55,
879 (1985).


