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Order of wetting transitions
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%'e present general analytic expressions which permit the determination of the order of wetting
transitions in mean-field theory for three systems of current interest: a one-component fluid near a
wall, a binary liquid mixture near a wall, and a binary liquid mixture at three-phase coexistence.
The underlying atomic forces are taken to be of the realistic long-range van der %aals type. These
analytic results are derived by employing the sharp-kink approximation which replaces smooth den-

sity profiles by piecewise constant ones. In all those cases in which our analytic predictions can be
compared with the numerical results for the full inhomogeneous mean-field equations there is agree-
ment between them.

I. INTRODUCTION

Recent theoretical work on the wetting transition, both
in adsorbed systems and in binary liquid mixtures, has
focused on determining the conditions under which this
transition is first-order or continuous. ' ' For physically
relevant systems, the treatment of this problem requires
all interactions in the problem to be of the long-range van

der Walls type. ' 's This is assumed throughout this pa-

per. For a one-component fiuid ""s' and binary liquid
mixtures'9 with such forces, it has been shown that the
wetting transitions are not driven by interface fluctua-
tions. There is strong evidence that in the case of a con-
tinuous wetting transition ("critical wetting") mean-field
theory (Ml I') predicts correctly the critical exponents as-
sociated with such a transition. ' ' ' The most obvious
question, however, is how the order of the transition
varies as a function of the atomic forces. The general
determination of the separatrix between first- and
second-order wetting is a subtle problem even in Me l' due
to the inhomogeneity of the system and the long-range
character of the forces.

The purpose of this paper is to present an analytic
answer to this question within Mt'I. However, one
should keep in mind that even though, as mentioned
above, the fluctuations do not affect the critical ex-
ponents, one has to expect that they do affect the separa-
trix between first- and second-order transitions. This can
be important for a comparison with experimental results.
To date, there have been no reliable calculations which in-
corporate properly the effect of fluctuations on the order
of the wetting transitions in systems with long-range
forces. Monte Carlo calculations and molecular
dynamics ' have already been applied to the wetting
problem. But they were not used to investigate the order
of the transition for the realistic long-range forces in
three-dimensional space. Our results can serve as a start-
ing point for such calculations, and it would be interesting

to determine how sensitive to fluctuations the separatrix
actually is.

Most calculations have been performed for the one-

component fiuid near a wall (Refs. 1—3, 5, 6, and 8—17).
As reviewed more fully in Sec. II below, it can be conclud-
ed that both first- and second-order transitions can
occur. '~ 's What actually results depends crucially on
the next-to-leading-order terms in an expansion of the sur-
face thermodynamic potential for large coverage.

It is easier to observe experimentally interfacial wetting
transitions in binary liquid mixtures and several elegant
experiments have been performed. (They will be discussed
in the summary. ) However, only Tarazona et al. ad-
dressed the question of the order of the transition in these
more complex systems with all forces being long ranged.
Because the Hamiltonian parameter space is so large,
Tarazona et al. confined their calculations to a small sub-

space in which they were able to locate numerically the
separatrix between first-order and critical wetting as
determined by their mean-field equations. In this paper,
we determine this separatrix analytically within the full
parameter space. This enables us to display explicitly the
crucial role of the next-to-leading-order potential terms in
determining the order of the transition. The similarity of
our treatment of the one-component fluid-wall case (Sec.
II) and of the binary liquid mixtures (Sec. III) emphasizes
the similarity of these systems. In particular, the surface
free energy Q, (l) of each has the same expansion in terms
of a one-component order parameter l ', the inverse of
the thickness of the wetting layer, for large l. The differ-
ences between the two systems reside in the coefficients of
this expansion which depend on far more parameters in
the binary liquid mixture than in the one-component
fluid-wall case.

In wetting experiments with binary liquid mixtures one
can observe not only the wetting of the gas-liquid inter-
face but also the wetting of a wall by the binary liquid
mixture. %ith such an experiment, for example, a
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prewetting line has been found. There are only a few
calculations about this type of wetting. We discuss it
in Sec. IV.

Our analytic results follow from the use of the sharp-
kink approximation. We find that in the limited subspace
considered by Tarazona et aL this approximation predicts
the location of the separatrix to within the accuracy of the
numerical solution. Such an agrtement is also found for
two calculations for the one-component fluid near a wall.
Indeed there is reason to believe that if one is not too close
to T, this approximation gives the same separatrix as the
numerical solution of the full mean-field equations
(Mt '8's) 's

y (vapor )

~QP (liquid )

(vopor}

P (B-
z=O

rich liquid)

(b)

a (4- rich liquid)

II. ONE-COMPONENT FLUID NEAR A %'ALL

We consider the grand canonical potential
Q[ Ip(r) l, T, p] which is a functional of the number densi-

ty p(r) and a function of the temperature T and of the
chemical potential p. Within Ms I' it is given by

Ql[p(r) l T i 1=J d'rf~[Ip(r)I T]

ich liquid)

g a (a —rich liquid)

+ —, r r w r—r' prpr'

+ f d r[p~V(r) —p]p(r) .

All integrals are taken over the half-space
V+ = lr=(r)), z &(})I.

