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Conductivity of a square-lattice bond-mixed resistor network
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within a real-space renormalization-group framework based on self-dual clusters, we calculate the

conductivity of a square-lattice quenched bond —random resistor network, the conductance on each

bond being gl or g2 with probabilities I —p and p, respectively. The group recovers several already

known exact results (including slopes), and is consequently believed to be numerically quite reliable

for almost all values of p, and all ratios g&/g2 (in particular, gl ——0 and gl ——oo with finite g2,
respectively, correspond to the insulator-resistor and superconductor-resistor mixtures).

I. INTRODUCTION

Electrical conduction in random resistor networks and
the associated criticality have been the subject of a consid-
erable amount of efforts during recent years. Theoretical
approaches such as computational simulations, ' renor-
malization groups, ' and others, " as well as experi-
mental results, ' ' are already available. Nevertheless,
the problem is far from being fully solved, even for very
simple systems, such as, the square lattice with quenched
binary distribution of conductances (bond conductance gi
or g2 with probabilities 1 —p and p, respectively). The
corresponding exact functional dependence of the conduc-
tivity tr on p, gi, and gz is still unknown.

In this paper we introduce a real-space renormaliza-
tion-group (RG) formalism which follows along the lines
of those recently developed in Refs. 15 and 16 to treat the
conductivity of simpler but related systems. In Sec. II we
introduce the model and the RG formalism, in Sec. III we
present the results, and finally we conclude in Sec. IV.

II. MODEL AND RENORMALIZATION GROUP

We consider a square lattice with the following conduc-
tance distribution associated with each bond:

g
g+go

which satisfies an interesting (probability-like) property,
namely,

S (g)=—S(g )=1—S(g), (7)

where we have used definition (5). On the basis of this S
variable it will be possible later on to construct a quite
performant RG (similarly to what occurred for the bond-
dilute problem' ).

We next introduce the RG formalism which yields
o(gi, gz,p), by renormalizing the self-dual Wheatstone
bridge cluster [Fig. 1(b)] into a single bond [Fig. 1(a)] (the
RG linear-scale factor b =2). The conductance glt of a
Wheats tone bridge with elementary conductances g i,
gi, . . . ,gs as indicated in Fig. 1(b) is given (see for in-
stance Ref. 15) by

g;—:go/g; (i =1,2,s),

where D stands for dual' [see also Refs. 17—19 for a re-
lated discussion in the context of the Potts and Z(N)
models], and go is an arbitrary reference conductance.

We now introduce the following convenient variable

P(g) (1 p+(g gl )+p5(g g2) (gi g2 +o) '

The conductance of a parallel or series array of two
bonds (with conductances gi and g2) is, respectively,
given by

g2

gz ——gi+gz (parallel),

g glg2~(gl +g2) (3) 9g 9p

The latter can be written in the same form as the former,
namely,

{o) b=2 (b)

gg =gl+g2
with

(4) FIG. 1. Two-terminal self-dual arrays of conductances (0
and , respectively, denote terminal and internal nodes). W'ithin

the present RG cluster (b) is renormalized into cluster (a).
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gig2f 3+flgZf4+g2f 3g4+f 1g3g4+15(f lf3+gzg3+g lf4+gzg4}

f igz+gig3+nzg4+g3g4+g5(gl +f2+f3+f4)
Consequently the distribution law PH associated with Fig. 1(b) if each one of its bonds is associated with the distribution
P(g) [Eq. (1)] is given by

2

PH(g) =[(I—P) +(1—P) P]5(g f—1 )+4(1 P)—P5 g—5 4 4 3g1+5g182 +2(1—p) p 5 g—3 2

5g1+ 3g2

g1+4g1g2+ 3g2

2g1+ 6g2

+2(1—p) p 5 f- 2g1g2 +4(1—p) p 5 g—3 2

g1+g2
f i+ f ifz+ fitz5 2 +21—p p g-

2g 1 +5g1g2 +g 2

g 1 +$g 1g2+ 3g1g2

3g 1 +4g 1g2 +g 2

+2(1—p)'p'5 f—f2+ f2gl+ f2f1 2 3 f2+ f2f1+ f2fl 2 3 f2f1
3f2+4f2f1 +gl 2g2+5g2g1+g1 f2+f 1

g 2+4g2g1+ 3g1 3g 2 +5g2g1+2(1—p)zp35 g- +4(1—p)p45 g- +[(1—p)p'+p')]5(g —gz)2fz+6fi 5g2+3g1

