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Evidence for a magnetic contribution to the electrical resistivity
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The electrical resistivity p as a function of temperature has been measured for amorphous

FegoBio, C, (0&x &10) alloys in the temperature range 4.2—300 K. A detailed quantitative

analysis of the resistivity data for the first time establishes that besides a dominant structural contri-

bution p,„,there exists a significant magnetic contribution p,g to p in such glasses. The values of

p ~ for the investigated glassy alloys reveal that the quenched disorder does not exert any noticeable

inAuence on the coherent scattering of electrons from long-wavelength magnons and that the net

contribution to p due to the eIastic and incoherent components of electron-magnon scattering is

negligibly small. Furthermore, the present data analysis permits a straightforward calculation of
the Debye temperature ey, the structure factor So(2k~), and 2k~ from p„„'and the values of these

quantities so determined, in turn, bring to the limelight various limitations of the extended Ziman

theory so far as its application to glasses containing a strong scattering transition metal {e.g., Fe in

the present case) is concerned.

I. INTRODUCTION

Immense scientific activity' in the field of electron
transport in amorphous metallic alloys witnessed during
the past decade has been basically triggered by fundamen-
tal questions such as (i) how does quenched disorder influ-
ence the electronic structure and (ii) are the band structure
and the glass-forming ability of amorphous alloys related
in some simple way'? Of all transport coefficients, the
electrical resistivity p has rtmuved the most attention.
Despite such intense efforts, the origin of the resistivity
minimum phenomenon2 and the Ti dependence of p at
low temperatures, especially for ferromagnetic glasses,
remain disputed. Since the latter controversial aspect of
p{T) is the main concern of this paper, it deserves a more
elaborate description.

The temperature dependence of resistivity, p( T),
characteristic of a wide variety of glassy metallic alloys
(including both nonmagnetic and magnetic glasses) can be
summarized as follows. p{T) goes through a Kondo-like
minimum (not observed in some nonmagnetic glasses) at
low temperatures (generally below -20 K), varies as Ti
in the intermediate-temperature region (normally
40& T &100 K) and exhibits a linear temperature depen-
dence at high temperatures (above —150 K}. It has been
a common practice to completely disregard the mag-
netic state of the glassy alloy under consideration and to
explain the intermediate- and high-temperature resistivity
data in terms of the diffraction model, which takes into
account not only the scattering of the conduction elec-
trons by the ion cores that carry a muffin-tin potential but
also the change in the shape of the structure factor, S(k),
as T is varied. The reasons for this appear to be twofold.
First, in the intermediate- and high-temperature regions p
exhibits the same temperature dependence in both mag-
netic and nonmagnetic glasses. SesAnid, the diffraction

model yields both the quadratic and the linear tempera-
ture dependence of p at low (T«8D, Debye tempera-
ture} and high (T)SD) temperatures, respectively. How-
ever, overwhelming experimental evidence exists to
demonstrate that the diffraction model does not form an
adequate description of the Ti term in p(T) for the amor-
phous ferromagnetic alloys, in particular. For instance,
the existence of well-defined long-wavelength spin-wave
excitations which follow a normal ferromagnetic disper-
sion relation, Acok —Dk, has no—w been well established in
ferromagnetic glasses by inelastic neutron scattering, mag-
netization, and Mossbauer measurements, and a sharp
anomaly in the temperature derivative of resistivity at the
Curie temperature reminiscent of the critical resistivity
behavior normally found in crystalline ferromagnets has
been observed' in such glasses. These observations assert
that in addition to a contribution due to the scattering of
conduction electrons from the structural disorder,
electron-magnon scattering (which at low temperatures
gives rise to a quadratic temperature dependence for crys-
talline ferromagnetic 3d transition metals} gives a signifi-
cant contribution to p in magnetic glasses and hence the
customary approach of completely neglecting the magnet-
ic contribution, p,s(T), while analyzing the resistivity
data on ferroma netic glasses is not correct. Theoretical
investigations" ' that pursue this line of thinking and use
spin-wave approximation to calculate p,s(T) for amor-
phous ferromagnets reveal that (i) p, s(T) comprises two
positive contributions; one varying as T, as in crystalline
ferromagnets, and the other as T ~, and (ii} the contribu-
tion to p~,s( T) from the T ~ term (which appears only in
the amorphous case) is at least 2 orders of magnitude
greater than the one arising from the T term. These
theories, therefore, predict a T power law for p(T) at
low temperatures in amorphous ferromagnets as contrast-
ed with the T dependence found in these materials. This
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discrepancy between theory and experiment has been tak-
en as evidence for" or against'2 a magnetic origin of the
observed T term. Despite the fact that a clear distinc-
tion between the T and T / power laws in a narrow
temperature range (typically from 40 to 100 K) poses an
extremely difficult problem in practice, experimental evi-
dence for the fractional exponent (1.5), and hence for a
contribution of electron-magnon scattering to p, has re-
cently been claimed for some amorphous Fe- and Fe-Ni-
based ferromagnetic ribbons' ' and sputtered films. '