The first term is the free-energy functional of a fluid
system which contains only shart-range, hard-core in-
teractions. It is evaluated here in a local density approxi-
mation so that any spatial oscillations of the density, as to
be expected close to a hard wall, are ignored. These oscil-
lations affect the surface free energy mast strongly for
low coverage. Therefore, they are important to locate the
transition temperature Trr for a first-order transition
because in this case Trr depends not only on the asymp-
totic behavior of the surface free energy for large coverage
but on all its details. For just that reason, however, we ex-
pect that they have only a mild influence on the separatrix
and on Ta of critical wetting. It would be interesting to
check this, but we da not pursue this point further; for in-
terfacial wetting in binary fiuid mixtures these effects are
probably absent.

The long-range part of the fluid-fluid interaction is
given by w(

I
r —r'I ) while the fluid-wall potential is

p V(r), with p the mean number density of the wall. In
the following we take V(r) = V(z) neglecting corrugation
effects. They vanish exponentially fast, and therefore
they should be important only for details of a first-order
transition. Within this approximation all one-point corre-
lation functions depend only on z. The wa11 is in the x-y
plane at z =0.

Minimization of Q[ I(pr) ,ITp] with respect to the
density profile p(r) yields the mean-field value of the
grand canonical potential Q(T, y, ) and the equiHbrium
profile p(r, T,p) =p(z, T,IJ,). In the sharp-kink approxima-
tion, we seek the minimum of Eq. (2.1) in the restricted
subspace of piecewise constant p(z). In particular we
choose [see Fig. 1(a)]

pp

p(z) = ' pr,
0,

d &z&l

1 &z &L

otherwise .
(2.2)

Thus, 1 is the apparent thickness of the layer of liquid of
density p~ between the wall and the gas of density pr.
Due to the hard-core part of the interaction between fluid
and wall, the density of the liquid film vanishes at dis-
tances smaller than a microscopic distance d~. ' Far con-
venience, we have cut off the gas phase at a macroscopic
distance L.

Upon substitution of the sharp-kink profile, Eq. (2.2),
into Eq. (2.1},one finds that the grand canonical potential
functional separates into the following bulk and surface
contributions (A denotes the surface area):

Q[[p(r)J, T, p]=ALQs(p„, T,p)+AQ, (I,T,p),
where

Qs(pr»I )=fs(p, T}+2p', J dx~(Ix I) Ipr—
(2.3)

(2.4}

(c)
FIG. 1. Wetting phenomena considered in Secs. II, III, and

IV. (a) One-component system (P,y} close to a wall. The gap
between the liquid phase (P} and the wall indicates the excluded
volume d„&0. P and y are assumed to be at coexistence. (b)

Binary liquid mixture (a,P, y} at the triple line. The intruding

liquid fdm is assumed to be 8 rich. The A-rich liquid plays the
role of the wall in (a). (c) Binary liquid mixture (a,P) close to a
wall. To be concrete it is assumed that the a (P} phase is the A

{8-)rich liquid. The t~o liquids are at coexistence and off the
triple line. Various other combinations are possible.
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w(x)= f d r~~ w[ ~~+
' ] (2.5)

2
ar, vsc 2 pr 0 dy t(y) (2.7)

t (y):= f dx w (x) . (2.8)

The second term, the difference in grand canonical poten-
tials per unit volume of the liquid and gas phases multi-
plied by the nominal length of the film, is just the bulk
free energy needed to replace a slab of gas by an equal
volume of (metastable} liquid. This contribution vanishes
at coexistence where the grand canonical potentials of the
gas and the liquid are equal. The additional contributions
do not vanish at coexistence and are the free energies asso-
ciated with creating the liquid-gas interface and the wall-
liquid interface. If I were infinite so that these two inter-
faces did not interact with another, these free energies
would be

The actual density pz is obtained by minimizing the bulk
contribution with respect to pz. It yields the gas density
as obtained within M&I'. The liquid density p~ is ob-
tained similarly. Vhth these densities determined, the
only profile parameter upon which the surface contribu-
tion 0, depends and which can be varied is the thickness
l. The surface contribution can be written (we suppress
the arguments T and p)

Qg(1)=a'r „+1[Qb(ptt)—Qb(pr)]+crpr+o'~ p+co(1),

(2.6)

where vac stands for vacuum. The first term is simply
the surface tension o„„„,which is caused by truncating
the bulk gas phase at the surface of convenience z =L.
This is

t(z)= (ti/z—+t4/z + ) for z »d (2.13)

which defines ti, t4. With these definitions, co(1) takes the
form' for large I

co(l)=a/I +b/I +
with"

(2.14)

nothing is known rigorously. However, from the work of
Ref. 15 we know that the order of the transition and the
transition temperature of the critical wetting as given by
the sharp-kink approximation and the full solution of the
inhomogeneous MFE's are the same for a particular case
of (T, —T~)/T, =0.2. A similar agreement is found in
the appendix for a critical wetting in a binary liquid mix-
ture at a temperature (T ~

—T~)/T„~ (0.1 where T„~
is the critical end point temperature. These results indi-
cate that the sharp-kink approximation for ai(l)=Q(1)
—Q(oo) is far better than for Q(oo) and hence Q(l) itself.
The last term in Eq. (2.6} is the correction to the surface
free energy which is necessary if I is not infinite:

~( I) =( ptt p) —pti f dy t(y) p —f dy V(y)
N

(2.11)

At coexistence, co(l) carries the only dependence of the
grand canonical potential on the film thickness and thus
determines whether the wall-gas interface is wetted by the
liquid or is not. The former occurs at some temperature
Tit if co(1} has a global minimum at infinite I; the latter
occurs otherwise.

