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The dispersion relations are solved for waves guided by a thin, lossy metal film surrounded by
media of dielectric constant €, and €;. For symmetric structures (€, =¢;), there are the usual two
Fano modes whose velocity and attenuation vary with film thickness. For very thin films, one of
these modes can attain multicentimeter propagation distances when A > 1 um. In addition, there are
two leaky waves which correspond to waves localized at the €, (or €;) dielectric-metal interface
whose fields decay exponentially across the metal film and radiate an angular spectrum of plane
waves into €; (or €, respectively). Both radiative waves can be interpreted as spatial transients,
which could have physical significance near a transverse plane. When €,54€3, there are still four dis-
tinct solutions for a given film thickness, two radiative and two nonradiative. For lossy films, there
are always two nonradiative solutions for thick enough films. As the thickness goes to infinity, the
four solutions reduce to two waves, each radiative and nonradiative pair becoming degenerate. The
physical interpretation of these solutions and their dependence on dielectric constant and wavelength
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are discussed.

I. INTRODUCTION

A well-known' —* property of materials which exhibit a
real negative dielectric constant is their capacity to guide
surface polaritons along their boundary with another
medium. A classic case is a metal in which such a dielec-
tric constant is a consequence of the coupling of an elec-
tromagnetic field to the more or less free (conduction)
electrons in the metal.>® An additional consequence of
this coupling to the electron gas is that mechanisms which
damp the electron gas oscillations, such as Drude damp-
ing, also manifest themselves in the dielectric constant in
terms of an imaginary component, i.e., €, = —eg —i€;.’
For a semi-infinite metal, this imaginary term leads to a
finite propagation distance for surface plasmon polari-
tons. For thin metal films, there is coupling between the
surface polariton waves associated with each boundary,
resulting in two mixed modes, called Fano modes, exhibit-
ing dispersion with film thickness."’~° Their dissipation
in the metal (€;540) also results in finite propagation dis-
tances for these two modes. In this paper we examine in
detail the surface polaritons guided by thin metal films.
We find a number of features that are characteristic of
“spatial transients.” Specifically, the usual symmetric
and antisymmetric branches each split into a pair of
waves, one radiative and the other nonradiative.

The propagation properties of surface plasmon polari-
tons traveling along the interface between semi-infinite
metal and dielectric media have been studied theoretically
by many authors.*”~? Although the goal of most exper-
iments has been to investigate the surface polaritons con-
fined to single boundaries, in practice it is usually surface
plasmons guided by metal films which are studied. Only
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in the infrared,>!°~ 12 A > 10 um, has it been possible to
launch surface plasmon polaritons along a single inter-
face, propagate them a useful distance and then couple
them back out into free-space radiation fields. For re-
gions where the dispersion curves depart from the light
line, i.e., as 0 —w, /V'2, various electron-loss techniques'>
have been used to study surface plasmons. Gratings'*
have also been widely used to excite surface plasmon po-
laritons. Probably the most popular experimental tech-
nique has been attenuated total reflection (ATR).* Light
incident in a high refractive index medium, usually a
prism, is tunneled via evanescent fields across a gap or a
metal film to excite surface plasmon polaritons on the
metal interface opposite to the high index medium. This
approach was usually used to study films >350 A
thick!*~?* in structures in which the index difference be-
tween the media bounding the metal film is large.

Most of the theoretical studies’~%!~2! of surface po-
laritons guided by thin metal films have concentrated on
lossless metals, usually modeled by a free-electron gas. In
that case, there are two modes guided by the film, one
symmetric and one antisymmetric with respect to their
field distributions. Here by symmetric we mean that the
transverse electric field does not exhibit a zero inside the
metal film—conversely the antisymmetric mode has a
zero in its transverse electric field inside the film. [Our
terminology coincides with that of integrated optics,? but
is opposite to the usual solid-state version, which deals
with the symmetries of the charge (not field) distribu-
tions.] If €;=0, both modes are lossless as long as their
wave vector is larger than that required for plane waves
traveling parallel to the surface in the higher index medi-
um. For €;>0, both modes exhibit loss. For small
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enough differences between the dielectric constants of the
media bounding the film, the attenuation of the lower sur-
face polariton branch, the symmetric one, decreases to
zero as the wave vector a2[>proaches that of plane waves in
the low index medium.?%?’

Recently!620.2428=31 the surface polaritons on both
branches have been investigated experimentally for very
thin metal films (down to 100 A thick). The highly
damped surface polaritons on the upper branch have been
observed in highly asymmetric sample structures, i.e.,
large difference between the refractive indices of the
media on either side of the metal film.'®?*2* For almost
symmetric structures, both the symmetric (lower branch)
and antisymmetric (upper branch) modes have been ob-
served and the decrease in the attenuation of the sym-
metric mode with film thickness verified.?8—3!

There have been previous indications that the interpre-
tation of the waves guided by thin metal films is not com-
plete, or fully understood. By using an additional film to
effectively increase the refractive index on one side of the
metal film, Buckman and Kuo? predicted, for their ex-
perimental conditions, the usual mixed symmetric and an-
tisymmetric mode, and in addition what appeared to be an
extra mode strongly confined to one of the metal surfaces.
Recently Ferguson et al.3? predicted a third wave for an
air-metal-glass geometry. In addition to a leaky Fano
mode, they found a solution which corresponds to a
bound wave above a cutoff thickness, and to a growing
wave below cutoff. The solution at the cutoff thickness is
strongly reminiscent of a Brewster field"">? in that an in-
cident plane wave is totally absorbed by the structure.

In the work reported here we find a total of four solu-
tions to the dispersion relations. There are always two
leaky (radiative) wave solutions. For thick enough films
there are also two nonradiative waves; below some cutoff
thickness one of these becomes a growing wave solution.
As the film thickness goes to infinity, the solutions form
degenerate pairs, one radiative and one nonradiative wave
in each of the pairs.

The purpose of this paper is to discuss these solutions
in detail, offer physical interpretations, and analyze their
dependence on the dielectric constants and wavelength.
(Preliminary results of this investigation have already
been reported in letter form.**) Towards this goal, this
paper is arranged as follows. In Sec. II we briefly summa-
rize the dispersion relations being solved. Sections III and
IV deal with the solutions for a symmetric (€;=¢;) and
asymmetric (€; > €;) structure, respectively, at the fixed
wavelength A=0.63 um (He-Ne laser). The wavelength
dependence of the radiative wave solutions is presented in
Sec. V. In the last section we present a discussion of the
wave solutions, whether they can be launched or not, in-
cluding a suggestion for “end-fire” techniques, and how
their existence may impact on a variety of surface
plasmon polariton phenomena.

