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Low-order anharmonic contributions to the internal energy of the one-component plasma
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We present precise calculations of the second-order cubic and first-order quartic anharmonic con-
tributions to the internal energy of the one-component plasma 4,'OCP), which are then used with

available computer-simulation data to estimate the size of higher-order anharmonic effects. %'e

show that in both the zero-temperature and high-temperature limits the OCP is very harmonic. At
zero temperature, we find that the two lowest-order anharmonic contributions are the largest anhar-

monic contributions, and of the two the second-order cubic contribution is nearly three times the
first-order quartic. At high temperatures, we find that the second-order cubic contribution is about
twice that of the first-order quartic, but their combined contribution to the internal energy is small

compared with our estimate of the next-order anharmonic terms.

I. INTRODUCTION

The one-component plasma (OCP), a system of in-
teracting point charges, embedded in a rigid, uniform
background of neutralizing charge, is a useful model for a
strongly interacting system having a phase transition. Al-
most all work on the OCP has been in the zero- or high-
temperature limits. The zero-temperature limit describes
the ground state which is a function of only one parame-
ter, the density of the system. In the high-temperature
limit Planck's constant disappears from all formulas and
the system is therefore in a classical (as opposed to
quantum-mechanical) regime. All physical properties also
depend on only one parameter I, which is roughly the ra-
tio of the potential and kinetic energies. Both the high-
and low-temperature limits are much more tractable than
the general case of arbitrary density and temperature. In
this paper we limit our attention to these two limiting
cases.

In addition to a considerable number of analytic stud-
ies, ' the zero- and high-temperature properties of the
model have been extensively investigated by computer
simulations. ' Besides providing useful benchmarks for
analytic studies, they have also demonstrated a fluid to
bcc solid transition. The analytic studies have been most
useful in providing a quantitative understanding of the
fluid phase rather than that of the solid phase. For the
latter it is essential to understand how anharmonic effects
contribute to the model's free energy Since th. e impor-
tance of such effects is expected to grow as the density
and temperature approach their melting values, several in-
vestigators have calculated infinite-order subsets of the
anharmonic contributions by using self-consistent har-
monic theory (SCH). ' ' Unfortunately, as discussed by
Albers and Gubernatis, ' these corrections for the high-
temperature properties, when compared to the computer-
simulation data, are of the wrong size and sign.

The cause of this disagreement is found in the estimates
of Carr et a/. ' for the second-order cubic and first-order
quartic anharmonic contributions to the ground-state en-
ergy, the two lowest-order anharmonic contributions. The
second-order cubic contribution is of greater size and op-

posite sign than the first-order quartic contribution. Since
self-consistent harmonic theory ignores the cubic contri-
bution while keeping the quartic one, the disagreement at
high temperatures would be resolved if the second-order
cubic contribution is the dominant term in the anharmon-
ic expansion for the free energy. Using self-consistent
phonon theory, Kugler' and Glyde and Keech' have also
discussed the importance of the second-order term to the
ground state.

In this note we present precise calculations of the
second-order cubic and first-order quartic anharmonic
contributions to the internal energy. We computed the
internal energy instead of the free energy to facilitate
comparisons with the Monte Carlo simulation. We then
used our calculations and simulation data to estimate the
size of the remaining higher-order anharmonic effects.
We show that the zero- and high-temperature limits are
both quite harmonic, that at zero temperature the lowest-
order anharmonic contributions describe well the internal
energy even at densities and temperatures approaching
their values at melting, and that in the high-temperature
limit at least the two lowest-order contributions are need-
ed.

