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Elastic and magnetic interactions in a narrow twofold-degenerate band
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The interplay between the elastic and magnetic interactions in a twofold-degenerate band has been

studied under the Hartree-Pock approximation. The free energy of the system has been expanded in

terms of tetragonal-type elastic strain and magnetic moment and this is then used to study the possi-

bility of the coexistence of ferromagnetic and tetragonally distorted phases and various anomalies in

the physical properties of such a system. The experimental results in some real systems are dis-

cussed on the basis of the present analysis.

I. INTRODUCTION

There has been considerable interest in the last decade
in understanding the interplay between the structural and
superconducting transitions in 315 and other intermetal-
lic compounds arising from narrow and degenerate d
bands. ' Since the interactions between the d electrons
(Coulomb and exchange) responsible for the magnetic
properties also play an important role in narrow-band sys-
tems, the study of the interplay between the electron-
phonon interaction, particularly that of the elastic type
which favors structural transitions of the tetragonal type
in a cubic crystal, and the magnetic interactions arising
from the same d electrons is of current interest. There
are two approaches in the study of this interplay:

(1) Detailed band calculations taking into account the
change in the band energy due to the lattice distortion and
incorporating at the same time the Coulomb and exchange
interactions between the degenerate d electrons such as
that recently done for fcc Mn by Oguchi and Freeman3
and for bcc iron by Hasegawa et al.

(ii) Model calculations based on degenerate Hubbard
bands incorporating both elastic and magnetic interactions
in a self-consistent way. '

The band calculations based on local-density-functional
formalism give good values of the ground-state energy-
at least for systems where the Coulomb correlation be-
tween the d electrons is smaller than the bandwidth. But
for calculating the temperature dependence of physical
parameters such as the elastic constant, the magnetic sus-
ceptibility, and the specific heat and their anomalies near
phase transition temperatures, the accuracy of band calcu-
lations is often questionable. In general, the finite-
temperature properties in which the low-lying excited
states take part still pose difficulties in band calculations.
Also, the size of the numerical computations involved in
the band calculations increases enormously when the
number of atoms per unit cell is large. In our present
problem of degenerate band systems, the electron-phonon
interaction plays an important role and it is necessary to
treat both magnetic and electron-phonon interactions in a
self-consistent way. This is a rather difficult task from
the band point of view. The model calculations, on the

other hand, have both their usefulness and limitations.
The choice of a model density of states (DOS) appropriate
to the real systems is one of the principal difficulties.
Another uncertainty arises in fixing the values of the pa-
rameters of the model. But this can be avoided by es-

timating these parameters from band calculations for the
bare electrons. The model calculations have the advan-

tage that different approximations involved in treating the
many-body Hamiltonian for the d electrons can be sys-
tematically studied. In many cases one gets results in-
dependent of the form of the DOS and the general
features of a large class of compounds can be studied,
whereas the band calculations have to be done for each
compound separately. The finite-temperature effects can
be studied within the model calculations through the Fer-
mi function, incorporating the fiuctuations of local spin
and strains either through the functional integral method9
or through appropriate averaging of the terms appearing
in the Landau-Ginzburg expansion of the free energy. 'o

In the present paper we have treated the problem of the
interplay between elastic and magnetic interactions in a
twofold-degenerate band under the Hartree-Fock approxi-
mation in a self-consistent way and have studied the phys-
ical properties of such an electronic system. The case of a
twofold-degenerate band is of particular interest. The
Fermi energy (Ez) lies on a high DOS arising from es-
type electrons for many of the transition metals and their
compounds. The ro:ent band calculations on bcc iron
done by Hasegawa et al. show that EF lies close to the
peak of an es-type DOS. The same is true for y-Mn. i"
The analysis of experimental results of La&S4 and La3Se4
which undergo cubic to tetragonal transitions and where
the magnetic interactions play an important role indicates
the same situation. ' The band calculations' and avail-
able experimental results on the TiH2 „system also show
similar behavior. '