But, as pointed out by Mogro-Campero et ai., ' a power-
law fit with exponent 1.5 found in some temperature re-
gion (T;„&T & T ) cannot be considered as sufficient
evidence for a magnetic contribution to p because the tem-
perature interval T, & T & T may well be the transi-
tion region separating the temperature regimes, where the
asymptotic T (T&T „)and T(T& T,„)behaviors are
observed, and this transition region could be well
described by a T ~ power law. So the possibility of ex-
plaining the experimental findings in terms of electron-ion
potential scattering alone cannot be completely ruled out.

With a view to resolve the above-mentioned controversy
surrounding the origin of the T power law of p(T) in the
intermediate-temperature range for ferromagnetic glasses,
we undertook detailed electrical resistivity studies on
amorphous FesuB20 „C,alloy series. The choice of this
alloy system was motivated by the simple logic that one
expects to detect the magnetic contribution to p with
greater ease in alloys with a high transition-metal content
than in those with a low transition-metal content. Ex-
haustive data analysis of the experimental results not only
enables us to establish for the first time beyond doubt the
existence of a magnetic contribution, p~,s, to p but also to
make a reliable estimate of p,s in these alloys.

II. THEORETICAL BACKGROUND

Experimental findings that the electron transport prop-
erties of amorphous metals are usually similar's to those
of the corresponding liquid metals have led various work-
ers to use a theoretical formalism, originally proposed for
simple liquid metals by Ziman' and subsequently extend-
ed by Evans er al. to include liquid transition metals, to
explain a number of pecularities observed in the transport
properties of metallic glasses. This theory takes into ac-
count the scattering of conduction electrons from the po-
tential of the disordered lattice of a transition-metal sys-
tem and gives the following expression for resistivity:

3(hr Ap= 2
sin [g2(Ez)]ST(2kF),

me kFEpQ

where kF and Ez are the Fermi wave vector and energy,
respectively, 0 is the atomic volume, g2(E+) is the d-
partial-wave phase shift describing the scattering of the
conduction electrons by the ion cores which carry a
muffin-tin potential centered on each ion position,
Sr(2kF) is the temperature-dependent structure factor,
and A', m, and e have their usual meaning. In this expres-
sion, ST(2kF) determines the temperature dependence of
p. Several calculations ' of ST(k) within the frame-
work of a model, now known as the diffraction inodel, are

~a~ zdz
Ws(T) = Ws(0)+4Wk(0) J (3a)

Wk(0)=3% k ISMks8p,

M is the atomic mass, k is the wave vector, and ks is the
Boltzmann constant. With the aid of Eqs. (1) and (2}, the
resistivity as a function of temperature can be expressed
as'

p,t,(T)=
2 z sin [riz(EF)]

3(hr3fi

me 2k+EF0
za T —

zkx [ 1+[So(2k~)—1]e

Note that p„,is the structural contribution to the total
resistivity p and the parameters W2k (T) and Wzk (0) ap-

pairing in Eq. (4) denote the values of Wk(T) and Wk(0)
at k =2kF, i.e.,

3A kp
W(0}=Wzk (0)=

B D

replaces Wk(0) in Eqs. (3a) and (3b). Dropping hence-
forth the subscript 2k+ in Wzk„(T)and W'2k (0) and str
in p„,for the sake of simplicity, the temperature coeffi-
cient of the resistivity (TCR) can be calculated from Eq.
(4) with the result

1 gp 1 —Sz (2k@) g W(T)
pBT S(2k) dT

1 —Sr(2kF ) W(0}=8
Sz(2kF) T

'2
8~/T

X 2 dz-
O~ 0 ~& l 0~/T

e

where use has been made of Eq. (3a) to calculate
8W(T)/BT. Equation (6) demonstrates that BW(T)j
BT&0 at all temperatures and as such a is negotiue if
Sr(2k~) & 1 and positiue if ST(2k+) &1. Alternatively, a
negatiue a is expected only when 2k~ lies in the vicinity of
k~, the k value corresponding to the first peak of S(k);
otherwise a grositiue a is expected.