II. DISPERSION RELATIONS

The geometry which we analyze is shown in the inset of
Fig. 1. A metal film of variable thickness 4 and dielectric
constant €, = —€eg—i€; is bounded by two dielectric

n3-1.5 n3. 1.9
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» B,(o0) [n3=1.9]
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FIG. 1. Dispersion curves B(« ) for surface-plasmon polari-
tons propagating along the €;-€,, and €3-€,, boundaries for the
geometry shown in the inset at h— . The points (a) and (b) at
the same frequency lie in the leaky and bound mode regions,
respectively, of the light line (¢,)!/?=2.0.

media characterized by €, and €; with €; > €;3. For isotro-
pic adjoining media, the surface polariton waves are trans-
verse magnetic in nature, and can best be described by
their magnetic fields which lie in the plane of the surface.
For waves propagating along the x axis with z normal to
the surfaces

H=Jf(2)C exp[i (ot —Bx)] , 6y

where B=pBr —iB; is the complex propagation constant
parallel to the surface, and f(z) describes the depth
dependence of the magnetic field. C is a normalization
constant chosen so that the wave carries one watt of
power per meter of wave front (along the y axis). The
wave energy propagates the distance 0.58; ! along the sur-
face and the losses can be both dissipative and radiative.
As usual, the electric field components can be evaluated
from Maxwell’s equations, i.e.,

; OH
1l y B
=t —2 E=_F g
T weEe 9z E. weEe @

We write the depth distributions in the form

€ f(z)=eS‘z, z<0 (3)

S]Gm
€m: f(z)=cosh(S,z)+ Syel

sinh(S,z), 0>z >h 4)

€: f(z)= [cosh(Szh)

1€m
S7€

e SR (5)

sin(S,h)

where S, S,, and S are obtained from the wave equa-
tion as
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S% =BZ"€lk0 ’
S2=Bl—e k3, (6)
S3=p*—e:k}

By writing the fields in the form of Egs. (3)—(5), we en-
sure that the tangential magnetic fields are continuous at
z=0 and z =h. Continuity of the tangential E field at
z =h leads to the dispersion relation

tanh(Szh)(é']E3S%+63nS,S3 )+[S2(€1S3 +€3S] )Gm]=0
(7

which must be satisfied for a solution to exist.

The solutions to Eq. (7) are well known when the film
thickness 4 is much greater than the classical skin depth
¢/w,, where o, is the plasma frequency. In this limit
tanh(S,h)—1 and Eq. (7) becomes

(S1€m +S2€)(S3€, +S,63)=0, (8a)
which leads to
S1€m=—5261, S3€m=—S2€3 . (8b)

Assuming that real [ S;]> 0, that is the fields are bound in
all of the media, the solutions consist of decoupled
surface-plasmon polaritons propagating along the e€;-€,,
and €;-€,, interfaces with the dispersion relations

¢ 172
Bilo) =€)k, €m:€1 (9a)
and
€ 172
Bs( o0 )=(€3)"?k, em:'_t_s , (9b)

respectively. For convenience we shall label these modes
SP, and SP,, respectively. Assuming Bz >>fB; and com-
plex €,,,

exl—epe +e |'?
Bir(oo)=(€) kg [ ——L | (10a)
[em +Ei|
2 2
1 €i€r kg
Biflo)=— —_—, (10b)
T2 B |€m+e€i |?

which is a useful result since the thin metal modes must
approach these values asymptotically for very thick films.
In Fig. 1 we show the dispersion relations for €;=0,
(6)'?=2.0, and (€3)'2=19 and 1.5, as well as the
“light” lines for each medium, which correspond to
Br=V'ew/c. Note that Bz >V'ew/c for the semi-infinite
media surface plasmon polaritons and therefore those
modes are  nonradiative, or bound, because
S%=pB% —€k}3>0. The dashed line corresponds to the
frequency of the He-Ne laser.

It will be useful later to note that there is a second set
of solutions for this case which are rejected because they
do not correspond to guided waves. The dispersion rela-
tions are still valid for real [S; <0], which correspond to
fields which grow exponentially with distance from the
interface. Hence the two semi-infinite media case actually

consists of two solutions, one of which is rejected as un-
physical.

For a finite film thickness, it is generally accepted that
the two allowed semi-infinite media modes are coupled
and the values of 8 for the two waves depend on film
thickness. If (€;)!/?=(e;)!/?=2.0, the modes continue to
lie to the right of the light line and remain nonradiative
for all film thicknesses. For (€;)!/2=2.0 and (e3)!/?=1.9
[point (b) in Fig. 1], and for very thick films one would
expect both modes to remain nonradiative, i.e., to lie to
the right of the light line. As we shall see later for thin
films, the mode associated with field localization at the
€3-€,, interface (for large h) actually crosses the €;-€,,
light line and becomes leaky (radiative) into medium e¢,.
If (€,)"/2=2.0 and (e;)!"/>=1.5 [point (a) in Fig. 1], one
mode [corresponding to B( ) as A — o ] remains nonra-
diative and the second [B;( ) as h—> 0 ] is radiative for
all film thickness. These assignments, nonradiative or ra-
diative, are usually made on the basis of whether or not
S2=p%—ek} is positive in both media. If ekj>p?,
S$? <0, S is imaginary and the field in that medium corre-
sponds to a plane wave radiating away from the metal
boundary.

In the preceding discussion of films we have carefully
avoided the question of complex refractive indices in one
of the three media, more specifically, dissipation in the
metal via an €;70. For a real metal, €; >0, which leads
directly to a complex wave vector 8. Consequently, S,

and S; are also complex numbers**~37 which we write in
the form
SI=S1R——I.S”; S3=S3R—iS3]. (11)

In the analysis that follows we shall explore solutions to
the dispersion relations for the full spectrum of possible
signs for S| and S3, i.e., S, and =S taken in all possi-
ble combinations. For convenience, we have found all
solutions for which Bz >0 but, it is clear from Egs. (6)
that these solutions appear in pairs, i.e., if B, is a solution,
then —f; is also a solution. Our criteria for accepting or
rejecting solutions will be based on whether the field dis-
tributions correspond to physically acceptable guided
waves, that is waves whose energy is highly localized in
one of the bounding media.

Before closing this section, we wish to emphasize again
that even in the case of €; =0, the dispersion relation, Eq.
(7), is still valid. That is, all valid solutions, independent
of their radiative or nonradiative status, must satisfy Eq.
(7). Conversely, all solutions to Eq. (7) correspond to real
waves as long as they can be justified on physical grounds.
We make these points because we shall later discuss valid
solutions to Eq. (7) which initially appear to violate the
preceding discussion of the role played by the light line.
Under closer inspection, it will be shown that the underly-
ing physics dictates that these waves may have a physical
interpretation.

III. WAVES GUIDED BY SYMMETRIC STRUCTURES
The transcendental set of Egs. (6) and (7) were solved

numerically on a computer. Rather than actual zeros for
Eq. (7) we obtained minima for all of the model solutions
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which were 10~7—10~° below the values of Eq. (7) away
from the minima. The dielectric constant of silver films
at A=0.633 um was assumed to be €,, = —19—0.53i.

In a symmetric structure (€;=¢;), the possibilities are
+S,=4+S;. For the choice —S; and —S; with
— S =—8j, the fields grow exponentially away from the
film with wave fronts tilted to carry energy away from
the film. An exponentially growing field perpendicular to
the metal-dielectric interfaces is the signature of a leaky
(radiative)**—3" wave, which will be discussed in more de-
tail in the next section.

The solutions which occur for S;=S3;=S5—iS|; are
the extensions of the usual Fano modes with loss included.
The fields decay exponentially into both €, and €3, and the
wave fronts are tilted in towards the metal film. This tilt
removes energy from the dielectric media (for dissipation
in the film) as the wave attenuates with propagation dis-
tance. Thus the physically important solutions corre-
spond to nonradiative waves.

The dispersion relations were solved at A=0.633 um
for this case and the results are shown in Fig. 2. For
€; =0, the modes are lossless; for €; =0.53, the imaginary
part of B is plotted in Fig. 2. Because of the geometrical
symmetry, the field distributions must be either sym-
metric or antisymmetric with respect to the center of the
metal film. The upper branch [B>B(w)] is antisym-
metric and the lower branch is symmetric.

The variation of B; with film thickness can be under-
stood in terms of the dispersion in Bz and the decay con-
stants S| =S3. For the antisymmetric mode, the increase
in Br with decreasing h leads to an increase in S| [Egs.
(6)] and hence progressively more of the mode energy is
carried (and dissipated) in the metal. Therefore B; in-
creases as h decreases. Conversely for the symmetric case
as Br —(€;)!"%k, (Fig. 2) the fields penetrate progressively
deeper into the adjacent media, and dissipation in the met-
al is reduced. As h—0, tbe fields in the €; and €; media
approach those of a plane wave and the loss goes to zero.
This was first pointed out by Fukui et al.?® If there is
loss in the bounding media (via a complex refractive index
n —ik), the attenuation as A—0 is asymptotic to plane-
wave loss in these media (Fig. 2).