II. MODEL HAMILTONIAN AND FREE-ENERGY
EXPANSION

The coupling between the eg electrons and the shear
mode can arise either through the modification of the
DOS due to the distortion of the lattice or through the
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direct electron-phonon interaction between the es elec-

trons and the same type of elastic mode. The first process
would make the bandwidths of the two orbital subbands
different. Ghatak et a/. ' have shown that the change in
the free energy from the cubic to tetragonal phase does

not significantly depend on this variation of bandwidth.
On the contrary, the second process reproduces correctly
the essential features of the structural transition. In this
paper we, therefore, consider the second process and write
the model Hamiltonian as

A = g t~(Cti Cji +Ct~CJg }+Up(n; itnti, +n;itn;2, ) +U' g n;i n;p ~

i,),n i,a, cr'

—Jgn;, n;2 +Ge g(n;i n;2—)+ ,'NC—pe ps—H g [(nuit —n, i&)+(nt2t nj2g)],

where N is the number of atoms, 1 and 2 denote the orbi-
tals, U and U are intra-atomic intraorbital and interorbi-
tal Coulomb interaction terms, J is the exchange interac-
tion between the two orbitals at the same site, G is the
strength of the interaction between es-type electrons and
strain modes, Cp ( =Cii —Ci2) is the tetragonal-type elas-
tic constant for the lattice arising from all other electrons
except the es electrons, and the last term is the Zeeman
term. The spin-dependent electron numbers for the two
orbitals are denoted by n;„where y is the orbital index.
We then made the Hartree-Fock approximation so that
the product of two operators A ~A p is written as

~.a~=&a. )~~+&a,&a. (&.—&&aft), (2)

where ( ) denotes the thermal average. The Fourier-
transformed Hamiltonian in the Hartree-Fock approxima-
tion can then be expressed as

g Exr~nxr~+ 4NCpe
E,y, o

—NU(nitn t, +n2, n2, )

NU' g n, ~—nz ~ +NJ g nt~n2
CF, O

(3)

Bm D
Ex &=ex+A, Ge+ 5n —tT +@HAH +O'I, 5m,yo 4 4

(4)

where tr =+ 1 for the spin-up and spin-down, respectively,
A, =+I for the orbitals 1 and 2, and A =2U' —U —J,
8 =U+ J, D = U —J. We have also defined 5n =n z

—n, ,
nt t (n it +n2t ) (n2L+ 2L ) and 5m (nit—n2, ) —(ni, —n») so that m gives the total magnetic

moment per atom due to the two orbitals, whereas 5m
gives the difference in the moment in the two orbitals.
This difference in the moment arises when the numbers of
electrons in the two orbitais are different due to the strain
e and can play a significant role in our problem. We have
neglected a constant shift of band energy in the cubic-
parlarnagnetic phase e~ due to Coulomb and exchange in-
teractions, e.g., (E/4}n where E = U+2U' —J and

where (n;z ) =n;z n„.Thi——s is valid in the paramag-
netic and ferromagnetic phases. The antiferromagnetic
case would be treated separately. The energies of the four
spin-orbit subbands Ex& are given by

n= g„nz~, the total number of electrons per atom.
The Hartree-Fock Hamiltonian can further be expressed

"= g Et,r nI,r~+ ~NCpe
k, y, n

+—A(5n) +—Bm +—D(5m)
N 2 N 2 E
8 8 8

where P= 1/k~T and )u is the chemical potential in the
transformed phase, given by p =ppc+ktu tupc being the
chemical potential in the paramagnetic-cubic phase. This
follows from the thermodynamic equilibrium of the elec-
trons in the four subbands in the final transformed phase.