In the low- and high-temperature limits, Eq. (3a}

available but the one used in this work yields

Sr(k) =1+[SE(k)—1]e

where SE(k} is the equilibrium structure factor and
-2wk(r) .

e is the Debye-Wailer factor with Wk(T), in the
Debye approximation, given by
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reduces to

8'(T)- .

4W(0) T&8g)

W(0)+4W(0} T
D

x

T +Qe (7a)

(7b)

An estimate of W(0), using the values 8D-=300 K,
M—=SX10 g and EB-=10 eV, typical of metallic
glasses, in the relation W(0) =3% kF/2MkBOD
=(3EB/kBSD) (m/M), shows that W(0)=0.013. Bear-
ing in mind that W(0) &~1, Eqs. (4) and (7) can be com-
bined and the exponential function in the modified ver-
sion of Eq. (4} expanded in power series to yield the
asymptotic temperature dependence of p as

p( T)~ .

x

C So{2kB)+
2m

D

W(0) 2

3
[1—So(2kB )]T, T ((8p (8a}

C So(2kB) —2W(0)[l —So(2kB)]+ [1—So(2kF)]T T &8D
8 W(0)

(8b)

with

30]r'A'
2

sin~[riq(EF )] .
me 2kREFf},

where

a] = I 1+[So{2kF)—1]e

a2 ——a, [So(2k„)—1],
(10a)

In order to facilitate a direct comparison between
theory and experiment, a different form of Eq. (4} has
been used in the present work, i.e.,

or

So(2k@)=1+(a 2/a ] ),

(T) P + —2(w{T] w]0])—
p(To)

8 /T
=x~+xqexp —SW(0) f8D ' e' —1

=—fi{T»

and To =273. 1 5 K is the ice temperature.
In view of the experimental evidence already presented

in the Introduction, electron-magnon scattering is expect-
ed to significantly contribute to p in ferromagn«ic metal-
hc ghLsses at low temperatures. within the framework of
the spin-disorder model, Richter et al. '2 have calculated
p~( T) at low temperatures for an amorphous Heisenberg
ferromagnet in the spin-wave approximation with the re-
sult

' 3/2

=1+ I'( —', g( —,)
p~~ 0 (2n) S

kt] T
Jg (2kF ) 3S D

k 3S (k)(Ra)k /kt] T)

(
k B 1)(1 k B

)

(1 la)

2Q,
(0)=,' mSJ„J,(2k )r,

3&3 Ne
(11b)

where Q, and Q are the atomic and sample volumes,
respectively, S is the spin of the local magnetic moment,
N, denotes the number of electrons, D is the spin-wave
stiffness constant given by the magnon dispersion relation
Acok ——Dk, I' and g are the gamma and Riemann zeta
functions, respectively, J~ is the s-d exchange coup-

2k~
ling constant and J,(2kF)= I k'S(k)dk. In Eq. (11a),
the second term is an outcome of a partial cancellation of
two competing T terms; one arises from incoherent
(momentum nonconserving) electron-magnon scattering
and increases with increasing temperature, and the other
originates from the elastic scattering of conduction elec-
trans from the randomly oriented temperature-dependent
local moments and decreases as the temperature is in-
creased, whereas the third term is a coherent spin-wave
term. The fourth (integral) term, which arises because of
disorder, forms only a minute correction to the T term
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indicating thereby that the coherent scattering of electrons
by long-wavelength magnons is not significantly altered
by the quenched disorder. Another important feature per-
taining to Eq. (11) is that p,s(0) and the T ~ term both
vanish in the case of crystalline ferromagnets whereas
they possess finite values for amorphous ferromagnets.
With a view to find out the relative importance of the
T and T terms, Richter et al. ' have estimated the or-
der of magnitude of these terms assuming a =3 A,
Q, =a, S=1,D=185 meVA and kp ——1.36A 'as

=1+1.6x10—sT3/2+2. 4&10 7Tp, (T)

p 5(0)

1.010

1.QQO

~0.990

0.980

I ) I t I ) I

2 4 6 8 10 2S

20

c
E

I
15

Fq80 B20 x C x

where the temperature is measured in K. Equation (12)
indicates that p,s(T) in amorphous ferromagnets should
vary as T ~ at low temperatures as contrasted with the
T variation of p, a( T) in the crystalline case.

III. EXPERIMENTAL DETAILS

0.970
0 40 80

I I I I

120 160 200 240 2 80 320

FIG. 1. Temperature dependence of the normalized resistivi-

ty ratio for amorphous FegDB2p „C,alloys. The inset displays
the concentration dependence of T;„.