We now take all interactions in the problem to be of the
long-range van der Waals type so that, for large distances
and ignoring retardation,

V(z)= —(ui/z +u4/z + ) for z»d~, (2.12)

which defines the coefficients u 3 u4 alld

and

crtt r ——,'(ptt ——pr) f dy t(y), (2.9)

and

a = ,
'

( ptt p~)(u—ip —tiptt), — (2.15)

p
———,'pp y& y —n, pp ~

+ptip f dy V(y) . (2.10)

otir is the sharp-kink approximation for the familiar
gas-liquid surface tension. In MFL' ptt pr-~' ~0—,
with r—=(T, —T)/T„so that in the sharp-kink result of
Eq. (2.9},ottr-r However, if .this approximation is not
employed and the liquid-gas interface is allowed to vary
smoothly over distances of the order of the (large} bulk
correlation length, then M~ I' yields o~ &-~ . Obvious-
ly the difference stems from the fact that in the sharp-
kink approximation the correlation length g-r ' has
been put to zero. So, at first glance, it makes sense only
to apply the sharp-kink approximation in those cases
where T~ is not too close to T, . However, this argument
only shows that the asymptotic value of Q, (1) for infinite
I is given poorly by the sharp-kink approximation for T
near T, . We are concerned with the order of the wetting
transition which depends upon the approach of co(l) to its
asymptotic value which is zero. Concerning this point,

b = —,
'

( pp pr)[u4p~ —(t4—+3d~ti)pp] . (2.16)

In order that critical wetting occurs at T =T~, the coef-
ficient a (T) must be negative for T( T~ and must van-
ish at that temperature. As pp is always greater than p&,
and ptt can only vary between its value at the triple point
ptt(T, ) and the critical density p, =pg T, ), the coefficient
a (T}can only fulfill the above mentioned conditions pro-
vided that

p, /p~ (u3/t3 (pp(Tt)/p~ (2.17)

ptt(Tw)/pw =u3/ti (2.18}

This is a necessary, but not sufficient, condition for criti-
cal wetting to occur. The order of the transition is deter-
mined by the higher-order coefficients in the expansion of
co(1). The transition will be first-order if b is negative at
T~ and can be continuous if b is positive. At T~,
a(Ta )=0 so that
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b(Tit )= ,
'

—( pp
—p„)p~us(u, /u, —t, /r, —31~) . (2.19)

Thus we find within the sharp-kink approximation that
the wetting transition can be second-order if

i4/ran+31~ & u4/us (2.20)

and is first-order if the inequality is reversed. The separa-
trix between first- and second-order wetting transitions,
the locus of tricritical wetting transitions, ' is given by

(2.21)ug/us = r4/ran+31~

Kroll and Meister' solved numerically the Mf'h which
results from minimizing the grand canonical potential of
Eq. (2.1) in the full subspace of functions in which
p(r) =p(z). They chose pure Lennard-Jones potentials for
which u3 r$ &0 and u4 t4 —0——. In—accordance with Tara-
zona and Evans they found first-order transitions only.
This result of the numerical solution of the full MFE is in
agreement with the simple prediction of the sharp-kink
approximation, Eq. (2.21), because 1 & 0. This approxi-
mation works equally well in the case in which the long-
range parts of all potentials are treated in the Kac limit.
[One has, e.g., Vi„(z)= Vi„(yz) with the limit y —+0 to be
taken; V(z)= V,„(z) + Vi, (z), with V„(z)=0 for z&1
and V (z)= ao for z &1 . A similar partition holds for
t(z) with 1 replaced by 1.] The solution of the Ml'h in
that limit corresponds to the solution of the MFE without
that limit but with the original potentials shifted by the
amount of the hard-core radius of the substrate potential
1 and of the fluid-fluid interaction 1, respectively. So
the MFl' for the Kac limit of potentials V and t amounts
to the ME I' for new potentials V, t without the Kac limit.
The sharp-kink approximation can then be applied to the
latter potentials. As a result of the Kac limit the density
no longer vanishes for z&1 but for z&0. For pure
Lennard-Jones potentials V and r one has

V(z)= —us(z+1I) +O(z )

V„„(n)= —(u',"'n -'+u4""n -'+ ), (2.25)

where u3"' ——usa and u4"' ——u4a . On the other
hand,

rtat(tn) = g wi, «(n +m )

(rlatt —3+rlatt —4+. . . ) (2.26)

wt„t(k)= g g w[a(n +m +k )'~ ] . (2.27)

separatrix line A, = 1 as predicted by the sharp-kink ap-
proximation. Not only does this approximation predict
the order of the transition but it also predicts the value of
the Ttt for critical wetting via Eq. (2.18). [See the appen-
dix and Ref. 15. The prediction of Ts for a first-order
transition based on the sharp-kink approximation is less
accurate because in that case the details of the higher-
order terms in Eq. (2.14) do matter, and they are sensitive
to the difference between a smooth and a sharp kink. )
Unfortunately, with respect to that, the published data of
Kroll and Meister' are not sufficient to compare them
with our analy)ic results.