There are in all four order parameters, e, 5n, m, and
5m, implied in the expression of I' given by Eq. (6). In
our problem the two principal order parameters are e and
m. It is necessary to express the two subsidiary order pa-
rameters 5n and Sm as functions of e and m and expand
the free energy F in terms of these two order parameters
at least up to fourth order to study the phase transitions.
We have done this following the subsequent prescription:

n2 n 1
—g [f(Eg~) f(EIt, i~)], —

where f(E) is the Fermi function which is defined as

f(E)= 1

1+exp[P(E —p )]
(8)

5m = Q I [f«a2t}—f«a&i}]
k, n

[f«hatt} f«I ti)—]} . —

By expanding the Fermi functions about their values in
the paratttagnetic-cubic (PC) phase we express 5n and 5m
as functions of e, m, dye, and I„,where

The free energy per atom corresponding to this Hamil-
tonian can then be written as

I' = ———g lnI 1+exp[ P(EI,„—p)]I—1

&No, r,.
+ g ynI,„+4Cpe + —(5n) + —m+ (—5m)—

k, y, cr



33 ELASTIC AND MAGNETIC IMRRACTIONS IN A NARRO%. . . 5023

I = pg (10)
91 ~I1

g2 ———4I1,

5n=ae+be +ce @AH+ m—3 8

8
5m =de psH+ —m (12)

where

4GI1
Cif = 7

1 —AI1

2 G I X2

3 (1 AIi)—
2GIiX3

(1 AIi)—
d=— 4I2G

(I —DI, )(1—AI, )
'

"2
I2 I3

X2 ——3
I1 I1

(13)

are the Stoner integrals. ' p(e) is the DOS per spin orbital
per atom in the PC phase. The conservation of the num-
ber of electrons in the PC and 1" l (ferromagnetic-
tetragonal} phase enables us to express dye in terms of oth-
er variables. We then arrive at the following expression
for Sn and 5m where we have retained terms up to third
powers of e, m, and field H which is sufficient to get the
free energy up to fourth order in the order parameters

4I1G X3

(1 AI—)

M1G X3

2(1 AI—i )

with a=2G /3CO. The free energy expansion given by

Eq. (14) is valid at finite temperature and for any form of
DOS and is, therefore, more general than that given by
Ghatak and Ray. This is an extension of the Stoner-
Wohlfarth theory' to the cases where elastic interactions
are important.

It is evident from the expressions given by Eqs. (11) and
(15) that the factor 1 —AI i plays an important role. Since
A =2U' —U —J, this factor signifies the Coulomb- and
exchange-induced transfer of electrons from one orbital to
another and can considerably modify the elastic effects
even in the absence of magnetic ordering. The interorbital
Coulomb interaction U' favors elastic transitions, whereas
the intraorbital Coulomb U and the interorbital exchange
would oppose such transitions. It is to be noted that for
the ez-band case considered here, there are no odd-order
terms in e in the free-energy expansion. Therefore both
elastic and magnetic transitions are expected to be second
order. But if the DOS, due to other types of electrons
(e.g., r2s or s and p) is not negligible —particularly near
E=Ep—such an odd-order term in I' would be nonvan-
ishing and might change the order of the phase transition.
Also, if EF lies close to a minimum in the DOS, a4 and

b4 might become negative and consequently the transition
would be first order as is evident from the following ex-

pression for I i
..

X3 ——

'2
I2 I3
I1 I1

2DI1 I2
1 —DI1 I1

Ii p(ef ) 1 — ——(ks T)2

6
p (eF) p (ep)

p(eF) p(e~)

and the free energy is then given by

F=I'pc+ ,'a~e + ,'a4e +——,'birn —+,'b4m +-,'Ce m—

+riipsHm+ ,' ri2(@AH) + ,' r—13e (@AH)—

+g4e pgHm,

where

~1-(A+4 )Ii jG~

a(1 AIi)—
I,X,G4

3 (1 AIi)—
bp —(1 BIi), —— —8

4
2 8

b =—— IX4
3 4 1 2

I

jy I1X36C=2
4 (1 AI i)—

(14}

(15)

where p' and p" are derivatives of p with respect to e at
e=E~. It can be shown that only if EF lies near a
minimum in the DOS, then p'=0 and p" is positive, and
consequently the fourth-order terms a4 and bz can be-
come negative making the transitions first order. Such a
situation can arise if the DOS has a two-peaked structure.
But for all single-peaked DOS, the transitions would be
second-order, and we shall consider such transitions here
leaving the cases of first-order transitions to be treated
separately.

