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Remanent magnetization of the infinite-range Ising spin glass
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The remanent magnetization M, and the excess energy hE are studied for the Sherrington-Kirkpatrick

model of spin glasses using Monte Carlo simulations. At zero temperature T the system relaxes to a sta-

tionary nonequilibrium state with nonzero M, and 4E; both quantities are self-averaging. For 0 & T & T,
the simulations indicate that M, and hE decay to zero as a power law in time.

The remanent magnetization is one of the most charac-
teristic properties of spin glasses. ' In thermal equilibrium
the magnetization of spin glasses is zero since the magnetic
moments point in random directions. Ho~ever, after a
magnetic field has been applied and then switched off the
spin glass relaxes into a state with nonzero magnetization
M, which slowly decays to zero." Hence M, sho~s the ex-
istence of a large spectrum of metastable states and corre-
sponding relaxation times which are characteristic for the
dynamics of disordered materials in general.

A very successful model of spin glasses has been pro-
posed by Edwards and Anderson (EA).~ It is a simple Ising
model with random and competing interactions. In fact,
computer simulations of the two-dimensional (2D) model
have shown that this model has a remanent magnetization. '
It depends on time t, temperature T, the previously applied
field h, and the history of the sample (field cooled versus
zero-field cooled) in qualitative agreement with many details
of the experiments.

All of these properties exist without the presence of a
spin-glass phase in thermal equilibrium since such a phase
does not exist in two dimensions. ' On the other hand, a
spin-glass phase has infinite energy barriers which may in-
fluence the nonequilibrium behavior of the system. For in-
stance, in the infinite-range Ising ferromagnet in an external
field belo~ the spinodal line, a nonequilibrium state with
the magnetization pointing opposite to the field is stable.
Similarly, in thermal equilibrium the infinite-range spin
glass [the Sherrington-Kirkpatrick (SK) modeiio] is charac-
terized by infinite energy barriers and nonergodic behavior
below the critical temperature T, ." Hence, one might ex-
pect that an initial state decays into a "valley" in phase
space far from equilibrium ~here it is permanently trapped,
leading to a stationary nonzero remanent magnetization, In
fact, a nonzero stable remanent magnetization is obtained
analytically for the SK model. "

In this article it is sho~n numerically that the infinite-
range spin glass is not trapped in a state far from equilibri-
um. The remanent magnetization M, decays to zero; in ad-
dition, the energy E decays to its equilibrium value Eo. Our
data can be fitted by a power-law decay in time. Only at
zero temperature do stable nonequilibrium states with
nonzero M, and 4E-E —Eo exist. Boih quantities are
self-averaging, i.e., their sample-to-sample fluctuations
disappear in the thermodynamic limit.

The Hamiltonian of the SK model is given by

H = — x JJS,S) —h x S, ,

where SI +1, i =1, . . . , N, the J„are independent ran-
dom variables with a Gaussian distribution of zero mean
and variance (N —I ) ', and h is a uniform field. For

0, N ~, a transition occurs at T, = 1.' The dynamics
is defined by the usual Glauber single-spin-flip relaxation.
A computer program for the SK model may be found in
Ref. 11. The time t is given in units of Monte Carlo steps
per spin (MCS/S).

Due to the infinite range of the couplings Jlj only rather
small samples up to N = 1024 could be simulated (Ref. 11
uses N « 192). Hence, finite-size effects should be careful-
ly studied. From the simulations of the equilibrium proper-
ties, two characteristic time scales 7 and v„g emerged, both
of which diverge in the thermodynamic limit N ~." ~ is
interpreted as the time needed for diffusing to a neighboring
state of the system and it diverges like (at T = 0.4)

1nv = 2.58N'l —0.66 . (2)

(M, ) =0.14+0.01; (E)/Eo=0 92+ 0 01,

where Eo is the ground-state energy, Eo= —0.765+ 0.002;"
(ii) the fluctuations ((M —(M) )2) and ((E—(E) )') ex-
trapolate as 1/N to zero. Hence, a stable remanent magneti-
zation exists at T = 0; it is about a factor of 2 smaller than
M, of the 2D model. '6

Note that M, is the overlap to the initial state 5;= +1;
hence, it determines the distance d = (1—M, )/2 between
the initial and the final state. ' Therefore, from the result
(4) the following picture of the phase space at T =0 em-
erges: With probability one (for N —~), any initial state
relaxes a distance d =0.43 in phase space to a state with an
energy which is 8% above the ground-state energy. The
ground state or other low-lying states have a vanishing small

v„g is the ergodic time scale needed to reverse an equilibri-
um state to its negative counterpart. It is much larger than
~ and lnv„g diverges like O''. Only data for time scales
much shorter than 7 may show the behavior of the infinite
system.