The symmetric (lower branch) mode is of potential
practical interest because of the long propagation dis-
tances possible with thin metal films. Since it is difficult
to fabricate continuous metal films of silver, copper, etc.,
for film thicknesses less than 100 A, we assume that a
minimum film thickness of 150 A is required for guiding.
For the dielectric constants (e;)!/ 2=(€3)°1/ 2=20, the
propagation distance is 140 um for /=150 A. According
to Eq. (10) for waves at the interface between two semi-
infinite media, the A — o loss is proportional to €;/? and
hence attenuation can be reduced by using lower refractive
index media. This is verified for the thin film case in Fig.
3. For (€)'2=1.5, the propagation distance increases to
610 um, 40 times further than for surface plasmons along
the interface between semi-infinite silver and a medium of
in(%gx}ll.S. Such increases have been seen experimental-
ly.~*—

Solutions to the dispersion relations are also possible for
S1=-—S3 and —S;=S;. From Eq. (7) this occurs for
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B=PB() in both cases. For S >0, the field in €, and the
metal is identical to that guided by the interface between a
semi-infinite metal and the dielectric €,. The field in €;
grows exponentially with distance from the interface,
which is a characteristic of a leaky wave.>*~3¢ The loss
coefficient is By =p;;( o) and the dissipation in the metal,
which is reduced from the B;;(« ) case because of the fi-
nite thickness of the metal film, is exactly compensated
for by the radiation loss term. We shall discuss the rami-
fications of these solutions in more detail in Sec. IV.

3.50 -
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FILM THICKNESS (R)

FILM THICKNESS (&)

FIG. 2. Normalized complex propagation wave vector B as a
function of film thickness for the symmetric structure with
(€1)'2=2.0. a and s refer to the antisymmetric and symmetric
waves, respectively. (1) (€)'/2=2.0—0.001i, (2) (€)'/?=2.0
—0.0001i, and (3) (¢))'/?=2.0, €, = —19—0.53i.
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FIG. 3. Variation in normalized attenuation with refractive
index V'e for a symmetric structure (€;=e¢3) for different film
thicknesses (A=0.633 um, €,, = —19—0.53i).

IV. WAVES GUIDED BY ASYMMETRIC STUDIES:
FIXED FREQUENCY

A. Types of solutions

There are also four interesting solutions to Eq. (7) for
the asymmetric structure. We find that one antisym-
metric mode is always obtained. The “symmetric” solu-
tions are of two types, radiative and nonradiative and typ-
ical amplitude-wave-front sketches of the fields are shown
in Fig. 4. For the nonradiative case (upper left), the fields
in the dielectric decay exponentially away from the film
and the wave fronts are tilted into the metal film, as re-
quired, in order to remove energy from the dielectric
media (for dissipation in the metal) as the wave attenuates
with propagation distance.

Two leaky (radiative) solutions are always found, just as
in the symmetric case. However, because there is no

Leaky
(into €,)

Leaky
(into &,)

FIG. 4. Field distributions associated with bound, leaky, and
growing modes guided by thin metal films. The arrows indicate
energy flow in the dielectrics.

longer symmetry in the structure, the degeneracy between
the solutions is lifted. The wave energy is localized in one
of the dielectrics, say €, at that dielectric-metal interface
(€1-€,,). The wave amplitude decays exponentially across
the film, and then grows exponentially into the other
dielectric medium, €; in this case. In the €; medium, the
wave fronts are tilted towards the film to supply energy
from €; for both dissipation in the metal, and radiation
into €;. The analogous case of localization in €3, and radi-
ation into €, also occurs.

Fields which grow exponentially away from the
boundaries are a signature of leaky waves,’*~3¢ whose
characteristics are perhaps not widely known in the solid-
state physics community. They only have meaning in a
limited region of space above the film and require some
transverse plane (say x=0) containing an effective source
that launches a localized wave in one dielectric near its
metal-dielectric boundary. The field decays across the
metal and couples to radiation fields in the opposite
dielectric. As shown for a specific example in Fig. 5, for
any plane x>0 the wave radiates at some angle @ into
medium €}, and the ¢, field amplitude grows exponentially
for only a finite distance z, which is a function of x and
6. In this sense, the solutions do not violate boundary
conditions as z— — «, and in fact have the characteris-
tics of spatial transients.*® This interpretation requires
that the effective distance into €, i.e., Siz, must equal
Br'tanf, where 6 is the wave-front tilt defined by
tan6=S,;/Bgr, that is S|gS;=BrB;. This condition is
simply the imaginary part of the first equation of (6) and
is trivially satisfied by these solutions.

When such a leaky wave is excited at x=0, the local,
exponentially increasing fields near the structure do not
provide a useful description for the radiation fields in
medium €; (the Fraunhofer region). Instead, it is more
useful to replace the local €, fields by an appropriately
phased sheet of equivalent current in the x-y plane for
x >0. The radiation field may then be viewed as that as-
sociated with a finite (along x) aperture. For fields radi-
ated at an angle O relative to the surface, the angular spec-
trum of the radiated plane waves is

F(@)=sin6 [~ dx exp[ —i(Bg —V/ekocosd)—Byx] ,
(12)

WAVE FRONTS

e ——m

RADIATION LOSS

FIG. 5. Schematic of how a radiating surface-polariton wave
which decays along the x axis as exp[ —B;x] produces an ex-
ponentially increasing field in a plane normal to the x axis.
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which gives for the radiated power
sin’
(Br —V'ekgcos0)*+B;>

For Bg < V'ekg, there is a well-defined peak in | F(6) |2
at @=cos~'(Bg /V'eky) with an angular breadth propor-
tional to B;. If Vieky < Bg, radiation occurs over a large
range of directions; thus leaky waves can still exist on the
side of the “light line” usually associated with bound
(nonradiative) modes.

The wave attenuation due to radiation loss can be es-
timated from the solutions by calculating the Poynting
vector for energy leaving, for example, the €;-¢, boun-
dary. Thus the decrease in surface wave power due to ra-
diation loss, per meter of wave front, is given by

dP 1 ., Su

—_1c2 2% _p_ _opp, 14
dx 2C koC€061 BI (14

|F(8)|%= (13)

where B} is the field-amplitude attenuation due to radia-
tion loss.

We now briefly discuss the nature of the growing wave
solutions which were also found by Ferguson et al.>* In
this case, the field amplitude grows both with propagation
distance as exp(f;x), and into one of the dielectrics as
exp(Sgz). Since the wave-front tilt is into the film (as op-
posed to away from it for leaky waves), these waves are
dependent on externally incident fields supplying energy
to make the total wave amplitude grow.

B. Solutions for (€;)'*=2.0, (¢,)?=1.5

We now evaluate the dispersion relations numerically
for two sets of material parameters. From Fig. 1 we ex-
pect that the waves for B;( ) < (€)!/%k, will be different
from those for Bs(w)>(€;)'"%ky: The former corre-
sponds to the semi-infinite surface-plasmon curve SP;
crossing the €; medium light line, the case that we now
consider.