Another point worth mentioning is that the main ef-
fects of 5m appears through the parameter C in Eq. (14).
The factor

2DI1 I2
1 —DI1 I1

in C is due to 5m. This can become large since near the
magnetic transition where BI,=1, the value of DIi would
be comparable to 1 except for the half-filled-band case
where I2-p'(e~) =0. Also, for the ez band u'=u —2J.
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a, 3 [(A+4 )I, —1)(1—AI, )'

a4 262 uI1X2
3

b2 3 4 (BIi
—1)

b4 2 8 IIX'

(17)

(18)

The temperature Tsr is obtained from Eq. (17) as

[(A +4a)p(e~) —1]
(A +4a)p(ep)XI

where

p'(&F) p"(&p)
X1 ——

p(eF) p(&p)

From Eqs. (17) and (19) we get

(19)

(20}

fol' T & Tsr,

where

P=

0 otherwise,

7r2 X1
' 1/2

i (A +4a) [1 Ap(eF)] — ka TM .
4o.'6 2

(21}

For T close to T~, the HF theory gives
' 1/2

e=~2P 1—
TM

(22}

The order parameters e and m for PC~PT (PT
represents paramagnetic tetragonal) and PC~FC (FC
represents ferromagnetic-cubic) transitions are obtained by
minimizing the free energy with respect to e and m,
respectively, and are given by

the local fluctuations in the value of e might alter the
magnitude of m and Tc in degenerate band systems.

III. PHASE DIAGRAM AT T=0

On the basis of the free energy given by Eq. (15) the
phase diagram at T =0 can be studied for any model
DOS and for any band filling. The results depend on the
form of the DOS through the derivatives of p at e=eF.
The interesting case is that of the half-filled band where
p'(eF ) =0 and consequently the energies in different
phases can be expressed as multiples of I

& /I I

[=p"(s~ )Ip(eF )]. The relative stability of different
phases can then be compared.

In Fig. 1 we give the phase diagram for this case for
three different values of A. For A =0, the diagram is
symmetric between the PT and FC phases, whereas for
A ~0 the region of the PT phase increases and the con-
trary is true for A & 0.

The ferromagnetic-tetragonal phase is not stable for
this case. This is in conformity with the previous results
obtained by Ghatak and Ray for the parabolic DOS,
where the coexistence of the ferromagnetism and the
tetragonal distortion was found not to be possible for any
filling of the band. Since the coupling parameter C in Eq.
(18) is positive with a DOS having a single peak (and con-
sequently without any minimum), the energy always in-
creases for simultaneous existence of m and e, both of
which have the same wave vector K=O and have infinite
wavelength. It would be interesting to see whether a
first-order ferromagnetic-tetragonal transition is possible
when EF lies in a minimum of a double-peaked DOS.

IU. MAGNETIC SUSCEPTIBILITY
IN THE PARAMAGNETIC PHASE

Similarly, Eq. (18) gives the Curie temperature Tc as

6 Bp(ep) 1—
g Bp(eF }Xi

We consequently obtain

(23)

The experimental results for the magnetic susceptibility
X in LaiS4, La&Se4, and TiH2 clearly show the existence of
a peak at T = TM, the tetragonal transition temperature.
Also, BXIBTchanges sign at T =TM with

' 1/2

Q 1—
Tc

0 otherwise,

for T(Tc,
(24)

with
2 1/2

4g= + — kaTc.
2

The critical exponent for the two order parameters e and
m is, therefore, 0.5 in this mean-field theory. The recent
measurements of e =c/a —1 in La3S4 by Westerholt
et al. ' show that for T very close to Tir, P=0.31 indi-
cating that fluctuations of local strains play an important
role close to the transition temperature.