At first glance the condition for critical wetting as
given by Eq. (2.20) seems to differ by the term 31 from
the condition as given by Eq. (6) in Ref. 15. But the fol-
lowing arguments show that for the same substrate poten-
tial V and the same fluid-fluid pair potential w the lattice
theory in Ref. 15 and the continuum theory as presented
here give the identical separatrix. The only difference be-
tween the approach in Ref. 15 and the present one is that
in Ref. 15 the fluid atoms are restricted to sit on lattice
sites with a lattice parameter a. With z =na,
n =1,2, . . . , Eq. (2.12) gives

=—usz —u4z +O(z s),
wltll us=us~ u4= —31tttus aild

F(z) = —r, (z +1)-'+O(z-')

(2.22) Using the Euler-MacLaurin summation formula one gets
or

w(r) = (Ar +Br + — )

the results
r,z r4z +0(z --), (2.23)

t3 ——t3alatt —6 (2.28)
with r3 r3 t4 — 3dt4. According to—Eq. (2.2 1 ) the
separatrix between first- and second-order transitions is
therefore given by

and

i4 =(rg+ 2 ari)Q (2.29)

(2.24)

If one studies pure Lennard-Jones potentials in the Kac
limit, the wetting transition should, according to the cri-
terion given above, be first-order for d/d~ ~ 1 and
second-order for 1/d~&1. Kroll and Meister' solved
this problem numerically and found the first-order transi-
tions for A, =o/o, & 1 and the second-order transitions for
A, & 1, ~here cr and o, are the Lennard-Jones parameters
of their fluid-fiuid and fluid-wall pair potentials, respec-
tively. This is in agreement with our prediction if 1=o
and if d~= —,'(o+o, ) which is the choice of Kroll and
Meister. We regard this as a satisfactory check of the

The extra term ', ati stems from th—e discrete lattice in the
half-space z &0. In the lattice version, the condition for
critical wetting is

tlatt /tlatt latt / latt

Using Eqs. (2.28) and (2.29) one finally arrives at

t~/ts+3a/2 & u4/u3 .

(2.30)

(2.31)

In the lattice description the sharp-kink approximation is
set up in such a way that the density is zero in the lattice
planes n =0, —1,—2, . . . , that it is liquidlike in the lat-
tice planes n = 1,2, . . . , I, and it is gaslike for



33

n =I + l, 1 +2, . . . . This corresponds to the interface po-
sitions at z =a/2 and z =(l+ —,)a. ' Therefore, we can

conclude

d =a/2. (2.32}

Equation (2.31}together with Eq. (2.32) is identical to Eq.
(2.20) and shows that the lattice theory and the continuum
theory give the same separatrix. Equation (2.32), of
course, holds only as long as the mean distance between
the fluid atoms is about the same as between a fluid atom
and the wall. If one would like to drop this restriction in
the lattice model, one would have to introduce repulsive
forces to accommodate two microscopic length scales on
the lattice. However, as Eq. (2.32) shows, this is not
necessary to incorporate the excluded volume d„pO.
That means that in Ref. 15 the existence of critical wet-

ting was shown even in the presence of an excluded
volume.

It is worth noting here that what can be concluded
from the above is that the wetting transition of a fiuid
near a wall would be first-order if the substrate potential
were of the 3—9 and the fluid-fluid pair potential of the
6—12 Lennard-Jones form [see Eqs. (2.12), (2.13), and
(2.20)]. However, as emphasized in Ref. 15, this is not the
case in real systems. In particular, the coefficients u4 and

t4 are affected by many-body forces, by adsorption of a
monolayer of impurity atoms at the surface, ' and by for-
mation of a few layers of solid at the surface. The latter
is to be expected for strong substrates. The coefficient u4
certainly depends also on the structure of the substrate
orthogonal to the surface. For the sake of argument, let
us make the crude assumption that V(z) can be written as
a sum of 6—12 Lennard-Jones potentials 8, between a
fluid atom and a substrate atom located at a lattice site in
the half-space z ~0. With $,(r)= —Ar + O(r ) one
gets

V(z)= (n/4)Aa~~ —ai g (n+z/ai) 4+O(z ) .

(2.33)

ai(a~~ } is the lattice constant of the substrate orthogonal
(parallel) to the surface. From Eq. (2.33) one can derive
that u4/u3 ——3aj /2. If the fluid-fluid interaction would
be purely of the Lennard-Jones form, then t4 ——0. Then
the condition for critical wetting [Eq. (2.20)j is d &ai/2.
In the simplest model d„ is the sum of the atoinic radii of
the substrate atom and of the fluid atom and a i /2 ixluals
the atomic radius of the substrate atom so that this in-

equality is not fulfilled. However, this estimate is crude.
I

It does show that to the physical factors discussed above
which can infiuence the order of the wetting transition
must be added the structure of the substrate orthogonal to
the surface. We reiterate that there is no reason to expect
a priori that the wetting transition need be first-order.

It is tempting to extend the application of Eqs.
(2.6}—(2.16) from the gas-liquid coexistence curve of the
adsorbate to the sublimation or melting curve of the ad-
sorbate so that the substrate now is wetted by a solid. The
first problem one encounters in these cases are strain ef-
fects caused by a mismatch between the lattice constants
of the substrate and the adsorbate and/or the compression
of the adsorbate due to the substrate potential. This adds
a linear term to co(l) in Eq. (2.14) which prevents it from
having a global minimum for infinitely thick films.
But even if these effects are small, one is left with the fun-
damental problem of which variational functional Q de-
scribes properly the sublimation and melting transition in
the bulk of the adsorbate. If that were known, then one
would introduce in addition a substrate potential V(z) and
study the corresponding wetting transitions. co(l) would
then be given by a sharp-kink approximation for such a
theory. Ebner and Pandit and Fisher47 discussed the
possible influence of a triple point on wetting phase dia-
grams, but we are not aware of any serious quantitative
study of these kinds of wetting transitions. Therefore,
within the framework of the functional Q as given by Eq.
(2.1) there is no triple point, and in Eq. (2.17) pp(T, ) has
to be interpreted as pgO), the Mi'I' value of pti at zero
temperature.