The numerical solutions for Bz and SB; are shown in
Fig. 6. The curves labeled a, (antisymmetric, nonradia-
tive) and s; (symmetric, leaky) are commonly called Fano!
modes and have been discussed in detail previously!®—%!
usually in connection with ATR experiments. The sym-
metric wave is attenuated both by dissipation in the film
and radiation loss into €. It is characterized by
Br~B;( « ), almost independent of film thickness and ex-
hibits little dispersion until B; becomes of the order of a
wavelength. This wave has essentially all the characteris-
tics of the SP; surface plasmon. It loses energy via radia-
tion fields generated into the €, medium and the radiation
pattern is highly directional because 8 < (¢,)!/%k,.

The branch labeled a@; has all the characteristics of a
surface plasmon which is localized at the €;-€,, interface
[SP,], it decays exponentially across the metal film, and it
couples to radiation fields in €;. Because of dissipation in
the metal, B; >0 and, as indicated by Eq. (13), the angular
spectrum of the radiation fields in €; is broad. Note that
the attenuation of this wave is less than that of the an-
tisymmetric bound mode, despite the radiation losses and
its spatial transient nature. This occurs because the metal

film which is highly dissipative, carries more of the an-
tisymmetric mode energy as the film thickness decreases.
As the film thickness increases, the @, and a; branches
become degenerate, as required for an interface between
semi-infinite media, which supports only one mode local-
ized at the €;-¢,, boundary. To the best of our knowledge,
the a; branch has not been discussed before.

The component of the leaky (radiative) wave attenua-
tion due to the radiation loss is plotted in Fig. 7. The
straight lines obtained for both cases in this lin-log plot
are verification of the exponentially decaying nature of
the wave fields in the metal film. For this g; branch, the
radiation loss is small, as expected, because this solution
lies on the nonradiative side of the €; light line.

The fourth branch, s,, was reported previously by Fer-
guson et al.*? For thicknesses greater than h.q=520 A, it
corresponds to a bound (nonradiative) wave, and below
h.o, the wave amplitude grows with propagation distance.
Just at k., there is a change in the ¢, field from exponen-
tially growing to exponentially decaying into €;. At A,
this solution corresponds to plane waves incident from €,
which feed a resonance localized at the €;-€,, boundary.

|0'5 1 1 1 1 1
o] 0.02 004 006 0.08

FILM THICKNESS 'h' (um)

1 1 1 1

)
[od]¢]

1

1 1 L

o] 0.62 0.04 0.06 0.68
FILM THICKNESS ‘N (um)

o.lo

FIG. 6. Solutions for an asymmetric structure with
(€))2=2.0 and V'eé=1.5 as a function of film thickness with
€m=—19—-0.53i. The upper (antisymmetric) and lower (sym-
metric) branches are labeled a and s. The subscripts b and L
indicate bound (nonradiative) and leaky (radiative) waves respec-
tively. The solid lines pertain to €;=0 as well as €;,=0.53 for

Br-



5192 J. J. BURKE, G. I. STEGEMAN, AND T. TAMIR 33

<7 1 1 ]

O 200 400 600 800 1000
FILM THICKNESS (um)

FIG. 7. Attenuation due to radiation loss by surface-plasmon
polaritons localized at the metal-dielectric interface opposite to
the dielectric medium into which loss occurs (a) for (€,)!/2=2.0,
(€;)/2=1.5, wave leaking into €;; (b) (€,)!2=2.0, (€;)'/?=1.5,
wave leaking into €3 (¢) (€,)'2=2.0, (€;)!/?=1.9, wave leaking
into €;; (d) (€;)"/2=2.0, (&3)'/?=1.9, wave leaking into ;.

This is a steady-state situation in which the incident field
energy is totally dissipated in the metal and 5;=0. In the
parlance of recent literature this is a Brewster mode at
h.o- Away from h,y, the “no reflection” condition re-
quires a superposition of incident plane waves, properly
phased and properly contoured in amplitude along the z
axis. For h > h.g less energy is supplied through the €,-
€,, boundary to the resonance than is dissipated in the
metal, and the solution attenuates with propagation dis-
tance. Because B;8r =SSz, this requires an exponen-
tially decaying field into €;. For h < h,q, the rate of ener-
gy flux from €, into the wave is greater than the dissipa-
tion in the metal and the wave grows.

C. Solutions for (€,)'2=2.0, (€;)'/*=1.9

We now examine the solutions for the case
Bs( ) > (€)""*ky. For the semi-infinite media case, the
modes all lie on the nonradiative side of the light lines
(Fig. 1). As in the previous cases, four distinct solutions
are obtained for every film thickness (see Fig. 8). There
are two nonradiative modes for A greater than a cutoff
thickness, h.q, and one for h o> h. For all values 4 there
are two radiative waves.

The two upper branch solutions are similar to those dis-
cussed for the previous [(€3)!/2=1.5] case. The a; branch
is an antisymmetric mode termed Fano in the literature,!
whose attenuation increases dramatically with decreasing
film thickness as more of the wave energy is carried by
the metal. The leaky wave q; has all the characteristics of
a semi-infinite medium surface-plasmon polariton local-
ized at the €;-€,, boundary, whose field decays exponen-
tially across the film, coupling to a broad angular spec-
trum of radiation fields in e€;. Since the difference

Br —(€3)1"%k is smaller than for the (€;)!/?=1.5 case, the
coupling to radiation modes is stronger than for the
(€3)'/2=1.5 case, see Eq. (13). This is illustrated numeri-
cally in Fig. 7. Finally, the attenuation of the leaky wave
is smaller than that of the nonradiative waves, as noted in
the previous example and for the same reason as discussed
there.

There is also a leaky wave solution associated with a
surface plasmon polariton localized at the €3-€,, interface.
It radiates into medium ¢, via field tunneling (exponential
decay) across the metal film. This solution is especially
interesting because its dispersion with thickness moves it
across the €, light line. For very thin films (€,)'/%ko > Bz
and the leaky wave radiation pattern becomes highly
directional and radiation loss dominates the wave attenua-
tion (Fig. 7). For (€;)""?ky < Bg, i.c., on the nonradiative
side of the € light line, the radiation loss decreases quick-
ly with increasing film thickness. Under closer scrutiny,
the transition occurs for By greater than (e,)'/%k, (Figs. 7
and 8), which indicates that Eq. (13) is only an approxi-
mation. (This change in wave character persists even in
the limit €, —0.)

The behavior of the nonradiative lower branch is simi-
lar to that discussed previously for the case (€;)!/2=1.5.
For h >h.o, the solution exhibits a symmetric type of
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FIG. 8. Modal solutions for an asymmetric structure with
(€,)'2=2.0 and (€3;)'"?=1.9 as a function of film thickness.
The upper (antisymmetric) and lower (symmetric) branches are
labeled a and s. The subscripts b and / indicate bound (nonradi-
ative) and leaky (radiative) waves, respectively. €,=—19
—0.53i. The solid lines characterize the case €, =0, as well as
€;=0.53 for Bg.
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field distribution with localization at the €;-¢,, interface.
This is usually identified as the Fano mode due to the
mixing of the two surface plasmons associated with the
two film boundaries, in the limit A — . As h—h o with
h > h.o, the fields penetrate progressively deeper into
medium €, becoming progressively more like uniform
plane waves propagating parallel to the surface, but re-
taining a slight tilt toward the surface in order to compen-
sate for loss in the metal. As h decreases below 4., the
tilt angle increases and more energy is supplied to the
wave than is needed to compensate for loss. As a result,
the field localized in €; grows with propagation distance.

The behavior near h.y is complicated. For the plane-
wave condition, Bz actually falls a small distance below
(€1)?ky. [If €,=0, the plane-wave condition corresponds
to Br=(€;)""%*k,.]1 For h <h.o, a growing wave solution
is obtained for a region of B > (€;,)!/% (even in the limit
€;—0). Such results indicate that the concept of the light
line for separating radiative and nonradiative regions is
not entirely compelling.