Amorphous Fesnl32n „C,alloy ribbons ( —1 mm wide
and 30 p,m thick) were prepared by rapid quenching from
the melt onto a rotating copper drum and procured from
the General Electric Company, New York. While copper
wires of 0.13 mm diameter attached to the ends of a 20-
mm-long ribbon by means of silver paste formed the
current contacts, the voltage contacts (-5 mm apart)
were made by bonding very thin aluminum wires of 25

pm diameter onto the sample using the ultrasonic
method. The sample was then pasted to 1 mm thick glass
or sapphire wafer with Apiezon-N grease, which serves
two purposes. First, it ensures a good thermal contact of
the sample with the resistance thermometers, which find
themselves placed underneath the wafer. Second, it allows
for the changes in the sample dimensions during thermal
cycling and thereby avoids stress-induced effects, which
could otherwise significantly affect the results in stress-
sensitive materials like metallic glasses.

Electrical resistivity was measured at -0.5 K intervals
( & 0. 1 K intervals for T & 50 K) in the temperature range
4.2 to 300 K employing a four-probe dc method. The ex-
perimental setup used for these measurements could
resolve a few ppm change in resistivity with ease. The
sample temperature below and above 50 K was monitored
by calibrated germanium and platinum-resistance ther-
mometers, respective1y.

Large error in the measurement of the ribbon thickness
and width, arising mainly due to an erratic variation of
these quantities over the entire length of the ribbon, re-
sults in a large inaccuracy ( —10%) in the absolute values
of p. In order to get rid of such uncertainties, the values
of p at different temperatures have been normalized to the
resistivity value at To ——273. 15 K, which is the ice point.

IV. RESULTS AND ANALYSIS

The temperature dependence of the normalized resis-
tivity ratio r(T) =p(T)lp(TO) in the temperature range
4.2 to 300 K for amorphous FesoB2c C, alloys with
x =0, 2, 4, and 10 is shown in Fig. 1. It is noticed from
this figure that the total variation of r(T) within the in-
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FIG. 3. [p(T) p(T;„)]/p(T,„)vs —T2 for a-Fee&20 „C„
alloys. Straight lines through the data points are intended to
serve as a guide to the eye. In the inset, the coefficients a3 and
a2 are shown plotted against magnetic moment p. The least-
squares-fit straight line through the data points is also shown.

[n T

FIG. 2. [p(T) —p(T;„)))/p(T;„)vs lnT for a-FesoI)qo „C„
alloys. The continuous straight lines through the data points
serve as a guide to the eye.
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TABLE I. Details of the low-temperature least-squares fits, based on Eqs. (13) and (14) of the text, for amorphous FegpBgp C al-

loys. Numbers in the parentheses denote the estimated uncertainty in the significant figure.

(at. %%uo)

0
2
4
10

0.970
0.972
0.973
0.979

a2
(10 K )

6.13(1)
5.52(1)
5.85(2)
4 41(2)

Fit
range
LT
(K)

50—100
50—100
50—100
50—100

X2

( 10—10)

3.70
2.67
7.11
5.23

0.971
0.973
0.973
0.981

(10 ln K)

—3.28(2)
—1.81(2)
—2.21(2)
—4.31{2)

Fit
range
LT
(K)

4.0—8.0
5.0—12.0
4.5—12.0
6.0—15.5

x'
(10-")

1.13
1.15
2.83
2.23

vestigated temperature range decreases with increasing x
and does not, in any case, exceed 4%%uo of the value of r at
300 K. At low temperatures (10—25 K), p as a function
of temperature goes through a well-defined minimum at a
temperature T;„,which increases roughly linearly with x
(inset in Fig. 1).

Figures 2 and 3 serve to demonstrate that resistivity ex-
hibits a variation with temperature which can be well

described by the relations

r(T) =Pp+PlnT, T & T;„ (13)

r(T)=ap+a2T, T)T;„
in the temperature ranges 4& T&12 K and 50&T&100
K, respectively. Least-squares fits to the resistivity data
based on Eqs. (13) and (14) in the specified temperature
ranges give the values for the coefficients Pp, P, ap, slid a2
listed in Table I.

In order to bring out the functional dependence of p on
T for T & 100 K, the temperature derivative of r(T) has
been plotted as a function of temperature in Fig. 4. A
cursory glance at this figure indicates that in the tempera-
ture interval 120 & T & 300 K r(T) obeys the simple rela-
tion:

r ( T) =ap+ai T +a'i T

However, a close scrutiny of the dr(T)/dT[=r'(T)]
curves reveals that they present a slight but finite curva-
ture up to a temperature as high as =200 K and beyond
this temperature r'( T) cc T. This inference is corroborated
by the finding that the parameters ap, ai, and a2 in the
least-squares-fit computer program are found to vary
when the resistivity data are fitted to Eq. (15) over a tem-
perature range, defined by T' & T & 300 K, which is pro-
gressively narrowed down by increasing T' from an ini-
tial value of 120 K to a final value of 200 K; the values of
the coefficients remain essentially unaltered when the
temperature range of the fit is further narrowed down by
increasing T' beyond 200 K. The values of the coeffi-
cients ap, ai, and a2 for the two extreme fitting ranges,
i.e., 120& T &300 K and 200& T&300 K, are given in
Table II.