II. PERTURBATION CALCULATIONS

To lowest order in anharmonic effects, the free energy
F of a crystal is'

F=Fo+Fg +F3+F4,
where Fc is the static lattice contribution, Ft, the harmon-
ic contribution, F3 the second-order cubic, and F4 the
first-order quartic contribution. Specifically,

Fi ———6 g i V(1,2, 3)
i

W(1,2,3),
1,2, 3

with

(n i + 1)(nz+ns+ 1)—n2ns
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where fi= 1, n is the Bose function, and V(1,2,3} is the
Fourier transform of the third-order force-constant ma-
trix as defined by Shukla and Cowley, and

F4 ——3 g V(1, —1,2, —2)(2n i+ 1)(2n 2+ 1),
123

where V(1,2,3,4) is the Fourier transform of the fourth-
order force-constant matrix. The numbers 1, 2, and 3 la-
bel eigenfrequency, wave number, and branches. At T =0
the free energy, of course, is equal to the internal energy
U. To obtain the internal energy at high temperature, we
replace the Bose factors in these expressions by kT/co and
then use the thermodynamic relation

U= —T (Ii/T) .
T

For the OCP the static and harmonic contributions to
the internal energy are well known. If we scale all lengths
by the cube edge a and scale the harmonic frequencies by
the plasma frequency co~

one
COp =

where n is the density of point charges, then U at T =0,
in units of rydbergs, is

U —1.791 85 2.657 24
N rs r, r,

where r, is the Wigner-Seitz radius, and the cubic and
quartic anharmonic coefficients are defined by

2/3
1 3 1

i V(1,2, 3)i ~ 9 i +iIz+Ci24 4m &i i2& coi+ 2+

(3a}

butions will have opposite signs if the coefficient u4 has
the same sign as u&, which must be positive.

III. RESULTS

To calculate ui and u4, we first computed the eigen-
values and eigenfrequencies of the harmonic lattice using
the Ewald-like methods described by Cohen and Keffer
to handle the nearly divergent lattice sums. %e then used
these eigenvalues and eigenvectors to compute V(1,2,3}
and V(1,—1, 2, —2}. The more convergent lattice sums
involved with these transforms were easily and efficiently
handled on a Cray computer by directly summing over
the first 748 lattice vectors of the bcc lattice. Conver-
gence of the sums for a given wave nuinber and branch
was typically 1 part in 10 .

The Brillouin-zone integrations [the wave-vector sum-
mations in (5)] were much more difficult to do. To do
them we used two different uniform meshes. A uniform
mesh allowed us to vectorize the most time-consuming
parts of the calculation and to handle easily the 6 func-
tion in (5a}. Since the b function forces q& to be the sum
of qi and qz (within a reciprocal-lattice vector), the num-
ber of q& wave vectors that occur equals the product of
the numbers for qi and qz. By symmetry one can choose
qi in the irreducible part of the Brillouin zone; the wave
vectors qi, however, must range over the full Brillouin
zone. Hence, the number of q& vectors quickly becomes
enormous even for a moderate number of points in the ir-
reducible part of the zone. We found it prohibitively ex-
pensive to calculate the attendant phonon eigenvectors
and eigenfrequencies for so many points. The uniform

10
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At high temperatures ( T~ ao )

= —0.895 929 256I +3+
I (4)

where the dimensionless parameter I equals e /r, kT, and
' 2/3
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In Eqs. (2) and (4) the first term is the static electrostatic
energy contribution, where all the ions are located at lat-
tice positions. The second terms of Eqs. (2) and (4) are
the harmonic contributions. %ith the sign convention
adopted in these equations, the cubic and quartic contri-

FIG. 1. Convergence of the coefficients u3 and u4 as a func-
tion of the number of points in a %'allace mesh in the first Bril-
louin zone. The circles represent u3, and the squares, u4, the
open symbols are the high-temperature results; the solid symbols
are the zero-temperature results.
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TABLE I. Extrapolated values of the lowest-order anhar-
monic contributions. The dimensionless coefficients u3 and u4
are defined in {2)and {3).