D. Variable €;/€;,: Fixed frequency

In this section we trace the four solutions through the
material parameter range connecting the regions
(€3)'2=1.5 and (€;)'/?=1.9. The upper branch solutions,
ap and a; do not change character when (e;)!/? is varied
from 1 to 2.0. As e;—¢), the B for the leaky wave solu-
tions remains close to B;( o« )~3( oo ) down to progressive-
ly thinner films. For e;=€,—A, where A is very small,
the solutions track B;( ) down to Ah at which point the
B diverges rapidly with further decrease in h. For A—0,
B—B1(0)=PB3(x).

The nonradiative-growing wave branch is continuous
over the full range €;=€,—1.0. Figure 9 illustrates &, as
a function of €;. For By >(€)'%k,, this is the Fano
(symmetric) mode branch. For By < (€;)!/?k,, this branch
takes on the character of a Brewster mode, as noted be-
fore.

CUTOFF FILM
THICKNESS (R)

600

400 +

200~

1.0 1.2 1.4 1.6 1.8 2.0

REFRACTIVE INDEX n,

FIG. 9. Cutoff film thickness h.¢ as a function of variable re-
fractive index (e3)!/2 for (€;)!"/2=2.0. The dashed and solid lines
correspond to €;,=0 and €;= + 0.53 with eg =19 and A=0.633
pm.

This change in character of the solutions is evident in a
number of ways. Consider first the case €, =0. At cutoff,
BR =(€1)1/2k0, S,=0, S3 =(€1—-€3)1/2k0, and Sz =ik0(€R

+ €)'/ Therefore, from the dispersion relation

1 E3(€R +61)l/2+€R(€1—€3)l/2
k0(61+€R)1/2 63(6R +€])1/2 —63)1/2

(15)

hc0=
—egple

and

(€,—e€3) %
1y ——— % (16)
(GR +€1) €3

must be satisfied for a finite 4., Equation (16) defines
the smallest value of €; for which a nonradiative mode
can exist in the absence of dissipative loss. A plot of Eq.
(15) is shown in Fig. 10. If ¢, >0, Eq. (6), with
Br=811==S3;=0, predicts the cutoff thickness, and the
inclusion of loss leads to a finite A, for all values of ;.
For B3( ) > (€;)'"?ky, the cutoff thickness varies with g,
but only very weakly with ¢€;. However, for
(€1)"%ky > B3( 0 ), the reverse holds, i.e., A, varies strong-
ly with €; (Fig. 10), but not with eg. Clearly, for
Bi(w)>(€)""%ky we have a surface-plasmon polariton
mode, and for (€;)'/%ko > Bs( o) this is a Brewster type
wave (because of its strong dependence on €, ).

The field distributions also change when the equality
given by Eq. (16) is crossed. Plotted in Fig. 11 is the
mode attenuation and penetration depth into medium ¢,
as a function of €; for thin metal films with A#=20 and
100 A above h.,. When By is decreased through
(€1)"%k,, the penetration depth increases by orders of
magnitude. When B3( o) > (€;)!/%k,, the fields are tightly
bound because they rely on €z >0 for their nonradiative
character. The corresponding field distributions are
shown in Fig. 12. When (€;)!"%ko > B5( 0 ), the existence
of dissipation is responsible for the nonradiative nature of
the wave, and because ez >>¢€;, the waves are not tightly
coupled to the film.

The lower branch radiative mode s; also varies smooth-

CUTOFF FILM
THICKNESS (R)
1000
800}
600}

400+

200

FIG. 10. Cutoff film thickness versus imaginary component
of dielectric constant (¢;) for the symmetric bound mode with
(€1)'2=2.0, (€3)'/2=1.9 (dashed line), and (€,)'?=2.0,
(€3)"2=1.5 (solid line).
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O 1.2 1.4 1.6 1.8 20
N3
FIG. 11. Normalized attenuation and field penetration depth
into medium ¢, for film thickness 20 A (solid line) and 100 A
(dashed line) above the the cutoff thickness for the symmetric
nonradiative mode. (a) and (b) refer to the penetration depth;
and (c) and (d) to the attenuation.

ly with €3. As €3—¢€, the behavior is the same as that
discussed for a;, with the difference that Bz decreases as
h—0 (instead of increasing as was the case for ;). For
(€1)"2k( > B3( ), the radiation field is strongly peaked in
direction over the full ran§e of h.

The usual terminology’ is to call @, and s, the Fano
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FIG. 12. Field distributions (E;) for the symmetric bound
mode for (a) (€;)'/?=2.0 and (e;)‘”:l.‘); (b) (&)*=2.0 and
(€3)"2=1.5. Film thicknesses 30 A above cutoff were chosen.
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modes for Bi(w)>(€)'"%*kq, and @, and s; the Fano
modes for Bs( ) <(€;)!"%ky. Our analysis shows that s,
and s; belong to different branches of the dispersion
curves and probably should not both be called Fano
modes.

V. WAVELENGTH DEPENDENCE OF MODE
SOLUTIONS

In the two preceding sections we discussed modes guid-
ed by thin, lossy silver films at the wavelength A=0.633
pm (He-Ne). This corresponds to the case w7 >>1, where
7 is the relaxation time associated with Drude damping in
the free-electron-gas model for ¢,,, i.e.,®

2
Dp

€m=1— (17

olw—i/T)
In this section we examine the same material system with
A=10.6 um (CO, laser) which corresponds to w7~2. The
wavelength dependence of the nonradiative symmetric
mode is also evaluated for two metal thicknesses for A
varying from 0.5 to 15 um.

A. CO, laser wavelength

The solutions for a symmetric structure €;=¢; at
A=10.6 um are identical in structure, dispersion, etc., to
those discussed for A=0.633 um. However, the parame-
ter range over which Br corresponds to a nonradiative
symmetric wave, that is 0.5koe’"%€g /| € | %, is reduced
drastically because of the large values attained by
€n(—4300—1800i).  Furthermore, the asymptotic
(h— oo ) attenuation, which scales the thin film loss, i.e.,
By =€"%kye; /2| €, | %, is also reduced from the A=0.633

A=10.6um
2.004 ¥ ./ n=20007
200 h METAL(SILVER)
003 n=1.995/
Be X
2.002
2.00l
1.997 |
Sb
\\
1.996 |- S
Bg Sy
1.995 |
1.994 |-
l n 1 e 1 N
o 0.04 008

FILM THICKNESS ' (im)

FIG. 13. Dispersion in Bz with thickness for the modal solu-
tions for A=10.6 um, (€;)"/2=2.0, and (&3)'/>=1.995. s and a
refer to the symmetric (lower) and antisymmetric (upper)
branches, respectively.
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/. n,2.0000"
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FIG. 14. Normalized attenuation constant versus film thick-
ness for (€;)"/2=n,=2.0 and a variety of values for (€;)!*=n;
at A=10.6 um.

pm cases.

Some of the changes in the waves guided by the asym-
metric €;7¢€; structure are more interesting. For the case
Bs( ) > (€;)%ky, the dispersion and attenuation with
film thickness looks essentially like Fig. 8, with the values
scaled as discussed above for the symmetric case. The
range in €; over which these solutions occur, as expressed
by Eq. (16), is very limited and constitutes a very small
fraction of the region €;>€;>1.0. The dispersion rela-
tions for (€3)'/2=1.995 [(€,)'"%*ky > B3( )] are shown in
Fig. 13. The behavior of the lower-branch nonradiative
mode s, differs from that found in Fig. 6. The cutoff
thickness is reduced to ~240 A and the wave vector Bx
undergoes substantial dispersion with h. As predicted in
Fig. 10, this decrease in A, is a consequence of the rela-
tively large value of ¢;.