V. DISCUSSION

To begin with, we completely ignore the magnetic con-
tribution to p and attempt a quantitatiue explanation of
the results in terms of the diffraction model. According
to this model, the fractional change of resistivity between
0 and 300 K, bplp, the norinalized resistivity at 300 K,
r(300 K), and the temperature coefficient of resistivity,
ai, are given by the expressions

p(300 K) p(0 K) 2[1—Sp(2kF)» 4X 300
W(0) —1

)p p(0 K) Sp(2k@) SD

Sp(2k@ )+2W(0)[1—Sp(2k@ )][(4X 300/On ) —1]
r(300 K)=

Sp(2k')+2 W(0)[1—Sp(2k@)][(4Tp/SD ) —1]

TABLE II. Details of the high-temperature least-squares fits, based on Eq. (1S) of the text, for amorphous Fe8pB2p „C,alloys.
Numbers in the parentheses denote the estimated uncertainty in the least significant figure.

(at. 9o)

0.965
0.964
0.968
0.968
0.968
0.971
0.976
0.974

A&

{10 K ')

1.029(3)
1.106(12)
0.909(4)
0.854(11)
0.897(5)
1.083(17)
0.725(3)
0.858{11)

t

(10 K )

9.71(7)
8.15(25)

10.02(9)
11.15(21)
9.57(11)
5.83(33)
5.55(8}
3.00(21}

Fit range
hT
(K)

120—300
200—300
120—300
200—300
120—300
200—300
120—300
200—300

X2

(10 '
)

5.04
3.59

11.50
4.35

14.93
9.71
8.42
4.54

328{4}
342(4)
331(5)
319(5)
301(7)
338(7)
310(5)
349(5)
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FIG. 4. The temperature derivative of the normalized resis-
tivity ratio as a function of temperature for a-Fe+io „C,al-
loys. The inset depicts the concentration dependence of the De-
bye temperature; eii values obtained from fi(T) fits, open cir-
cles; 8D values extracted from fi(T} fits, closed circles; values
deduced from the asymptotic fits [Eq. (20) of the text], crosses;
values determined from the specific-heat measurements and tak-
en from Ref. 36, open triangles.

and

8 W(0)[1—Ss(2k')]/QD
Sp(2kF )+2 W(0)[1 —Sc(2k~ )][(4Te /Q~D ) —1]

(18}

which derive their origin from Eq. (8). These relations
demonstrate that a direct comparison between theory and
experiment cannot be made without prior knowledge of
II (0),eD aild So(2k@). In order to arrive at the numeri-
cal estimates of these quantities, r ( T) data have been fit-
ted to Eq. (9), which gives the complete functional form
of p( T), over the temperature range 50 & T & 300 K by us-
ing a nonlinear least-squares-fit computer program, which
treats ai, a2, W(0), and en as free parameters and is
based on the Marquardt's maximum-likelihood algo-
rithm. The parameter values so obtained and the corre-
sponding values of k~ and Sc(2k~) deduced from them
using Eqs. (5) and (10b), respectively, are presented in
Table III. Theoretical values of dy/p, r(300 K), and a'i
are then deduced by using the values of 8'(0), On, and
So(2kF} from Table III in Eqs. (16)—(18) and compared
wreath the observed values in Table IV. From Tables III
and IV one notices that (i) a close agreement between the
calculated and observed values of +/p and r(300 K) can
be achieved but not without paying the heavy penalty in
terms of the unphysically large kz values, and (ii) even
after paying such a high price, a large discrepancy be-
tween the experimental and theoretical values of ai
remains. While the former observation provides an exper-
imental confirmation for the previous theoretical result
that for metallic glasses containing a strong-scattering
transition metal (Fe or Co), the extended Ziman-Faber
theory (on which the diffraction model is based} repro-
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duces the experimental resistivity value only when too
high a value of EF or kz is chosen, the latter one points to
the fact that the diffraction model is unable to account for
the additional T term that we observe in p(T) at high
temperatures [Eq. (15)]. In this context, it should be not-
ed that with one exception, all previous studies on fer-
romagnetic metallic glasses do not report the existence of
this additional term in p(T) at high temperatures. This
disagreement between our observations and previous ob-
servations on similar glassy alloys basically stems from
the fact that in the temperature range 120& T &300 K,
the term linear in T gives a contribution to p which is at
least one order of magnitude greater than that arising
from the T term (see Table II) so that the "raw" p(T)
data with relatively small number of data points, as hap-
pens to be the case in most of the previous works, could
be approximated by a straight line in this temperature
range. Although the existence of a T term at low tern-
peratures and a T term at high temperatures, and the pos-
itive TCR for So(2k') &1 (Table III) conform well with
the predictions of the diffraction model, the linear tem-
perature dependence of p (in case we ignore for the mo-
ment the relatively small contribution due to the T terin)
persists to temperatures well below 8& as contrasted with
the prediction of this model that pa: T for T &SD. To
elucidate this point further, a dominant linear term (ai T)
in p(T) has been observed down to temperatures as low as
120 K whereas the diffraction model for the glassy alloys
under consideration yields values of Sn ranging from 370
to 570 K (see Table III); the values of 8D are so large as
to excecxl even the value 8n ——464 K observed for crys-
talline Fe. Similar observations have been recently made
on amorphous Fe-B alloys. The above-mentioned incon-
sistencies between the predictions of the diffraction model
and the experimental results strongly suggest that a total
neglect of the magnetic contribution to p is not justified.