We could in principle follow the evolution, under succes-
sive renormalizations, of the distribution law until it at-
tains an invariant form. This procedure has in fact al-
ready been used3 for random resistor problems. However,
an operationally much simpler and numerically excellent
procedure (which has yielded quite satisfactory results for
the Potts model's) can be followed instead, namely, to ap-
proximate distribution P~(g) by a binary one, given by

P'(g) =(I—p')5(g —gl )+p'5(g gz ), — (10)

where p', gl, and gz will be completely determined [as
functions of (p,gl, gz)] by imposing the invariance of the
three first momenta of a function f(g) to be chosen. A
natural possible choice is f(g) =g, and we shall denote g-
RG as the corresponding RG. However, a more sophisti-
cated and convenient choice is possible, ' namely
f(g) =$(g) (we denote S-RG as the corresponding RG).
More precisely, we impose

p }Sl +p $2 [(1 p} +(1 p}p)$1

3'5
+4(1—} S f +ff

5g1 +3g2

3

H(p, S1,$2)—, (12c)

Sz F+ ~K,——1

L

where

K =G —Fz&0

(13c)

(14)

where S;=$(gl) and S —=$(g ) (i=1,2). The solution
of the set of Eqs. (12) is given by

L2
(13a)

1+L
S1 F+I.~K, —— (13b)

&s(g)&, =&s(g)&, ,

&[$(g)] & =&[s(g)]'&,„,
& [$(f}]'& = & [$(f})'& „

hence,

(1 p')Sl +p'Sz —=[(1 p) +(1—p) p]S—1

4(1— }4 S g 1 glg23 '+5
5g1 +3g2

+—:F(p,S1,$2),

(1—p'}S", +p'S,' =[(1—p)'+(1 —p)'p]S1

4 gl gifz
Sg +3g

+:—G (p,S1,S2},

(1 la)

(1 lb)

(1lc)

(12a)

(12b)

[(H —3FK F) +4K ) / ——(H —3FK F)—
2j,""

(15)

The upper (lower) sign in Eqs. (13b) and (13c) is to be used
in the region Sl ~sz (Sl &Sz), i.e., g»gz (gl &gz).
Equations (13) unambiguously provide p', S'1, and Sz as
functions of p, Sl and Sz [or equivalently p', gl, and gz
as functions of p, gl, and gz, the reference conductance

go is cancelled out everywhere due to the homogeneous
structure of Eqs. (13)], thus formally closing the opera-
tional problem. Finally, the conductivity a of the system,
as a function of p and gl/gz for say fixed gz, renormal-
izes as 1/gz (see Refs. 3,15,16,20, and 21).

III. RESULTS

The recursive relations (13) provide the surface indicat-
ed in Fig. 2. We note that (i} two fully stable fixed points
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S

oI'p j
g(t J

FIG. 2. RG flow in the (p, S1,S2) space. The separatrix (sur-
face delimited by the heavy lines) between the g1-dominated and
the g2-dominated regions is invariant under the

(p, S1,S2)~(1—p, S2,S1) transformation; the p =
2 line consti-

tutes in invariant subspace corresponding to the equal concen-
tration model. 0, 0, and 0, respectively, denote fully stable,
fully unstable, and semistable fixed points. 0

0 0.5 10 p

1 do(p)
o(1) dp

2(1 —a)
1+0! (17)

as well as

exist, namely, (p,Si,S2)=(0,0,0) and (1,1,1), which en-
able (through the determination of the separatrix between
their respective attractive basins) the numerical calcula-
tion of the surface we are interested in; (ii} the insulator-
resistor (superconductor-resistor) particular case corre-
sponds to the lines on the Si ——0 and S2 ——0 (Si ——1 and
Sz ——1) planes; (iii) the homogeneous or pure case
(gi ——g2} corresponds to the twisted H-like hne constitut-
ed by the p =0, p =1, and si ——si segments; (iv} the
equal-concentration case (p = —,', g»gz) corresponds to
the line S~+S~——1.

In Fig. 3 we have represented, in the (cr,p) space for
fixed g2 and typical values of a=gi/gz &0, the surface
appearing in Fig. 2.

