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Hall effect in the heavy-fermion superconductor Upt3
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The Hall effect of a UPt3 single crystal has been determined for temperatures from 2-300 K. The total

Hall signal is decomposed into the normal and anomalous parts. The anomalous part is very large and posi-

tive with a pronounced maximum near 3G K reaching 2.8&&1G 3 cm3 (As) '. The normal part is smaller

and negative and corresponds in a one-band model to about one electron per formula unit. The change of
sign of the temperature derivative of the anomalous Hall effect is related to the transition into the heavy-

fermion state.

Recently, the Hall effect of heavy-fermion and inter-
mediate-valence cerium and uranium systems has attracted
considerable interest from both experimental and theoretical
workers. ' Generally, for T & 10-20 K, a remarkably large
and positive Hall coefficient is observed. Below this tem-
perature the Hall coefficient often decreases and sometimes
changes its sign. In a simple resonant-level Fermi-liquid
model for the anomalous Hall constant of mixed-valence
and Kondo-lattice systems Coleman, Anderson, and Ramak-
rishnan6 have shown that the sign of the anomalous Hall
constant is determined by an interference term between the
d and f scattering channels. For Ce3+ ions and tempera-
tures exceeding the renormalized width of the resonance
level, a positive anomalous Hall constant is predicted in
agreement with the experimental data. At low temperatures
coherence effects become important and a single-impurity-
based description should no longer apply.

UPt3 is one of the few heavy-ferrnion systems which be-
come superconducting at low temperatures (0.5 K)." Its
resistivity in the normal state differs qualitatively from that
of other heavy-fermion superconductors, like CeCu2Si2
(Refs. 1 and 9) and UBet3 (Ref. 10), by the absence of a
maximum. Instead, the resistivity p(T) decreases continu-
ously with decreasing temperature with, however, a net ac-
celeration below =30 K. The change of sign of Sp/ST is
generally associated with the onset of coherent scattering
and the transition into the heavy-fermion state. Hall-effect
measurements have been performed for CeCu2si2, '~'
UBel3, 2 and CeCu6. For none of these has a decomposi-
tion into the normal and anomalous Hall effects been per-
formed, and consequently, the total Hall effect has been in-
terpreted on a qualitative basis. In this paper we present
Hall data obtained on a UPt3 single crystal which allo~, for
the first time, a decomposition into the normal and
anomalous parts. While the anomalous part is positive for
all temperatures with a pronounced maximum near 30 K,
the normal Hall effect is found to be negative and to corre-
spond in a one-band model to approximately one electron
per formula unit.

UPT3 crystallizes in the hexagonal Ni3sn structure with
space group p63/~m~. The investigated sample had the
dimensions 3x0.25x1.2 mm in the directions of the a, b,

and c axes, respectively. The resistivity and the Hall effect
were measured with the ac van der Pauw method. For the
Hall-effect measurement the magnetic field was applied
along the b axis, the current flowed along the a axis, and
the Hall voltage was determined in the c direction. Because
the same spring-loaded tungsten electrodes were also used
to measure the resistivity, we have obtained an average
value between the resistivity in the a and the c direction.
Magnetic fields up to 100 kOe could be produced with a
split-coil superconducting magnet.

Figure 1 displays the result of the Hall-effect measure-
ments obtained in an applied field of 40 koe. The different
symbols indicate various runs on the same sample. We ob-
serve a positive Hall effect as clearly controlled by a Hall
measurement on a pure gold reference. The total Hall ef-
fect shows a maximum at 29 K and a steep decrease at low
temperatures. For temperatures above =50 K the tem-
perature dependence of the Hall effect resembles that of the
susceptibility along the a axis as can be realized from the
susceptibility data" which are also shown in Fig. 1. To
separate the normal RD from the anomalous Hall-effect R,
we make the ansatz"

PH = ROB+ 4~MRs

For T)) T~, O we take B=H, M=XH, and X=C/
(T—0), giving

Figure 2 shows a plot of RH(T 0) vs T 0, w—ith-
0= —50 K as derived from the X '(T) curve for T~ 300
K. We obtain a good fit for 50 K ~ T ~ 300 K with a nega-
tive slope, indicating a negative sign of Ro. Thus the ordi-
nary Hall effect is dominated by electron contributions. The
fit value Ro= —4.0x 10 4 cm3 (As) ' corresponds in a
one-band model to 1.06 electrons per formula unit. This
one conduction electron per UPt3 is very suggestive for the
existence, in the normal state, of a rather simply shaped
conduction band crossing EF. Of course, one might argue
that this value is the accidental result of a combination of
various electron and hole surfaces with different carrier
velocities and relaxation times, but as we will show the ob-
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FIG. 3. The ratio of the anomalous Hall effect to the susceptibili-

ty in the basal plane of UPt3. (a.u. arb. units. )
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FIG. 4. Low-temperature fit of the total Hall effect of UPt3.

dence of R, describes the experimental data very well above
= 50 K (full line in Fig. 1) we also recognize in Fig. 1 that
the Hall effect peaks at a temperature 10 K higher than the
susceptibility. If we assume that the normal Hall contribu-
tion also remains small below 50 K we may separate from
the anomalous Hall effect the factor which is proportional to
the susceptibility. Figure 3 shows the result of dividing the
anomalous part of the Hall effect by the experimental )r, (T)
values. " As expected, we obtain a horizontal line where
the Curie-%'eiss ansatz applies, but belo~ 40 K, R, de-
creases noticeably. This enhanced decrease of the
anomalous Hall effect, compared with the susceptibility, is
vie~ed as a clear sign of the onset of coherence for the
scattering of the conduction d electrons on the f moments.

Figure 4 displays a plot of the Hall data against T. We
obtain a good fit up to about 100 K2. It is remarkable that
this temperature range is nearly one order of magnitude
larger than that of the T dependence for the resistivity.
According to a theory of Volonshinskii, a quadratic tem-
perature dependence of the anomalous Hall effect results
for a mixed spin-orbit interaction if spin disorder is the
scattering mechanism. ' However, the applicability of this
model to the Fermi-liquid state is open and more theoretical
efforts would be very welcome.

In summary, we have presented the first Hall data on a

heavy-fermion system that could be unambiguously decom-
posed into the normal and anomalous parts. The latter con-
tribution shows the onset of coherence much clearer than
does the resistivity, suggesting that the resistivity is deter-
mined by various kinds of carriers which do not all partici-
pate in the formation of the coherent state. The separation
of the two Hall contributions also allowed an estimate of the
"free-carrier" concentration and an assignment of these
electrons to a Pt-derived sp band crossing Eq. The size of
the anomalous part can then be compared with data for nor-
mally behaving rare earths. %e find in UPt3 a value of = 1

cm (As) ' compared to —4&10 3 cm3 (As) ' in terbi-
um, or 4.4&10 ~ cm3 (As) ' in the basal plane of erbi-
um. ' " This huge signal in UPt3 is, among others, a conse-
quence of the large spin-orbit splitting in uranium which
manifests itself in record magneto-optical effects in some
ferromagnetic uranium compounds. "
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technical assistance in the measurements. One of us (J.S.)
would like to acknowledge the support of P. Wachter and
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