In view of the theoretical result'2 that up to the second
order in the scattering potential the Matthiessen's rule,
1.e.,

p(T)=p«, (T)+p „(T),
where p«, (T) and p, s(T) are, respectively, the structural
and magnetic contributions to the total resistivity, is
obeyed, we argue that the magnetic contribution to p goes
unnoticed at low temperatures primarily because p„,(T)
and p,s(T) both follow a T~ power law but shows up
very clearly at high temperatures where p„,(T) exhibits a
transition from a quadratic to a linear temperature depen-
dence while p, s( T}continues to vary as T . This implies
that we attribute the extra T term (i.e., azT ) in the
high-temperature fits [Eq. (15}] to the contribution to
p( T) arising froin the electron-magnon scattering,
pm, s(T). However, considering the finding that the transi-
tion region between the asymptotic temperature regimes
where p,«(T) follows a T (50& T &100 K)—and a T
(200& T & 300 K)—variation is as wide as 100 K [which
is reflected in the finite curvature of r'(T) curves in Fig. 4
up to about 200 K] in the present glassy alloys, an unam-
biguous determination of pm, s(T) is possible only when
such a transition is complete, i.e., for T)200 K. Numer-
ical assessment of the terms a'iT, azT, and a'iT at dif-
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ferent temperatures, employing the values of ai, a2 and

a2 given in Tables I and II, reveals that p„,dominates
(greater by at least an order of magnitude) over p,s in the
entire temperature range from 50 to 300 K and hence the
magnetic contribution to p can be easily missed unless
great care is exercised while analyzing the results. %'ith
the terms azT, aiT, and a2T of the low- and high-
temperature fits, Eqs. (14) and (15), identified as
[p«,(T)+p,s(T)], p«, (T) and p,s(T), respectively, Eqs.
(6)—(8), (14) and (15) can be combined to give 8D as

(20}

Values of Sn deduced from this relation using the values
of aq, a'i, and aq obtained from the low- and high-
temperature fits (Tables I and II) are listed in Table II.

Apart from the fits in the asymptotic temperature re-
gions [Eqs. (14}and (15)], two types of fits to the experi-
mental data in the temperature range 50 to 300 K, both
based on Eq. (19) with p„,(T) and p, s(T) given by Eqs.
(4) and (11), respectively, have been attempted by using a
nonlinear least-squares-fit computer program of the kind
mentioned earlier. Before going into the details of these
fits, we make a rough estimate of pm, s(0) with the inten-
tion of finding out how small or big this quantity is for

amorphous ferromagnets. VA'th the aid of the well-known
free-electron expressions, namely, EF——fi kF /2m and
kF 3—v—r N, /Q, Eq. (1 lb) can be rewritten in the form

pmas(0) = 3m', S J~
J,(2kF) .

