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Signs of magnetic surface anisotropy constants
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A method presented earlier fG. T. Rado, Phys. Rev. B 26, 295 (1982)) for determining magnetic surface

anisotropy constants by means of ferromagnetic resonance is elucidated and discussed.

A previous paper' includes a method for determining
magnetic surface anisotropy constants by means of fer-
romagnetic resonance (FMR). In the present paper that
method is elucidated and discussed. The equation numbers
used herein refer to equations presented in Ref. 1.

%e show, first of all, that the quantity R introduced previ-
ously' contains an error which exists only in certain cases,
but in those cases it changes some of the theoretical predic-
tions of Ref. 1. One such case is that of the FMR experi-
ments on iron analyzed previously. ' In that particular case
the quantity R (defined by R = ut/v3) is given not by the R
of Eq. (4.22) but by ( —I) times the R of Eq. (4.22). This
correction is a previously overlooked consequence of the
fact that in the experiments on iron analyzed in Ref. 1 both
H+H 2Ak /M and—8+H& 2Ak2/M are—positive when
i = 1, but negative when i = 3.

Using the corrected value of R in Eq. (4.30) for analyzing
the experimental data' used previously, ' we now obtain
K, = +3.1 ergs/cm and K„= +1.6 ergs/cm', i.e., approxi-
mately ( —I ) times the values given in Ref. 1. We believe
that an analysis of the data on the basis of Eq. (4.23), which
is more accurate than Eq. (4.30), is not warranted at
present. The main reason is that, even today, the measured
magnetization of ultrathin iron crystals grown on GaAs (and
covered by Al) is not weil established and apparently thick-
ness dependent. ' As noted previously, ' moreover, the
boundary conditions at the two surfaces of an iron crystal
were different in the experiments' but were assumed to be
the same in the theory. For these two reasons the theory, '

including its present elucidation, is not strictly applicable to
the experiments of Ref. 2.

Next we comment on the fact that our corrected K, is
positive (see above) and thus appears to contradict Neel's4
theoretical prediction that K, should be negative. Actually
there is no contradiction, as shown below. %bile the sur-
face anisotropy tensor is the same for each of the six dif-
ferent (110} type planes, it is represented by a different ma-
trix for each of these six planes. In Ref. 1 it was assumed
that the crystal surfaces are (110) planes, whereas Neel as-
sumed them to be (011) planes. Starting with the matrix of
the surface anisotropy tensor in a coordinate system in
which the crystal surfaces are (110) planes, we rotate the
coordinate system so that the fixed crystal surfaces previ-
ously labeled (110) must be labeled (011) after the coordi-
nate rotation. After determining the transformation matrix
( T) which describes this coordinate rotation, we use ( T) to
perform that similarity transformation which changes the
surface anisotropy matrix appropriate for a (110) crystal
surface to a surface anisotropy matrix appropriate for a
(011) crystal surface. In this way we find that a positive K,
for (110) crystal surfaces becomes a negative E, for (011)

TABLE I. Expressions for the surface anisotropy energy density

E,„,r in bcc crystals having [110} type surfaces. The quantities u„,
uy uz are explained in the te x t.

Surface plane ~surf

(110)
(»0)
(011)
{011)
(1O1)
(101)

Ksuxuy + K~uz

2
Ksuyuz + K~ux

Ksuzux + Kmuy
2

Ksuzux + K~uy

crystal surfaces. Thus, we now have a true agreement
between the sign of our deduced K, and the sign of Neel's
predicted K, . In contrast, the corresponding agreement
found previously' was only an apparent agreement because
it resulted from the omission of a minus sign in R (and
hence in JC, ) and the omission of a transformation of the
surface anisotropy matrix.

%e note that the method described above leads to the ex-
pressions shown in Table I for the surface anisotropy energy
density E,„,r in bcc crystals having [110}type surfaces. Each
of these expressions includes not only a term involving the
constant K, introduced by Neel, but also a term involving
the constant K„ introduced in Ref. 1. As in the previous
paper, ' which contains the derivation of E,„,r for a (110)
surface, the coordinate axes x, y, z constitute a Cartesian
system, and u„, uy udenote the Cartesian components of a
unit vector which is parallel to the magnetization. In each
row of Table I, ho~ever, the x, y, z coordinate system is
oriented differently, namely, in such a manner that a given
[110}type crystal surface is described correctly by the Miller
indices presented in that row.

We further note that Table I applies not only to (110}
type surfaces of bcc crystals but also to (110} type surfaces
of fcc and simple cubic (sc) crystals. For example, E,„„r for
(011) surfaces is given by —It', u~u, +K„u„' for fcc crystals
as well as for bcc crystals. This property of Table I is a
consequence of the fact that the symmetry considerations
used previously' for deriving E,„,f are just as applicable to
fcc and sc crystals as to bcc crystals. Ho~ever, the meaning
of K, and K is different for each of these three cubic crys-
tal types. To see this, we recall that Neel's expression for
E,„„r of (011) surfaces of fcc crystals is proportional to
(u~ —u, )' and thus contains a term in u„2 (because
u~'+u, '= I —u„') as well as a term in u~u, . Since Neel's
derivation involves nearest-neighbor interaction only, it fol-
lows that our term It'„u„' for (011) surfaces might arise
solely from nearest-neighbor interactions in the case of fcc
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crystals, even though this term was shown' to arise solely
from next-nearest-neighbor interactions in the case of bcc
crystals. While Keel's nearest-neighbor method predicts
that the value of the coefficient of u„' is one-half that of the
coefficient of u~ u„ the more general symmetry-based
method' predicts that these two coefficients are independent
of each other.

Although Ref. 1 is concerned with (110) type surfaces
only, we now comment briefly on the form of E,„,f for
(100) and (111) surfaces. With the use of the symmetry-
based method' we easily find for (100) surfaces that for bcc,
fcc, and sc crystals the value of E,„,f is proportional to

cos 8, where 0 is the angle between the magnetization and
the normal to the crystal surface. For the case of (100) sur-
faces, cos28 equals u„'. The nearest-neighbor method' also
yields E,„,f~ cos 8 for fcc and sc crystals but E,„,f = 0 for bcc
crystals. For (111) surfaces the symmetry-based method'
leads to E,„,p cos 8 for bcc, fcc, and sc crystals, whereas
the nearest-neighbor method also predicts E,„,r ~ cos 0 for
fcc crystals but E,„,f=0 for bcc and sc crystals. %e find,
therefore, that for (111) as well as for (100) surfaces the
symmetry-based method leads to terms in E,„,f which vanish
on the basis of nearest-neighbor interactions but might arise
from next-nearest-neighbor (or farther) interactions.
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