Zero temperature
High temperature

u3

1.087
7.198

0.384
3.551

cn

CD

CD

4--
C3

o o

F(N) =f„+aexp( b ln—N),
and then used the f„as a determination of the estimate
of the appropriate anharmonic contribution. For the cu-
bic contributions we used the results based on the
Born —von Karman mesh, and for the quartic contribu-
tions, the Wallace mesh. Our results are shown in Table

0 ~ ~

0
100 1000 10 000

FIG. 2. Convergence of the coefficients u3 and u~ as a func-
tion of the number of points in a Born —von Kirmin mesh in

the first Brillouin zone. The circles represent u3, and the
squares, u~,' the open symbols are the high-temperature results;
the solid symbols are the zero-temperature results.

mesh gets around this problem since the sum (or differ-
ence) of q points on a uniform mesh is also a member of
the original uniform mesh, and hence only the small num-
ber of phonon frequencies and eigenvectors for this mesh
need to be calculated.

Of the two different uniform meshes, one was that sug-
gested by Wallace. Although convergence was fastest
for this mesh, it was also oscillatory, with the oscillation
being most pronounced for the cubic contributions (Fig.
1). To determine the cubic contributions we used a
Born —von Karman mesh, that is, the wave vectors of a
periodic lattice of N particles. For this mesh the conver-
gence was uniform (Fig. 2). For the Wallace mesh the
number of mesh points ranged from 249 to 5487, for the
Born —von Karmin mesh from 215 to 5831.

Our estimates of the anharmonic contributions were ob-
tained by extrapolating our data to an infinite N limit.
We did this by fitting the three largest N results for each
contribution to the form

From Table I one sees at zero and high temperatures
that u& is several times larger than u4, and both are posi-
tive. These facts help explain why SCH calculations corn-
pared poorly to the Monte Carlo simulations. We note
the estimates of Carr et al. '

(u& —1.14 and u4 —0.409)
and of Glyde and Keech' (ui ——1.101 and u4 —0.37) for
the zero-temperature values of u & and u4 are close to our
values (u& ——1.087 and u4 ——0.384), as is the estimate of
Ceperly for u3 —u& (0.73).

At zero temperature the Ceperly' simulations on the
solid phase were done for r, ranging from 200 (an equili-
brium state), through 67 (the estimated value for melting),
to 50 (a metastable state). Over this range of r, the mag-
nitude of the lowest-order anharmonic contributions
U&+ U4 varies from 2% to 5% of the harmonic contribu-
tion Uq. At high temperatures the simulations of Slatter-
ly et aI."were done for I ranging from 300 (an equilibri-
um state), through 166 (the estimated value for melting),
to 150 (a metastable state). Over this range of I the ratio
of Ur+U4 to Ul, varies from 0.05% to 0.1%. Conse-
quently, both at zero and high temperatures the leading
anharmonic contributions make only very small correc-
tions to the internal energy and are small compared to the
harmonic contribution.

Since we now have precise calculations for the electro-
static, ' harmonic, and lowest-order anharmonic contri-
butions, we can estimate the r, and I dependence of the
remaining anharmonic contributions by computing the
difference between their sum (which we will call Ui) and
the Monte Carlo results. In practice, this procedure is
limited mainly by the numerical precision of the Monte
Carlo results. As just discussed, the lowest-order anhar-

TABLE II. Summary of the zero-temperature results. UMc is the internal energy per particle as
determined by the Monte Carlo simulation of Ceperly {Ref. 12). Ul is the internal energy per particle
calculated exactly through the lowest-order anharmonic correction. U2 is the internal energy per parti-
cle with the next-order anharmonic correction estimated from the r, =250 results.

30.0
50.0

100.0
200.0

UMc

—0.044 540
—0.028 660
—0.015 331
—0.008 034

—0.044 338
—0.028 602
—0.015 332
—0.008 037

UMc- Ul

—0.000202
—0.000058

0.000001
0.000003

—0.044 545
—0.028 660
—0.015 342
—0.008 039

UMc- U2

—0.000005
—0.000000
—0.000011

0.000005
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TABLE III. Summummary of the high-temperature results. UMc is the free energy per NkT as deter-

mined by the Monte Carlo simulations of Slatterly et al. (Ref. 11). U~ is the internal energy per NkT
calculated exactly through the lowest-order anharmonic correction. U2 is the internal energy per NkT
with the next-order anharmonic correction estimated from the I =200 results.