It is evident from Eq. (17) that the magnitude of e
might be modified by the Coulomb and exchange interac-
tions through the parameter A. The magnetic moment in
the FC phase is not affected by the uniform strain e but

Bp (e, )

FIG. 1. Phase diagram for the half-filled-band case.



33 ELASTIC AND MAGNETIC INTERACTIONS IN A NARRO%. . .

ax
BT

In order to explain these results the following equation of
state is obtained from the condition BF/Bm =0:

(bi+Ce )m+b4rn = p~—H(gi+rlqe ) .

The derivative of this equation with respect to H then
gives the magnetic susceptibility as

r

(Ge)2Xi
48+I i 1 ——

i 8(Tw T)—
2 (1 AIi)—

(Ge) X3
1 —BIi 1 —

2 8(Tjg —T)
2 (1 AIi)—

(26)

where

1 for T(TM
8(Tsi T)—

This expression clearly shows that X(T) increases as
temperature is lowered from the high-temperature side in
the PC phase since Ii increases with a decrease of tem-
perature and reaches a maximum at T =T~. Below T~,
e increases, and consequently X decreases Subs. tituting
the expression of e from Eq. (17) in Eq. (26) and making
expansion of X( T) about T=T~, we finally get

V. ELASTIC CONSTANT

The variation of the elastic constant with temperature
in degenerate band systems is of particular interest around
T=Tc and T=T~. The expression for the total elastic
constant C, due to all the electrons is obtained from the
second derivative of F with respect to e. In the cubic
phase this gives

C,(T)
Co

1 —(A +4a)Ii
1 —AIi

'2
I)X3m 2

+2a 2 8(Tc—T),
4 (I—AIi )

(29)

filled parabolic band case for A =0, U =0.5 eV, J=0.1

eV, $V (the bandwidth) = 1 eV, a =0.2 eV, and
p(EF)=1.5 states/eV. This curve is qualitatively similar
to the experimental results for La3S4 and La3Se4 and for
TiHi, . " But it should be noted that the ratio given by
Eq. (28) is found to be larger ( —15) for La&Se4.

' This
might be due to the fact that close to T = TM, the. mean-
field expression for e in Eq. (26) as obtained from Eq.
(17) is not correct, and the fluctuation effects have been
found to be important. Also, a nonvanishing cubic term
in e exists in the free energy (15) arising from the elec-
trons other than the eg electrons. Even if its value is
small, this might cause the free energy to be nearly
discontinuous very close to T=T~. This then would
make the derivative of X below T=T~ to be much
sharper as has been observed for LaiS4. '

(27)
where

~
1 foi' T(Tc
0 otherwise .

X'(T & T~) =2.
X (T& TM)

(28)

We give a plot of X(T) versus T in Fig. 2 for the half-

50-E

E

C3

25-

l
—0.5 0.5

FIG. 2. Plot of magnetic susceptibility g vs ( T/T~) —1 for
the half-fi1led parabolic band.

where I =3(X3/X2). For the half-filled-band case
X3——Xz and, consequently, we get

So for T ~ Tc, C, decreases with a decrease of tempera-
ture due to the first term in Eq. (29) and in the absence of
any magnetic ordering would be zero in this model of a
second-order phase transition at T =TM, where

(A+4a)Ii ——1. But if the magnetic interactions are suffi-
ciently strong to cause magnetic ordering, then C, would
increase below Tc due to the second term in Eq. (29).
The nature of variation of C, on the two sides of Tc can
be worked out by developing I i as a function of
T/Tc 1, and we ge—t the same ratio for the absolute
value of the ratio of the derivatives of C, on the two sides
of Tc as given by Eq. (27). The increase below Tc is
more rapid than the decrease above Tc This variatio. n
for the half-filled-band case is shown in Fig. 3. The na-
ture of the variation is again qualitatively similar to the
recently published results on bcc iron. It will be interest-
ing to measure the temperature dependence of C, in the
weak ferromagnetic systems around T=Tc so that the
validity of the HF theory can be better judged.