16e kF EF
(21)

~(T)=fi(T)+up T'=—fp(T), (22)

where fi(T) is given by Eq. (9). The values of the fit pa-
rameters ai, a2, a3, 8'(0), and 8D so determined are
used in Eqs. (10b) and (5) to calculate So(2kF) and kF,
respectively, and in the following expressions

Substitution in this equation of the typical values
Q, ~a =(3) A, S=1, kF 1.3——6 A ', Jg(2kF)=3.0A, J&-0.1 eV, and EF-10 eV yields p,s(0}=0.1
pQcm. This value should be compared with that of
p«, (0) which for amorphous ferromagnets could be as
large as 100 pQcm. This comparison and the remark
made in Sec. II about the magnitude of the fourth term in
Eq. (1 la} permit us to neglect the first and fourth terms in
this equation [Eq. (lla)] while attempting the above-
mentioned fits. In the first type of fit, we drop the second
term in Eq. (1 la) also and fit the r (T) data to the follow-
ing relation:

2[1—So(2kF )] 4 X 300 a 3 X (300)
(23)

So(2kF }+2W'(0)[1 —Sp(2kF)][(4X300/8n )—1]+&3X (300)

So(2kF ) +2 W(0)[ 1 —So(2kF )][(4TO/8n )—1 ]+03 To

8W(0)[1—So(2kF)]/8D

So(2kF ) +28 (0)[1—So(2kF )][(4To/8n )—1]+~&
Tio

(24)

(25)

to compute hp/p, r(300 K), and ai. Values of all the
above-mentioned quantities are then compared in Tables
III and IV with those deduced previously by fitting the
r(T) data with the function f, (T). Such a comparison
demonstrates that the inclusion of the magnetic contribu-
tion [the term ai T in Eq. (22)] in the expression for total
resistivity does not significantly change the values of ai,
a2 [and hence of So(2kF), except for the alloy with x =2
for which a& and ai do change but So(2kF) remains unal-
tered within the error limits], dy/p a'nd r(300 K) but con-
siderably improves the quality of the fits as inferred from
the reduced (by an order of magnitude) value of the sum
of squares (X ), removes the discrepancy between observed
and calculated values of ai and lowers the values of 8D
and kF so as to make them fall within the physically ac-
ceptable range. Other important findings include the fol-
lowing: (i) in accordance with the predictions of the dif-
fraction model, positive TCR is accompanied by 2kF
values that are either well below or well above kF [in the
absence of the structural data on amorphous FesoBzo C

alloys, we compare the determined 2kF values with

kF 3.1 A ', where the first peak in the S(k) vs k curves
for amorphous FesoB20 occurs, since no appreciable shift
in kF is expected when B in FesoBio is partially replaced
by C] and Sn values are now reasonably close to T'=200
K, the temperature above which p„,exhibits a linear tem-
perature dependence, and (ii) the high-temperature and
f2(T) fits give roughly the same value for the coefficient
of the magnetic term [the T term in Eqs. (15) and (22)].
Moreover, the values of this coefficient in the expression
for total resistivity, i.e., P'=p(TO)a3 or P"=p(TO)az, for
the present glassy alloys fall within the range of values ob-
tained for the same coefficient in crystalline ferromagnet-
ic metals and alloys. For instance, the values
P'=(0.91+0.03)X 10 " Q cm K and P"=(0.98
+0.05)X 10 " Q cm K [p( To) = 120+2 p Q cm] deter-
mined in this work for Fes0B20 are in excellent agreement
with the value 0.96&10 " Qcm K previously report-
ed for crystalline Fe. This observation resurrects our
earlier (Sec. II) remark that the quenched disorder does
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not significantly influence the coherent electron-magnon
scattering contribution to p.

In order to verify the theoretical prediction, ' Eq. (12),
concerning the relative importance of the T3~, and T
terms in Eq. (1 la), the second type of fit, wherein the
r ( T) data are fitted to the expression

r(T)=fi(T)+a3T3+a&T ~3

=fi(T)+a4T'~',

has been attempted. A nonlinear least-squares-fit com-
puter program in which all six parameters a&, a2, a3, a&,
8D, and 8'(0) are varied to achieve the best fit has been
employed for this purpose. Such a fitting procedure is
found to converge for some of the investigated glassy al-

loys only and in such cases (i) the values of all the param-
eters (except for a4) are widely different from those ob-
tained from the previous fits, (ii) 8D once again assumes
unphysically large values, (iii) the coefficient a4 is nega-
tive, and (iv) the quality of the fits deteriorates, as inferred
from the increased value of X compared with the corre-
sponding values determined in previous fits. Efforts to fit
the r (T}data in the temperature range 50 to 100 K to the
relation r(T) =ao+azT +aiT also met the same fate.
Recent electrical resistivity studies33 on amorphous
Fes013zo also yield an unphysical negative value for the
coefficient ai in the temperature range 20& T &100 K.
The above findings strongly suggest that the T3~3 term in
Eq. (1 la), if present, is negligibly small [implying thereby
that the competing contributions to p,s(T) due to the in
coherent and elastic components of electron-magnon
scattering almost balance each other] compared to the T
term. This inference is at variance with the theoretical
prediction' that for amorphous ferromagnets the T
term should dominate (greater by 2 orders of magnitude)
over the T3 term in the intermediate-temperature range.