160.0
170.0
180.0
200.0
220.0
240.0
300.0

UMc

—141.716
—150.697
—159.667
—177.603
—195.536
—213.463
—267.233

UI

—141.826
—150.787
—159.747
—177.668
—195.588
-213.508
—267.267

UMc- UI

0.110
0.090
0.080
0.065
0.052
0.045
0.034

—141.708
—150.682
—159.654
—177.592
—195.525
—213.455
—267.233

UMc- Uz

—0.008
—0.015
—0.013
—0.011
—0.011
—0.008
—0.000

monic contributions are already very smail compared to
the harmonic part, and, as can be seen from Tables II and
III, the importance of remaining contributions depends on
whether one is in the zero- or high-temperature limits. In
any case, at the largest r, and I shown the corrections are
10 times the total internal energy.

In perturbation theory the next-order anharmonic con-
tributions in the zero- and high-temperature limits have
the forms a/r, and b/I" To att.empt an estimate of the
residual anharmonic contributions, UMc —Ui in Tables II
and III, we chose the largest r, and I that seems to have a
contribution above the error of the Monte Carlo simula-
tions (r, =50 and I =300) and assume that the next lead-

ing anharmonic contribution is dominant at these points.
With this assumption we fit the data to find a = —1.017
and b=3019, and then add these contributions tn U& to
obtain U2. In Tables II and III and Figs. 3 and 4 we
compare new estimates of the anharmonic internal energy
with the Monte Carlo simulations. As easily scen, within
the numerical accuracy of the simulations, we find at
T=0 no significant difference between the two, even
above the melting transition and in the metastable regime
where anharmonic effects should be most pronounced. At
high temperatures we find at most a 10% difference.

1.0

The remarkable agreement of the internal energy ex-
pression, even in the melting and metastable region, with
the Monte Carlo data for the ground state suggest that the
anharmonic perturbation is strongly convergent. In fact,
if our assumption about fitting the second-order term is
correct, the series by the third term has converged to the
accuracy of the simulation. At high temperatures our es-
timate of the second-order anharmonic contributions sug-
gest that if our assumption is correct, then small higher-
order anharmonic corrections are still present. Most like-
ly we should have assumed that at I'=300 at least the
second- and third-order corrections were present and fit-
ted the unaccounted for anharmonicity to a/I +b/I
however, we feel it is more significant to suggest that the
obvious smallness of the anharmonic contributions and
small difference between our fit and the data indicates
even at high temperatures the anharmonic perturbation
series is converging to an accuracy comparable to the
Monte Carlo results after a finite number of terms.

As another measure of anharmonicity we compared the
first-order quartic term with the results' of self-
consistent harmonic (SCH) theory, since the former is th
1

er is e
eading term to the latter. In the zero-temperature limit

we find that the total anharmonic contribution from SCH
theory is 56% of u4/r, at r, =30, 62% at r, =50, 71% at
r, =100, and virtually identical at r, =200. In the high-
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FIG. 3. The negative of the anharmonic contribution to the
internal energy at zero temperature as a function of the
signer-Seitz radius r, . The circles are the Monte Carlo results
of Ceperley et al. ; the dashed line represents our calculation of
the lowest-order anharmonic contribution; the solid line is the
sum of our calculation of the lowest-order contribution and our
estimate of the next-order contribution.
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FIG. 4.
r

The anharmonic contribution to the internal energy
at high temperatures as a function of I". The dots are Monte
Carlo results of Slatterly et al. ; the dashed line represents our
calculation of the lowest-order anharmonic contribution; the
solid line is the sum of our lowest-order contribution and our es-
tirnate of the next-order contribution.
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temperature limit, we find that u4/I has a magnitude
51% of the anharmonic SCH result at I"=300, 58% at
I =200, and 78% at I =100. Thus the summation of all
remaining even-order terms in perturbation theory (SCH)
is of the same order of magnitude as the lowest-order
even-order term.