III. BINARY LIQUID MIXTURES

Consider a fiuid which is a mixture of A atoms and 8
atoms. The aim of this section is to express the grand
canonical potential of such a binary fluid mixture in
terms of the thickness l of a film of 8-rich liquid at the
interface between vapor and A-rich liquid. In particular,
we will again obtain, within the sharp-kink approxima-
tion, an expression of the form

Q( l) =Q( ao )+al +bl (3.1)

just as in the case of a one-component fluid near a wall,
with explicit expressions for the coefficients a and b
which are the analogues of Eqs. (2.15) and (2.16). The
binary liquid mixture is complicated by the fact that each
phase is characterized by two densities instead of one.

We begin with the grand canonical potential functional
(i =1,2)

Q[[p {r}iJ,T y j= f d'i'fa[Ip. «}l Tl+ 2 g f d" f d"'@J( Ir —r'I }p,{r)pj(r')—gp; f d rp;(r),
E,J l

(3.2)

where p;(r) is the particle density of the ith species and
the other symbols are as before. We minimize this expres-
sion in the subspace of piecewise constant p;(r). We
choose

—L /2&z&0
0&z&I
I &z &L, y2.

{3.3)
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M(r): p, (r) —pz(r) (3Aa)

The a phase can be thought of as the A-rich liquid, the P
phase as the 8-rich liquid, and y as the vapor; see Fig.
1(b}. The cutoffs at z=+L/2 are only for convenience.
If the hard-core radii of all interactions were the same, the
above would be just a continuum version of the Blume-
Emery-Griffiths model. We do not use this restric-
tion because the order of the transition turns out to de-
pend on these details. But to emphasize the similarity
with this model, we take as independent variables

tr „=—,'M J(0)+—,
' Q~(0)+M Q C(0), (3.11)

and similarly for trr „~,where

J(l)=-
d f dy [tii(y}-2t12(y)+t22(y}] .

K(1)=——,
' f dy[t»(y)+2t»(y)+t»(y)], (3.12b}

C(1)=——,
' f dy[t»(V) —tzz{y)] (3.12c)

to truncate the bulk phases a and y at the surfaces of con-
venience at z=+L/2.

Q(r): pi(r)+pz(r) . (3.4b)

M, —L/2&z &0

M(r)= Mp, 0&z&l

Mr, I &z&L/2,
(3.5)

M denotes the stoichiometric composition and Q the
overall number density. The ansatz of Eq. (3.3) then be-

(3.13)&Jly} fd=x I d rll my[(rlt+x ) ] .

The third term in Eq. (3.10) is just the bulk energy needed
to replace a slab of thickness I of phase y by phase P.
This contribution vanishes at P-y coexistence. (It is as-
sumed throughout this section that we are at a-y coex-
istence. ) The terms o p and op „are the surface tensions
for the interfaces between the bulk phases a, P and P,y,
respectively:

I

with a similar expression for Q{r). W'e also define the
analogous fields

tr~ p= ,' (M—~—
M p

)zJ (0)+ —,
'

(Q~ —Qp)zr{, (0)

+(Q~ —Qp)(M~ —Mp)C(0), (3.14)

~:= —
3 (P 1+P2}

and couplings

(3.6a}

(3.6b)

and similarly for ep r. The last term in Eq. (3.10) for the
surface potential is the correction to the surface free ener-
gies due to the finite thickness of I. It is

c0( I)=(M~ Mp)(M—
p Mr )J(I—)

J{r):=——,
'

[N 11(r)—2N 12(r)+wzz(r)),

E(r):= —„[N1 1 (r)+2N12(r) +N22(r)],

C(r) = ——,
' [w„(r)—Nzz(r)] .

(3.7a)

(3.7b)

(3.7c)

Then, within the sharp-kink approximation of Eq. (3.2),
the grand canonical potential can be separated into bulk
and surface contributions

Q[Ip;(r) I]=aL-,' [ Q( M. , g. ) +Qb( M, , g„)] +g Q, ,

+(Q —Qp)(gp —Qr )&(I)

+ [(Q —Qp)(Mp —M„)

+(MN Mp)(gp —Q—r )]C(1) . (3.15)

then

t J(z)= -(t„,z +t„,.z + }, (3.16)

As before, we are interested in the behavior of co(l) for
large I. If we define the expansion of the interactions
t;J(z) as

where A is the surface area of the flat interface and

Qb(M, Q) =Ib(M, Q) ,'(M J+Q21y—'+—2QMC)

with

J= fd rJ(r),

(3.8}

(3.9a)

(3.9b)

ty3(1) =al 2+bl +

0 Qg

b
——(M~ —Mp)(Mp —Mr) b

~x+(Q —Qp)(gp —Q„) b

(3.17)

+ET~ p+0'p r+co(l) . (3.10)

The first two terms are, again, simply the energy needed

and similarly for It and C.
The bulk densities M and Q are obtained as usual by

minimizing Qb with respect to them. The surface contri-
bution to Eq. (3.8), Q„can be put in the form