A plot of attenuation versus film thickness with vari-
able (€3)'/? (Fig. 14) reveals some interesting differences.
heo increases until the limit of Eq. (16) is reached and
then decreases, in contrast to the A=0.633 um case where
it remains approximately a constant. The cutoffs are still
characterized by 5;—0, but the range of thickness over
which B; decreases becomes progressively smaller. In
fact, maxima in attenuation occur due to increased up-
ward dispersion in Bg with decreasing A.

B. Wavelength dependence

It is clear from the preceding discussion that the bound
symmetric modes should exhibit an interesting wavelength
dependence. For symmetric structures, the attenuation is
low; thus long (and potentially useful) propagation dis-
tances appear possible. Furthermore, when the symmetric
mode occurs in an asymmetric structure, it takes on two
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FIG. 15. Surface-polariton propagation distance versus wave-
length for a symmetric structure [(e;)"/?=(e;)!/2=2.0] for a
number of different metal film thicknesses.

distinctive forms which depend on dissipation (€;) in the
metal, which in turn varies approximately as A3,

The wavelength dependence of the propagation distance
(energy), mode penetration depth into the medium €; and
the parameter Bz —(€;)'/%k, are shown in Figs. 15 and
16. To generate these curves we assumed Eq. (17) for the
dielectric constant with @,=1.29%x10'® rad/s and
7=1.25X10"1s.

The most salient feature of Fig. 15 is the large propaga-
tion distances which can be achieved in the infrared. For
A>1 pum, a distance greater than 1 mm is predicted for a
150 A thick film. Given the cubic dependence on refrac-
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FIG. 16. Penetration depth into medium €, and the differ-
ence between By and its mode cutoff value [(€;)!/*k,] for a
symmetric structure (€;=¢€;=4.0) versus wavelength for a num-
ber of different metal film thicknesses.
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tive index [Eq. (10)], the loss will be a factor of ~4 less
for Vie=1.5. Furthermore, out at A=10.6 pum, multicen-
timeter distances are possible.

The reasons for these long propagation distances are
evident in Fig. 16. As wavelength increases, the max-
imum separation of B from Vek, decreases and the
fields penetrate progressively deeper into the media ;.
For example, for h~150 A at A=10.6 pum the
waves penetrate ~20 optical wavelengths into each medi-
um. The coupling to the film is weak and small material
inhomogeneities can lead to scattering losses. In terms of
utilizing these modes, wavelengths in the range 2—5 um
appear ideal since the propagation distances are useful
(1—100 mm for h~150 A) and the confinements are in
the 1—4 wavelength range.

We have also calculated the penetration depth (energy)
and the propagation distance (energy) for the nonradiative
symmetric wave as a function of wavelength for two film
thicknesses with (€;)'/>=2.0 and (€;)'/?=1.9. The results
shown in Figs. 17 and 18 illustrate dramatically the ef-
fects of wavelength on these waves.

The two film thicknesses investigated show markedly
different behavior for the nonradiative mode with wave-
length. For the 200 A thick film, a tightly bound mode is
maintained with increasing wavelength until the limit de-
fined by Eq. (16) is reached. As equality is approached,
the attenuation drops to zero and the penetration depth
diverges. The weakly bound version appears for wave-
lengths above ~4.65 um and is characterized by very deep
penetration depths into medium €,. In contrast to this, a
smooth transition between these two regimes is observed
for the 500 A thick film. The mode remains tightly
bound up to A~0.9 u at which point it approaches cutoff
as defined by Eq. (16). However, before it reaches cutoff
it changes character to a weakly bound mode and both the
penetration depth and the attenuation go through a max-
imum and minimum respectively. For further increases
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FIG. 17. Normalized attenuation for the symmetric nonradi-
ative mode versus wavelength for the asymmetric structure
(€)'2=2.0, (&3)'/?=1.9. The solid line is for h=200 A and the
dashed line for /=500 A.
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FIG. 18. The surface-polariton penetration depth into medi-
um ¢, for the asymmetric structure (€,)'/2=2.0, (&)/?=1.9
versus wavelength for the symmetric nonradiative mode. The
solid line is for =200 A, the dashed line for A=500 A.

in wavelength, the salient feature is the increase in propa-
gation distance and penetration depth associated with the
rapid increase in €;.

VI. DISCUSSION

A. Summary of solutions

In the preceding sections we have outlined the solutions
to the dispersion relations for waves guided by thin metal
films and discussed their physical significance. For sym-
metric structures, there are four significant solutions.
Two are nonradiative and correspond to the well-known
Fano modes. The other two are both leaky in nature, and
correspond to a surface plasmon guided by one or the oth-
er dielectric-metal interface. Their fields decay exponen-
tially across the metal film and they couple to a broad
spectrum of radiation fields in one of the dielectric media.
All four solutions are also found for dissimilar bounding
media.

The asymmetric structure solutions come in pairs, each
of which contains a nonradiative wave (with a range of
thickness over which a growing wave occurs) and a leaky
(radiative) solution for a total of four solutions. Each pair
of solutions is characterized by energy localized in an ex-
ponentially decaying field at one dielectric-metal film
boundary. As the film thickness A — «, the two waves in
each pair become degenerate.

The behavior of the solutions which are asymptotic to
Bi( ) [Eq. (8)] is straightforward for all values of the ra-
tio €3/€; < 1. The antisymmetric radiative branch persists
in the same basic form, as does the nonradiative branch.
For the latter, dispersion occurs with decreasing film
thickness and the metal film carries progressively more of
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the wave energy, with the result that the attenuation in-
creases due to increased dissipation. The radiative solu-
tion, on the other hand, disperses less with thickness and
hence has a smaller attenuation than the bound mode,
despite the additional radiative loss.

The two solutions asymptotic (as h— oo ) to B3( o0 ) ex-
hibit a more varied behavior depending on whether or not
Bs( ) is larger than (€;)!/%k,. The radiative branch pro-
duces a highly directional radiation pattern for all 4 if
(€1)'%ko>Bsy( ). If Byl o) increases past (€;)'/%ky, the
range of thickness (0 < h <h’) over which a directional
radiation pattern is obtained decreases. For A >h’, no
sharp peak is predicted; the total radiated power decreases
and the angular width increases with increasing h. The
detailed behavior in this region is complicated, cannot be
summarized easily, and the reader is directed to Sec. IV
for details.

The second of the two dispersion curves asymptotic to
Bi( ) is divided into two thickness domains by a cutoff
thickness h =h.,. For h > h.y nonradiative solutions are
obtained. When A <h,q, fields localized at the e;—ep,
boundary are still obtained, but in this case they are cou-
pled to an angular spectrum of incoming radiation fields
in the higher index dielectric. For (€;)!/%ky> B3( w0 ), this
angular spectrum is sharply peaked; for B3( w0 ) > (€))!/%k,
it is peaked only for very thin films, otherwise it is broad.

B. Spatial transients

The leaky (radiative) branches a; and s; have the
characteristics of spatial transients. Mathematically, the
fields grow exponentially with distance from the metal
film into the dielectric into which the wave radiates. As
shown in detail in Sec. IV, such solutions only have physi-
cal significance over a limited range x (propagation direc-
tion) and z (depth into the radiation medium). For
Br <(€1)""%k, the radiation pattern has a narrow angular
spectrum. This coincides with the well-known “leaky
Fano mode.” When By > (€;)'/%k, the radiation pattern is
not sharp; instead radiation occurs into a broad continu-
um of plane waves. This is the case for the a; branch, as
well as for the Bg > (€,)'/%*ky portion of the s; branch.
These solutions have not been discussed in detail before,
presumably because they fall on the nonradiative side of
the €, light line.