In principle, the r, and I contributions could be
computed from the proper perturbation contributions;
however, the cost of doing such a calculation accurately,
particularly the triple Brillouin-zone integrations now
needed, may be prohibitive. For example, our calculations
of the two cubic contributions for X=5381 took over 3 h
on a Cray-XMP computer. Although more efficient in-
tegrations schemes than the uniform mesh may exist, the
slow convergence of the integrations was surprising and
untraceable to any obvious singularity in the integrand.
For example, we tried doing the same calculations for oth-
er inverse power-law potentials [V(r) =(cr/r )", n & 1] and
found for 2 & n & 6 and a bcc lattice that convergence was
even slower than for n =1. On the other hand, for a fcc
lattice and 1 & n &12, convergence was rapid. We left the
cause of this peculiar behavior uninvestigated.

IU. CONCLUDING REMARKS

We presented calculations of the second-order cubic
and first-order quartic anharmonic contributions to the
internal energy of the one-component plasma. With these
calculations and available computer-simulation data we
estimated the size of higher-order anharmonic effects.
For both the zero- and high-temperature limits, we
showed that the system is quite harmonic; the lowest-
order anharmonic contributions are at best a few percent
of the harmonic contribution over the range of the simu-
lations (including the melting and metastable regions).
Quantitatively, at zero temperature we find

U —1.791 85 2.657 24 0.703
p

3/2 2
S S S

while at high temperatures

1.017
5/2

S

1VkT
= —0.89S 929256I +3— +r r' (6b)

We note that at high temperatures Pollack and Hansen
have argued that the lowest-order anharmonic contribu-
tions are negligble, and hence they and others have fit
their data to a form in which only the I contributions
represent the anharmonic effects. Although this pro-
cedure may produce a good fit to the data, our calcula-

tions now allow the proper importance of the anharmonic
contributions to be established more quantitatively and
thus allow a more correct interpretation of the simulation
data.

The relative importance of the cubic over the quartic
anharmonic term is most likely a consequence of the
soft-core nature of interatomic, Coulomb potential. In
metals and ionic crystals the cubic and quartic terms are
found to be of approximately equal size. In those sys-
tems the interatomic potential has a reasonably steep hard
core. In the rare-gas crystals the quartic term is found to
be approximately twice the size of the cubic term. There
the interatomic potential has a very steeply rising hard
core. Basically, the anharmonic perturbation theory con-
verges less well for a steeply rising hard-core potential,
and this makes the quartic term relatively more important
than the cubic term.

In closing we remark that it is extremely unusual for
harmonic contributions to dominate the equation of state
so strongly, especially near melting. We believe that this
situation also results from the long-ranged electrostatic
forces present in the OCP model, which qualitatively as
well as quantitatively distinguish the OCP from other
two-body central force models. Some indication of the
unique features caused by this long-range force, besides
the need for Madelung techniques to handle the nearly
divergent lattice sums, is the isotropic term ro&5;J /3 in the
harmonic dynamical matrix that is absent for all short-
ranged interatomic potentials. It would be interesting to
study an OCP with Thomas-Fermi screening, i.e., a sys-
tem with a pairwise potential of

V(r) =e exp( r/k, )/r, —

as a function of the screening length A, to see if the har-
monic terms become more dominant as the screening
length goes to infinity. The long-range forces may induce
a nonanalyticity in the equation-of-state properties. By
this we mean that the A.~ac limit of the Thomas-Fermi
screened model could have qualitative as well as quantita-
tive differences from the OCP. For example, the
Thomas-Fermi screened model will always lack the
co~5;J /3 term in the dynamical matrix, because no matter
how large A, is, the screening length is still finite.
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