The present S-RG provides the following exact results:

1 d cr(p) 2a( 1 —a )

o(1) dp 0 1+a

and consistently

FIG. 3. Concentration dependence of the quenched bond-
mixed resistor square-lattice conductivity, for typical ratios

g1/g2 (numbers on curves). gi/g2 ——0 and g1/g2 ——ao, respec-
tively, correspond to the resistor-insulator and resistor-

superconductor mixtures. The dashed line indicates the p =—
2

asymptote.

performant: for instance, instead of the exact Eq. (16},it
yields

1 dtr(p) 8a(1 —a)
cr(1) dp 0 3a+ 5

(20)

0 0

which coincides with the (approximate) (d, n)=(2, 1) Eq.
(8) of Ref. 4.

The critical exponents t and s [defined, in the
p-+p, =—,

' bond percolation limit, through o(p;a=0)
~(p —p, )' and o(p;a= oo) ~(p —p, } '] coincide's for
the square lattice, but their exact numerical value is still
unknown. To treat them within the present S-RG we cal-
culate the Jacobian J=B(p',a', Sq )/B(p, a,S2) at the per-
colation point (p,a,$2)= ( —,,0, 1), and obtain

o(0)io(1)=a (18) 0 — 012

013 23
8 12

(21)

o(p) o(1—p)
o(1) 0(1)

hence,

a( —,
' )/a(1) =~a . (19')

Equation (16) recovers the d =2 Eq. (9) of Ref. 4; Eq. (19)
recovers Eq. (5) of Ref. 9. The g-RG is numerically less (22)

whose eigenvalues are A,
&
———", and A,2

——A, 3
——» . The

thermal critical exponent v=lnb/Ink, i as well as the ex-
ponent t =s = ink, 3/lni we obtain are indicated in Table I.

Before closing this section, we add that the heuristic ar-
guments proposed in Refs. 27—30 suggest the following
approximate analytic expression for o(p)/a(1):

(S),=-,',
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TABLE I. Present RG and other available values for the crit-
ical exponents v and t =s.

g-RG Others

1.428 1.428 (exact'}

1.235 1.340 1.26

1.28%0.03'

1 30

1.268'

1.237'

1.34~

'Reference 22.
bReference 23.
'Reference 24.
4Reference 25.

'Reference 26.
fReference 15.
IReference 33.

hence,

(1—p)Si +pS2 ———,',
therefore,

(I-p)a
a+ cr(p)/cr(1) 1+o(p)/a(1)

and consequently,

(23)

(24)

cr(1)
= —,

' I[(1—a) (1—2p) +4a]'i —(1—a)(1—2p)] .

(25}

It can be readily verified that this equation coincides with
the Z =4 particular case of Eq. (5.7) of Ref. 6 obtained by
Kirkpatrick through an effective medium approximation
(EMA).

IV. CONCLUSION

Within a real-space renormalization-group framework,
we have calculated, for arbitrary concentrations and
values of the (two} possible conductances, the conductivity
of a square-lattice quenched bond —random resistor net-
work with a binary distribution of conductances. The re-
sults are very encouraging as our best renormalization
group (namely, the S-RG) recovers several available exact
information (critical percolation probability, slopes, dual
relations) and a satisfactory value for the insulator-resistor
and superconductor-resistor mixtures critical exponents
t =s=l.340 (to be compared with other recent numerical-

ly reliable values such as 1.26, 1.28, 1.30 2 1.33, etc.}.
In some sense, such a high accuracy is not normally ex-
pected for a renormalization approach using such a small
cluster (b =2). Three reasons converge for this fact to
happen: (i) both clusters of Fig. 1 are self-dual (two-
rooted) graphs, a choice which since long is known 's's2

to be very convenient for the square lattice; (ii) the renor-
malization space is relatively large in the sense that it is
three-dimensional (p,Si+2); (iii) the averages are per-
formed on a very convenient variable (namely, the S vari-
able) as it transforms, under duality, as simply as a proba-
bility [see Eq. (7}]. An interesting technical point is
worthy to be noted: the exact critical probability p, =—,

'

has been obtained without imposing a priori a pure per-
colation renormalization-group recursive relation as usual-
ly done (see, for instance, Ref. 15).
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