Qd cr~ „~+err „——~+I[Q (Mbgp) pQb(Mr, gr —)]

+[(Q~ Qp)(Mp Mr )— —
T

+(M~ —Mp)(Qp —Qr )]

{t3,11 2t3, 12 + t3, 22 }/8 y

ux (t3, 11+2 3, 12+ 3,22)/

(3.18)

(3.19a)

(3.19b)
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uc = (t3, 11
—t3, 22 }/8»

'4 {t4,11 2t4, 12+t4,22)/12»

bx (t4, 11+2t4,12+t4,22)/12»

bc =(t4, ii —t4, 22)/12

(3.19c)

(3.20a)

(3.20b)

(3.20c)

~~—TPO {PO t3, tiki P—O t3, ~21) .{8) (8) (&) (3.22)

It is instructive to compare the result in Eq. (3.22) with
the low-temperature limit of the same coefficient, call it
a', for the one-component fiuid near a wall, Eq. (2.15}:

tions (3.21) together with Eqs. (3.18) and (3.19) give at low
temperatures

(A) (A}
Q~ —+po» M~ —+pp

Qtt~po, Mti —po
(8) (B)

(3.21a)

(3.21b)

Qr ~0, M„-+0 .

po"' (po ') denotes the total density of the A- (8-) rich
liquid phase at low temperatures. Within the description
of Eq. (3.2), po"' {po ') can be identified with the total den-
sity of the pure A (8) liquid at low temperatures. Equa-

(3.21c)

Equations (3.17)—(3.20) are the analogues of Eqs.
(2.14)—(2.16) which we sought and from which follow
similar statements concerning critical wetting. In particu-
lar, necessary conditions for critical wetting are that
a(T&Tg ) &0, a(Tii)=0, and b(Ta )&0.

I.et us examine the coefficient a of Eq. (3.18) more
closely in order to determine the conditions which favor
critical wetting. First, as stated above a ( T) must be nega-
tive at low temperatures so that the u-y interface is not
wet at these temperatures. (To be specific we focus on
simple binary liquids, i.e., those that mix at high tempera-
tures and do not mix at low temperatures. ) We first take
the a phase to be the A-rich liquid (3 =1) and the P
phase to be the 8-rich liquid (8=2); see Fig. 1(b). Thus
at low temperatures we have for the total densities

Q =pi+ p2 and for the density differences M =pi —p2

a'~ ——,Pti{Po 'ti P»»»u—3) . (3.23)

The comparison between Eq. (3.23) and Eq. (3.22) shows
that in the case of interfacial wetting in binary liquid mix-
tures the role of the wall is played by that liquid phase on
top of which the other liquid phase intrudes as a layer be-
tween the lower liquid and the vapor. (If the P phase is
the A-rich liquid and the a-phase the 8-rich liquid all A

and 8 symbols in Eq. (3.22) must be interchanged; there-
fore, the above statement remains true also in this case. )

The condition a (T=O) &0 is given by Eq. (3.22) as

t3, ~tilt3, titi &po Ipo (3.24)

if the intruding layer is 8 rich. This is strictly analogous
to the right-hand side of the inequality in Eq. (2.17) for
the one-component fluid system near a wall. Equation
(3.24) states that an adsorbate (P) is not expected to wet a
liquid (a) at low temperatures if the interaction between
them (t3 $21} is weaker than the adsorbate-adsorbate in-
teraction (ti zz) [see Figs. 1(a) and 1(b)).

For critical wetting to occur, it is necessary, but not
sufficient, that the coefficient a(T) (i} is negative at low
temperatures and (ii) changes sign as the temperature is
increased along the triple line towards the critical end
point temperature T~. This coefficient is given by Eq.
(3.18) as

M~ Mtt Mtt Mr M~ MP MP Mr
a(T)=(Q —Qtt)(Qti —Q„) ax+ "aj+ + " ac (3.25}

Before we proceed to investigate in what region of the pa-
rameter space the above two conditions are likely to be
fulfilled, we first consider the restrictions on the parame-
ter space implicit in our assumption that the bulk phase
diagram of the binary liquid mixture is simple.

In general the phase diagram can be quite complicat-
ed. However, in the special case that at love tempera-
tures the two liquid phases have the same number density,
a complete answer has been given by Furman et al. ' In
Fig. 2 me have translated their results in our language.
The topology of the bulk phase dj.agrarn depends on two
dimensionless parameters: (E=EIJ,C =C/J ) or
(w 1 1 /w12, w22/w12), where

w»J .'= —f d rw»J. (r) (3.26)

J or R&2, respectively, define the temperature scale. The
region in which the phase diagram is simple is given by

J& 0, E & 3.80 .

In terms of the interaction parameters w;J we have

wii/wi2+w22/w» &2

0.29( w»/wi2+ w22/w12) & 1,

o 11{w» lw»+ w» lw» }

+ 1.79 111111Iw 1 1 lw12, w22/w 12 I & 1

A common choice for w;J(r) is

4e;, [(rr,)/r)" (a;, Ir) ], r/o';J&—2'
w;J(r) =

21/6

(3.27b)

(3.28a)

(3.28b)

(3.28c)

(3.28d)

(3.29)

~

C
~

& minI0. 28(K+3},{E—3)/2I, (3.27a) With this choice one finds, that
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t3 i2

'I 3

(3.30)
and in Fig. 2(b) by

( ilail~&l2» ic22~iu12)~(r3, 11~r3, l2~ i3.22~ii, 12) '

Equations (3.27)—(3.30) show that in the case of equal
core sizes (cr,

&

——cri2) the axes in Fig. 2(a) can be relabeled

by

(K,CM(a~lag, ac/a@)

'
0~/0„

(CA)), /
X!