C. Origin of solutions

The fact that there are four useful solutions to the
dispersion relations in total can be understood in terms of
the solutions for a single interface between a metal and a
dielectric. As discussed in Sec. II, there are two solutions
for that case. For the usual surface plasmon case the
fields decay exponentially away from the boundary into
both media. In the second case, the fields grow exponen-
tially with distance from the boundary into both media.
Traditionally these are rejected as unphysical, because
they do not satisfy the boundary conditions at infinity.
However, these waves are important in the larger context
of leaky waves, which can be physically meaningful over
limited regions of space only, but are uninteresting and
can be neglected if there is no field localization.
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The solutions for the metal film case correspond to all
reasonable combinations of the two solutions associated
with each metal interface. We illustrate this for €;=e;.
The two bound modes (Fano) are symmetric and antisym-
metric combinations of the usual single-interface surface
plasmon modes. For the antisymmetric modes, as the
film thickness goes to zero, S,z must become large
enough for the field to decay rapidly inside the metal so
that a field zero can occur within the film. Hence S
diverges. The leaky waves are combinations of the SP; or
SP; surface plasmons, and the exponentially growing solu-
tions at the opposite interface. In this case we believe
them to be physically meaningful because there is strong
field localization in one of the dielectric media and the at-
tenuation is multiwavelength.

It is noteworthy that for B3( o) < (€)%, one of the
modes traditionally labeled Fano is actually a combination
of SP; and a solution characterized by an exponentially
growing field at the €; boundary.

D. Dissipationless limit (¢;—0)

This limit is usually used to identify those solutions
which are physically significant, i.e., a “mode.” In this
limit, one can employ normal-mode expansions which
satisfy power orthogonality relations to describe the total
field at any point in space. It is also usually stated that
only normal modes can be excited in an experiment and
hence have physical significance. Because some of our
solutions do not satisfy all of these criteria, we wish to ex-
amine these concepts further. In our opinion, the critical
question is whether a wave can be excited (or launched),
and whether it interacts with other waves, etc. We shall
address this question later.

We now examine the nature of the solutions to the
dispersion retations for vanishingly small values of €;. In
particular we examine the situation for asymmetric struc-
tures. For a;, B;, S1y=0, and the mode structure persists
for the antisymmetric branch. The leaky solution g, is
also characterized by B;, S;;, S3;=0. Although Egs. (14)
and (15) both predict no power loss via radiation fields,
the exponential growth character of the fields in €3 per-
sists. Therefore, for €; =0, the branch g; has no apparent
physical interpretation. However, if we consider any fin-
ite value of €;, no matter how small, the interpretation of
the a; branch is clear. The smaller the radiative loss rate,
the larger the effective aperture. Small €; thus leads to
nothing more than a spatial transient with a long “time”
(length) constant. As €; approaches zero, the effective
aperture becomes too large for experimental study. Thus
we conclude that the a; branch becomes experimentally
impractical as €;—0, not physically insignificant.

The s, branch has some interesting aspects in the limit
€;=0. For h > h.,, which requires B;( 0 )> (€;)""%kq, Bi,
S11, S3y=0, and the solution is the well-known symmetric
Fano mode.! For h <h,,, there are two regimes. Be-
tween h.o and h’>0 there is a region in which Sy;, S;;,
Br >0 and the fields grow exponentially into the €; medi-
um. To understand the physical meaning of this solution,
we must examine it for very small, but nonzero, values of
€;. It is then clear that the corresponding waves grow
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slowly with distance along the structure, driven from the
high-index dielectric by an incoming narrow angular spec-
trum of plane waves. From O<h <h’, B; <0, S;<0,
and S3;>0 and the fields which grow exponentially into
€, signify a mode growing with propagation distance, i.e.,
pumped by radiation fields incident from €,. When
Bs( ) < (€,)%ky, only growing wave solutions are ob-
tained.

The s; branch also has interesting characteristics when
€r =0. For B}( )< (fl)l/zko, B{ >0, S” >0, and S31 <0.
The attenuation characterized by 3; > 0 is totally account-
ed for by the radiation loss into medium €; and the wave-
front tilt and exponential growth into €; are consistent
with a leaky wave. For Bi( ) > (€;)!/%k,, the wave-front
tilt persists for O<h <h'. If h >h', §;;=S3;=0 and the
branch has no apparent physical significance.

These results show, that for €; =0, the light line does
indeed separate radiative and nonradiative regions of the
dispersion curves. Hence leaky modes are forbidden when
Br > (61)1/ 2ko. It does not, however, exclude such modes
for €; >0. The important criterion still is whether the
modes can be excited or not, and whether they interact
with other waves, etc.

E. Wave launching

We now address the question of why all of these solu-
tions have not been observed before, and which ones we
expect can be observed. The answer to this question is in-
timately related to the problem of determining all the field
constituents that form the complete solution for the field
due to an arbitrary source located in a given geometry.

In our case, the geometry is that shown in the inset of
Fig. 1. The best source to consider for this two-
dimensional situation (8/0dy =0) is a line source in paral-
lel to the y direction; this source may consist, for example,
of a magnetic current flowing along y, or of continuous
electric dipoles placed along y and pointing in the x direc-
tion. These currents play the role of a Green’s function
source. Any other source can then be synthesized by a
suitable superposition of such line sources. A specific
field constituent, e.g., any of the fields s;, s;, ap, or g
discussed above, can therefore be launched only if it can
be excited by a line source because if that field constituent
cannot be produced by that source, then no source can ex-
cite it. To explore these questions, we examine below the
field due to a line source by using an analysis involving
the representation of fields by means of the integrals in
complex wave-number planes, which have often been used
to resolve problems of this type. Due to constraints on
the length of this paper, these aspects can be discussed
here only briefly and the reader should refer to the litera-
ture**—*? for details.

Without any loss of generality, we may assume that the
line source is placed in the upper medium at x=0 and
z=—d. The field in that medium will then be given by
H=JH with

H=H;+H, , (18)

where H; is the incident magnetic field, which is a
cylindrical wave in this case, while H, is the reflected

J. J. BURKE, G. I. STEGEMAN, AND T. TAMIR 33

field, which is given by
Si(z—=2d)—iPpx
exp[S; = Bx] dg.
1

H=I[" rp) (19)
Here I is a constant proportional to the source intensity
and the frequency dependence exp(iwt) has been
suppressed. The function r(f) is the reflection coefficient
at the upper (z=0) boundary for plane waves incident at
an angle 0 given by

B=kol€;)?cosh , (20)

and it is understood that € may be complex. For the
parallel polarized waves considered here, the remaining
field components E, and E,; can be found from Egs. (2),
(18), and (19).

The integration in Eq. (19) follows the path P along the
real axis Bz of the complex B=Br —ifB; plane shown in
Fig. 19. To evaluate the integral in Eq. (19) and to deter-
mine the field constituents that result from such an in-
tegration, it is necessary to define the singularities of the
integrand in the vicinity of the path P. Because of Egs.
(6), we have

Sl=(BZ—€1k(2))l/2 , (21)
Sy=(B—e;k§)'/?. (22)
Due to the square roots, branch points exist at
B=*(€;)""%ky and +(e3)'"%kg, so that branch cuts must
be defined to analytically determine the values of S; and

S3 in the B plane. [Branch cuts are not needed for S, be-
cause, as can be inferred from Eq. (5), the integrand is an

By
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FIG. 19. Field solutions and singularities in (a) the complex 8
plane; (b) the complex S plane; (c) the complex S; plane.
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even function of S,.] By invoking the familiar argument
of small losses, the branch points are shown in Fig. 19(a)
to be located slightly off the B axis, thus defining their re-
lationship with respect to the path P. The branch cuts are
then most conveniently chosen as shown by the wavy lines
in Fig. 19. These four cuts imply that the complex 8
plane consists of four Riemann sheets, of which only one
is shown in Fig. 19. As discussed further below, the path
P can only occur on this (proper) sheet because the in-
tegral in Eq. (19) is unbounded in the other (improper)
sheets.