First, let us consider the saturated remanent magnetiza-
tion. The system starts from the ferromagnetic state
S; + I at t-0; i e., M(r =0) =1 and E(r =0) =0. At
zero temperature the system decays in about 20 MCS/S to a
stationary state. The stationary values of M, and E depend
on the system size N and fluctuate strongly for different
bond configurations. However, from studying 10000 sam-
ples for N 128, 256, 512, and 1024 I find (i) the average
values (M, ) and (E) extrapolate, linearly with I/vN, to
the values
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FIG. 1. Decay of the remanent magnetization M and energy E
with time I plotted double logarithmically for AM=M —M and
4E -E —E . The data are shown for N 512 and T-0.4 and in-

dicate a power-law decay with parameters given in Table I.

FIG. 2. Energy vs magnetization of the decay of the thermo-
remanent magnetization for cooling field h =~ (dots) and h 0.3
(crosses) and for N 512 and T 0,4. The data of the same times
are connected. The circles show thermal equilibrium and the field-
cooled initial state (h 0.3), respectively. The initial state for
h oo isat E Oand M 1.

basin of attraction.
At higher temperatures M and E decay with time. Figure

1 shows the decay of M and E for T=0.4 and %=512.
The data are averaged over 5000 bond configurations; for
each configuration one run was performed. The statistical
error is of the order of the fluctuations with time in Fig. 1.
The data of Fig. 1 are consistent with a power-law decay,

M(r) —M„=dr
(4)

with

M(r) = —XS,(r), E(r) = X J;,S;(r)SJ(r) .
W i&j

The parameters a, A, M„and b, 8, E are obtained from
least-squares fits and are shown in Table I for different sys-
tem sizes N. We see that M is rather small and decreases
with increasing N. (Note that a finite random system has a
magnetization of the order of 1/J¹hence, a nonzero M
of this order is expected. ) M(r) relaxes for time scales
much shorter than the characteristic time r of Eq. (2).
M(r) decreases with increasing size N. All this strongly in-
dicates a vanishing stationary remanent magnetization
M, =M (N ~) =0, at least the value 10 ' is an upper
bound.

The decay to thermal equilibrium is also indicated by the
energy parameter E . Namely, it agrees with the energy of
a system which was cooled in h = 0 from T = 2 to T =0.4 in
steps of 6T =0.05 over 20000 MCS/S. Cooling this system
further to T =0 gives an energy which extrapolates with

N ~ to the ground-state energy Eq. This shows that this
cooling procedure gives the equilibrium energy (within the
statistical accuracy) which is equal to the fit parameter E
of Table I; hence, the power-law fit of Eq. (4) indeed extra-
polates to a state of thermal equilibrium.

A similar behavior is obtained for the thermoremanent
magnetization (TRM); i.e., when the initial state is obtained
from cooling the system in an external field h. I have stud-
ied the decay of M and F. after cooling the system in a field

0.3 over 20000 MCS/S from T=2 to T=0.4. Again
the decay can be fitted by a po~er law, as in Fig. 1, but with
smaller values of the exponents a and b. Similar to the
two-dimensional case6 the decay of the TRM is slower for
smaller cooling fields, However, a reliable determination of
the decay parameters of Eq. (4) was not possible due to the
slow decay and larger statistical errors.

In a magnetization-energy diagram, for different initial
states the system decays on different paths to equilibrium as
sho~n in Fig. 2. Our results suggest a different po~er law

for each path, even very close to equilibrium. Presumably
such a singular behavior cannot be obtained from any kind
of perturbation expansion around equilibrium.

Figure 3 sho~s the dependence of the short-time TRM,
M(r =100 MCSIS) as a function of temperature and cool-
ing field. As in experiments and the 20 model, the TRM
has a maximum as a function of field. It is interesting that
even for such short times the critical temperature T, can be
estimated from the T dependence of the TRM.

Recent measurements of the TRM of Ag:Mn have been
reported which show a stretched exponential decay rather

TABLE L Parameters of the power-law decay, Eq. (3), obtained from least-squares fits for the saturated
remanent magnetization at T-0.4.

128
256
512

1024

0.60
0.55
0.54
0.53

3.2
3.0
2.9
2.85

0.7056
0.7160
0.7222
0.7257

0.36
0.38
0.40
0.38

2.51
2.48
2.47
2.49

0.017
0.014
0.012
0.011
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than a power-law decay, ~ although earlier data on insulating
spin glasses could be fitted by a power law. ' Note, however,
that these new experiments use an extremely small cooling
field; hence, the initial state is very close to thermal equilib-
rium. In the present simulation, however, the cooling field
is infinite or comparable to the coupling energy.
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FIG. 3. Remanent magnetization (TRM) after t =100 MCSIS as
a function of temperature T and cooling field h. The statistical error
is smaller than the data points.

The present numerical simulations were performed on the
Cray-XMP computer of the Kernforschungsanlage Iulich
and took about 100 h of CPU time. Many useful discus-
sions with H. Horner and A. Zippelius are gratefully ac-
knowledged.
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