A

04

i~

Chl ~-Q

This equivalence is certainly not true for arbitrary poten-
tials, but we think it is reasonable to assume that for po-
tentials of interest the parameters which enter the condi-
tions for the separatrix [Eqs. (3.24) and (3.25)] can vary
only within the regions indicated in Fig. 2 (recall that
A =1, 8=—2). Having determined the restrictions on the
parameters implicit in the assumption of a simple phase
diagram, we return to the implications of the require-
ments for critical wetting that a(T) be negative at low
temperatures and positive at the critical end point tem-
perature. We consider the former condition first.

According to the discussion preceding Eq. (3.24) the
condition that a(T) be negative at low temperatures is
that the inequality of (3.24) be satisfied. With the restric-
tion of equal hard-core radii, this inequality is fulfilled in
all but region III of Fig. 2. In that region, the system is
either wet at low temperatures, and so undergoes no wet-
ting transition, or it undergoes a first-order wetting transi-
tion. (If the roles of A and 8 are reversed, then these
statements apply to region II.) Thus this condition for a
critical wetting is always satisfied in region I, is satisfied
in region II if the triple line is approached from the A-
rich liquid phase, and is satisfied in region III if ap-
proached from the 8-rich side.

Just which region a given system is in is easily deter-
mined if the molecules have similar hard-core radii. In
this case the more attractive molecules dominate the com-
position of the critical fluid, M, =pi, —pq, . (This is in
agreement with the numerical results in Refs. 4, 52, and
53.) This means that the experimentally known sign of
M, determines the sign of C:

M, (O.-+C(Q . (3.31}

~3, Il /t3, tP
l

Il

Along the same line of arguments as given above, we ex-

pect that this can be converted to a similar statement can-
cerning the interaction strengths:

e4 -- 3, 114 3,22 ~ (3.32)

FIG. 2. Accessible interaction parameters for simple binary
liquid mixtures expressed in terms of (a} (Z, Q and (b)

(R1~/w~q, N~2, /N~q). Apart from small portions the enclosed
areas are given by the region P„ in Fig. 3 of Ref. 51. The trian-
gle AA &Az includes the so-called "shield" region (Ref. 51) and
has therefore to be omitted. {CA)„,D„and Db denote the same
points as in Fig. 3 of Ref. 51. A is the symmetry point of Fig. 3
in Ref. 51. A&Db (A2D, ) represents a part of Cb (C, ) and
DbA3 (D A4) mimics the separatrix between P„and Pb„(P ~)
in Fig. 3 of Ref. 51. The line A3A4 in (b) stems from the condi-

tion J & 0. Ti denotes the locus of the calculation by Tarazona
et al. (Refs. 4 and 52) (see the appendix). The calculation
of Telo da Gama and Evans in Ref. 53, T2, is very close to T&.
The coordinates of the various points are (a) A =(3,0), {CA)„
=(3.80,0), D, (i)—[10.8, —(+}3.90), A)(p) ——[3,80, + (—)OAO),

Tl ——(8.82, —0.47), Tq ——{8.82, —0.36), and in {b) A =(2„2),
(CA) =(1.73, 1.73}, D, =(0.41,2), A =(1.45,2}, A =(0.44,
1.56), TI ——(1.14, 1.38), T2 ——(1.16, 1.35). The other points are
given by symmetry. For further explanations see the main text.

Thus, if the experimentally known value of the critical
concentration is negative, the system is above the main di-
agonal. This, together with the results of the preceding
paragraphs implies the following: in a system in which
the bulk critical fluid is strongly dominated by A atoms,
critical wetting can only be observed when the triple line
is approached from the 8-rich liquid side and vice versa.
If the critical fluid is only weakly dominated by one of the
two components (i.e.„ the system lies in region I) the vapor
is not wetted by either of the two components at low tem-
peratures. %e emphasize that these crude rules are based
on the assumption of similar core radii. The effect of dif-
ferent core sizes must be checked separately.

Our remaining task is to determine under what condi-
tions a(T~~) will be positive. We assume that if this is
so, a wetting transition will have taken place. (It is con-
ceivable that even at T~p Q, has only a local minimum at
I= ac, whereas the global minimum remains at a finite
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value of I so that the system does not wet the vapor. Such
a behavior would be enforced by strong interactions at
short distances, and we do not consider it here. ) To dis-
cuss this question, we return to Eq. (3.25). We introduce
the following three functions:

u
NP

M~ —Mp

Qa —Qp
(3.33a)

m» m»

ieiz Qp Qp
(3.33b)

A.~ is independent of whether a or P is the A-rich liquid
phase, whereas the A,p„are two different functions accerd-
ing to whether P is the A-rich or B-rich liquid phase. Be-
cause the ratios on the right-hand sides of Eqs. (3.33) are
evaluated at the critical end point, A~ and Ap„depend

A,p„~M, /Q„ i
A.p„ i &1 . (3.34)

M, and Q, are the concentration and overall density,
respectively, of the critical fluid. In the case ioii ——Rq2
and eqiia} core sizes one has M, =0 and then
A,p„~—Mr, /Q, ; Mr, is the concentration of the gas
phase at T~. In this case

~

A,p„~ && 1.
The condition a(T~) & 0 must be formulated separate-

ly for various ames.