We now focus our attention on the concentration
dependence of the parameters ai, ai„ai,p, a3, and 8D
(Fig. 5 and the inset of Fig. 4). The results of recent mag-
netization3 ' 5 and specific-heat measurements have also
been included in these figures for comparison. It is evi-
dent from Fig. 5 that a3, a&, p, and p (magnetic moment
per alloy atom at 4.2 and 77 K) present a strikingly simi-
lar concentration dependence which completely differs
from that of a'i and ai, which among themselves, exhibit
roughly the same functional dependence on x. This im-
plies that basically two different physical mechanisms are
responsible for the existence of the terms in p(T) with
coefficients (a3, az, p) and (a; and az). The marked
similarity in the concentration dependence of a3 ai aild

p is further highlighted in the inset of Fig. 3 where a3
and az are shown to scale with p, . This observation lends
a firm support to our contention that the T terms in the
f3(T) and high-temperature asymptotic fits are purely of
magnetic origin. Figure S would normally tempt one to
make a similar statement about the logarithmic term in
p(T) at low temperatures but a check on this temptation is
provided by the observations: (a) the value of p depends
on the temperature interval chosen for the fit and (b} our
measurements do not extend to sufficiently low tempera-
tures (mK range) where one expects to observe a satura

tion in resistivity which is a prerequisite for attempting a
physically meaningful distinction between various models
proposed in the literature for explaining the resistivity-
minimum phenomenon in metallic glasses. A more cau-
tious statement would be that the logarithmic up turn of
resistivity at low temperatures in the glassy alloys in ques-
tion does not solely orise from the structural disorder, as
some of the existing theories claim, but the magnetic state
of these alloys also plays a vital role. In view of the
structural origin of the linear temperature dependence of
p at high temperatures [the term a'iT in Eq. (15)], the
close resemblance between ai(x) and ai(x) suggests that
the quadratic temperature dependence of p(T) in the
intermediate-temperature range results mainly from the
scattering of conduction electron from the structural dis-
order. However, a small contribution to this Ti term [i.e.,
the a2T term in Eq. (14)] from the coherent electron-
magnon scattering cannot be completely ruled out. Final-
ly, a few remarks can be made concerning the concentra-
tion dependence of 8& in the present glassy alloys. One
notices from the inset of Fig. 4 that the values of 8z de-
duced from the f2 fits and Eq. (20) are in reasonable
agreement with one another but they are smaller in mag-
nitude by about 40% than those obtained from the recent
specific-heat data with the exception of Fes083& for
which the resistivity and specific-heat measurements both
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FIG. 5. Concentration dependence of the coefficients a~, a2,
az, p, and a3, and the magnetic moment p. Note that the values
of p for the alloys with x =2, 4, and 10, taken from. Ref. 34,
have been measured at T =77 K whereas the value of p for
FesoII20, taken from Ref. 35, is the moment value at T =4.2 K.
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yield values which are fairly close to each other. Such a
discrepancy between different sets of 8D values, in our
opinion, arises from the fact that the values of 8& deter-
mined in Ref. 36 do not represent the values of 8D at 0
K, which are more relevant when a comparison with the
8D values deduced from the resistivity data is sought, but
the aoerage values over the temperature interva1
1.5 & T & 10 K. It is evident from Fig. 1 of Ref. 36 that
8D(T) approaches a limiting value Sn(0) only for T(7
K (T & 10 K for Feso82o) and beyond T=7 K 8D(T) in-
creases with increasing temperature. The average value of
8~ over an extended temperature range is, therefore, inev-
itably higher than 8D(0).

VI. CONCLUSIONS

netic contribution in the entire temperature range of the
present investigation.

(iii) Quenched disorder does not have any appreciable
effect on the coherent electron-magnon scattering contri-
bution to p.

(iv) The competing contributions to )o,s(T) arising
from the incoherent and elastic parts of the electron-
magnon scattering are of the same magnitude roughly and
hence the T term in the expression for p~,s(T) is negli-
gibly small compared to the T term.

(v) The magnetic state of the metallic glasses under con-
sideration cannot be ignored while seeking an interpreta-
tion of the logarithmic increase of p for T & T;„in the
light of the existing theories.

A quantitative comparison between the theoretical pre-
dictions and the present experimental results permits us to
draw the following conclusions.

(i) Both the electron-ion potential scattering and
electron-magnon scattering contribute to resistivity.

(ii) The structural contribution dominates over the mag-
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