%e next consider the elastic constant around T =T~.
Since below T~, e is nonvanishing, we get

1 —(A+~)Ii 2aI,X,(Ge)'
C

=
1 —AI +

0 1 —AIi )

(30)
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VII. SPECIFIC-HEAT JUMP AT T= T~

0.5

From Landau's theory of phase transition one expects a
jumP in the value of the sPecific heat at T = Tsar and ex-
perimental results on LaiS4 (Ref. 12) clearly indicate this.
We shall derive an expression for the specific heat at
T =T~. The specific heat C„is given by

(32)

0.5
Tc

From the minimization of F we get in the tetragonal
phase

FIG. 3. Plot of C, /Co vs ( T/Tc) —1 for the half-filled para-
bolic band A =0, U=O. S eV, J=0.16 eV, 8'=1 eV, a=0.15
eV, and p(e~) = 1.5 states/eV.

1 ~zp —p~—
4 a4

(33)

where 8(T —T) as already been defined. Therefore, in
this Landau theory we obtain total softening of the elastic
constant at T =T, and then C, would increase due to
the increasing values of e below Tsr. The gradient of C,
on the two sides of TM can similarly be calculated and is
of the same form as that given by Eq. (27). Accurate
measurements of C, on LaiS4 around T=TM would be
useful to verify the present calculation. Available experi-
mental results on the In-Tl allay's for C, on the twa sides
of Tsr are in qualitative agreement with our analysis.

We make an expression of az around T=T and consid-
ering a4 to be temperature independent but taking its
value at T=Tsr we finally get the fallowing expression
for the change of specific heat at T=Tsr ..

4 4 X)2
hC„(Tsr)=3e (A+4a)p(ep) (Kyar) Ks . (34)

2

The effect of the magnetic interactions on B,C„only ap-
pear through A, and consequently it depends essentially
on the elastic interactions involved in 4a and Tsr. Also it
depends strongly on p(E~).

UI. MAGNETIC-FIELD DEPENDENCE OF Tgg

The transition temperature T~ has been studied as a
function of an external magnetic field H in LaiS4 and
La&Seq and large values of b, Tsr /Tsr
[b,Tsr Tsr(H) Ts——r, Tsr b—eing the value of T~ for
H=0] have been obtained. Magnetic interactions can
enhance this field dependence, and so it would be interest-
ing ta derive an expressian of the enhancement factor
from our free-energy expression (15). Since the elastic
constant goes to zero at T=T~, we derive C, in presence
and absence of H and finally get the following expression
of hT~.

5T~ 3 X3 pg+
TM 2+ Xi ks Ting[1 gp(ep)]—

'2

(31)

This shows clearly that a Stoner-type enhancement fac-
tor [1—Bp(ez)] is responsible for this enhancement of
ETM. Even if Bp(ez) is not sufficient to cause magnetic
ordering, this would decrease the value of Tsr. For LaiS4
the analysis of Pauli susceptibility and specific heat gives
Bp(ez)=0.58, and consequently b, Tsi is enhanced by a
factor of 6 and can well explain the observed value.

VIII. DISCUSSIONS

We have studied the interplay between the elastic and
magnetic interactions in a narrow twofold-degenerate
band. Although for single-peaked DOS, the Landau ex-
pansion did not give possible coexistence of ferromagnetic
and tetragonal phases, many of the physical properties of
such a system are influenced by the two types of interac-
tions. The analysis presented here on the basis of the HF
theory gives results in qualitative agreement with the
available experimental results but to get qiumtitative
agreement it might be necesmiry to incorporate the local
fluctuations of strains in addition to the spins which have
been considered so far.
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