The complex S; and S; planes are also shown in Fig.
19, with wavy lines corresponding to the branch cuts
chosen in the B plane. The proper sheet of the B plane is
then defined so that its shaded portions correspond to the
regions in the planes S| and S; that have the same shad-
ing. The unshaded portions of the S; and S; planes map
into parts of the three other sheets of the B plane. We
then note that the path P starts and ends in regions in
which both Sz and S3z are positive, thus ensuring that
the integrand in Eq. (19) is bounded as Br—* «. That
would not be the case if P were in one of the other three
sheets of the B plane, which explains why they are labeled
“improper.”

In addition to branch-point singularities, the integrand
in Eq. (19) contains poles at points for which the reflec-
tance function r(f3) goes to infinity. These points are ex-
actly those given by the field solutions discussed here be-
cause Eq. (7) can also be obtained by equating the denomi-
nator of r(B) to zero. We are concerned here mainly with
poles of r(B) that are close to the Br axis: poles located
far away from that axis refer to fields that decay very rap-
idly along x, so that they are of negligible importance.
Typical locations of such pertinent poles in the S, and S,
planes are then shown by the crosses marked as s,, s;, ap,
and a; solutions; note that the s, solution is accompanied
by an arrow indicating the change in location as that solu-
tion goes through the dip illustrated in Figs. 6 and 8.

If we now plot the above poles in the B plane, we see in
Fig. 19 that only s; and a, solutions appear in the proper
B sheet. The points for the s, and a; solutions appear in
some of the other three sheets because they are located in
unshaded regions of either the S| or S; planes. When
evaluating the integrand along P, we therefore conclude
that only s; and a, affect the integration result, so that
only those solutions contribute field constituents to the to-
tal solution. Phrased differently, the integration along P
can be carried out by deforming P into a different path,
e.g., a semicircle at infinity. The result then consists of
two continuous (radiation) spectra due to the integrations
along two branch cuts, plus residue contributions due to
poles that are located between the path P and the de-
formed path.*> It is these residues that account for the
fields given by s; and g, solutions, as expressed by Egs.
(1—(@3).

It might be argued that different choices of branch cuts
for S| and S; would place s, and g, in the upper sheet of
the integration plane B and thus provide pole residues
from these two solutions. While this is correct, the
uniqueness theorem requires that the result for the total
field does not depend on the choice of the branch cuts.
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When deforming P into a semicircle at infinity, the choice
of cuts shown in Fig. 19 yields two continuous spectra
and two residues that are well separated, i.e., they are dis-
tinct from each other in a phase plane. Hence they pro-
vide four different field constituents which can presum-
ably be identified individually by an appropriate measure-
ment. Any other choice of branch cuts could yield only
the same measurable result; this implies that any pole resi-
due due to either s, or a; will necessarily be masked and
effectively suppressed by a field provided from a continu-
ous spectrum due to a branch cut different from the ones
shown in Fig. 19. This is analogous to the situation that
exists for the Zenneck wave, which is associated with a
pole located in the complex plane in a way similar to that
of 5, and g;. As has been finally resolved after a lengthy
controversy,* the Zenneck wave does not appear as a dis-
tinct field contribution; at most, the Zenneck pole affects
the total field by introducing a small perturbation when
the pole is located close to the branch point. Similarly,
even if solutions of the type s, or a; happen to be close to
ko(€)'/? or kol(€;)'/?, their effect on the total field will be
negligibly small.

We therefore conclude that the Fano modes represented
by s; and a, are physically admissible and launchable, as
was also confirmed experimentally. However, fields of
the form s, and a; cannot be sustained on the infinite
three-media geometry discussed here.

F. End-fire excitation

We now propose a different method for selectively ex-
citing surface polariton modes in asymmetric (or sym-
metric) structures. Consider injecting light into the sam-
ple using the “end-fire” configuration (well known in in-
tegrated optics)*> shown in Fig. 20. The goal is to match
the externally incident fields via masking techniques (ta-
pered attenuators, spatial filters in the lens, etc.) to the
field associated with the solution we are trying to gen-
erate. For example, near a mode cutoff, its fields
penetrate much deeper into medium €, than those of any
other mode; it can therefore be preferentially excited. Al-
though this approach is not Bz selective (such a prism
coupler is), the appropriate wave-front tilt (and hence Bz )
is needed for the lower branch modes of Sec. IVB. For
A=10.6 um, the penetration depths are many optical
wavelengths; lenses in the f1— f 10 range should be ap-

_ -~ SURFACE
- - =\ —POLARITON

FOCUSING
LENS

~
METAL FILM ‘\\
N

FIG. 20. “End-fire” coupling geometry for exciting surface
plasmons.
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propriate. The expectation is that a solution to the disper-
sion relation should propagate without changing its field
profile, which can then be observed after some propaga-
tion distance. Such an experiment also has its uncertain-
ties. For example, all allowed modes are excited to a
larger degree than with a prism coupler. Nevertheless, a
well-designed experiment should cast some further light
on the field distributions which can be propagated.

G. Resonance interpretation

To this point we have been treating the various solu-
tions to the dispersion relations as individual waves. Al-
though we expect that the solutions can be propagated as
discrete field distributions (if they can be launched), they
can also be treated as different aspects of resonances at
the two metal-dielectric interfaces.

For example, consider the s, and s; branches in Fig. 6.
The wave-front tilts in medium ¢, are into, and out of the
film, respectively, for wave localized at the €;-€,, boun-
dary. The solution tilted towards the surface (s,) can
couple to incoming radiation fields, and the wave (s;) tilt-
ed away from the metal-¢, interface generates outgoing
(radiation) fields. The two branches, therefore, describe
different aspects of the same resonance at the €3-€,, inter-
face.

A similar argument can be applied to the other
branches of solutions discussed in the paper. For exam-
ple, consider the @, and a; solutions. The wave fronts are
tilted towards and away from the film, respectively, to
describe coupling (potential in the case of a;) to incoming
and outgoing radiation fields. In fact if medium ¢, is in
the form of a thick film and coupling to incident plane
waves is allowed, it is the a, solution which couples.

This interpretation is supported by the value of B; for
the solution with the largest attenuation, relative to the
ABRr between waves describing the same resonance. In

each and every case, B; > ABr, which verifies the mixed
nature of the resonances. Furthermore, the field ampli-
tude distributions inside the dielectric where the reso-
nances occur (field enhancements associated with energy
storage) are almost identical.

This interpretation can circumvent the problem of
which modes are “physical,” etc. In any practical sample
geometry, it is the resonance which is physical. Whether
the coupling of the resonance to incoming or outgoing ra-
diation fields is important depends on the particular ex-
periment, and for most cases both couplings occur. A vi-
able conclusion is that all of the solutions described here
are physically significant because they describe different
aspects of the same resonance. We also note that all of
the standard ATR calculations, etc., include both cou-
plings by virtue of the fact that both incident and reflect-
ed (outgoing) plane waves are included.

The proliferation of waves discussed here should occur
for any film which exhibits a dielectric constant of the
form e=—eg —i€;. An example would be surface pho-
non polaritons? which involve the coupling of electromag-
netic fields to vibrational resonances in the film. Another
example is surface exciton polaritons,’ which exist by vir-
tue of the coupling of electromagnetic fields to hole-
electron pairs in semiconductors. In these cases the film
dielectric constants do not take on values as large as for
metals and hence the appropriate film thicknesses will be
much larger than for metals.
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