For case I, if Qa && Qp and M &Mp, then

only on the variables which determine the bulk phase dia-
gram. Note that by approaching the critical end int
froin below along the triple line, M —Mp-~is and
Q —Qp-air, where r=(T~ T—)!T~and P=0.5 in
MP I. Therefore, 1, p is equal to the ratio of the ampli-
tudes ~i/x, . Due to

~
M

~
& Q and due to the low density

of the gas phase y one has

[2(1—AapItt p„)+(1—)(ap)(1 —)(pr)ti ziltp )z] .
t3 12 1+ ap + py

For case II, if Qa & Qp and Ma & Mp, then

(3.35a)

[2(1 Rap—Ap„)+(1+Rap)(l+Ap„)ti ii/ti ii] . (3.35b)

(3.36)

In Eqs. (3.35) the upper (lower) inequahty signs belong to-
gether. Each of these two cases must be studied in the
case that a is the A-rich or 8-rich liquid phase. The gen-
eral procedure is now obvious. Ta»ng into account Eq.
(3.30), one starts with, say, the situation depicted in Fig.
1(b). Then the overlap between the regions defined by Eq.
(3.24) and Eq. (3.35) gi~es within the allowed area of Fig.
2(b) the loci of systems which fulfill the necessary condi-
tions for critical wetting. Then these systems have to be
investigated further with respect to the next-to-leading-
order terms of their interaction potentials. This procedure
must be repeated for the case that the a phase is the 8-
rich liquid phase. As an input one has to determine the
functions A. p and A,p„. This requires a substantial numer-
ical effort, especially to include the effect of different
hard-core radii. This is the subject of further research. ~
Here we adopt a simpler point of view. These functions
A, p and A,p„are purely bulk properties of binary liquid
mixtures, and it should be relatively easy to deteda~ine
them from bulk density and concentration measurements.
Therefore, we regard these functions as known, and we
give some conditions which are especially favorable for
critical wetting. This discussion uses the fact that we
have always 1+d(.p„&0 [see Eq. (3.34}] and that A,~&0
( &0) in case I (II). The most promising situation in case I
is to have Q & Qp and Ma &Mp. Then the correspond-
ing upper inequahty in Eq. (3.35a} is automatically ful-
filled if the expression in the square brackets is positive.

If Qa & Qp, Ma & Mp, 0 & A,ap & 1, then

ti ii 2(Aapkp„ —1)

ti iz (1—A,~)(1—A.p„)

guarantees that the upper incquam)'ty of Eq. (3.35a) is ful-
filled and is a simpler condition. Equation (3.36) is ful-
filled for A,p„&A, p and for the stronger inequality
Ap„&0, i.e., M, &0. For Q &Qp, M &Mp, and A, p=l
we n~ A,p„& 1 which is true for M, &0.

If Q & Qp, M & Mp, A, p & 1, then

ti zz 2(A,apt(,p„—1)

ti ii (1—A~)(1 —A p„)
(3.37)

Here, contrary to Eq. (3.36), A,p„&A, p' or M, & 0 is only a
nscssssry, but not sufficisnt, condition to fuliili Lsq.

(3.37). In summary, Q &Qp, M &Mp, A, p&1, M, &0
is a sufficient condition to have a wetting transition.

In case II the most promising situation is
Q &Qp, M &Mp. Again a sufficient condition for Eq.
(3.35b) is that the quantity in the square brackets in Eq.
(335b) is positive.

If Q &Qp, M &Mp, —1&d(, p&0, then

ti ii 2(Aapkp„—1)
(3.38)

ti iz (1+Rap)(1+kp„)

gssasantees that the upper inequality of (3.35b} is fulfilled
and is a simpler condition. Equation {3.38) is satisfied for
Ap„&hap and for the stronger inequality Ap„&0, i.e.,
M, & 0. For A, p———1 we need A,p„& —1 which is true for
M, & 0. Finally, if Qa & Qp, Ma &Mp, A,ap & —1, then

ti ii 2(A,a+p„—1)
(3.39)

ti iz {1+A~)(1+A p„)

is a sufficient condition for a wetting transition. Equation
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(3.39) can only be satisfied if Apr & A. p which holds for
A,p„&0, i.e., M, &0. The considerations leading to Eqs.
(3.36)—(3.39) can be summarized by giving the following
conditions, either of which is sufficient for the existence
of a wetting transition:

Q~ &Qp, M~)Mp, A,~p(1, M, (0,
Q~&Qp, M~(Mp, —A~p(1, M, &0.

(3.40a}

(3.40b)

Note especially that according to Eqs. (3.40) it is always
favorable for a wetting transition that the intruding film
(P) has the lower number density Fo.r atoms with similar
core radii we expect that liquid phase to have the larger
(smaller) particle density which is rich in the more (less)
attractive atoms:

(
Qw )Qp~wii )w22 ~ (3.41}

Again, Q„1p1 denotes the density of the A- (8-) rich liquid
phase. We also expect the gas to be rich in the less attrac-
tive atoins. This is in agreement with the explicit calcula-
tions in Refs. 4 and S2. From Eqs. (3.40) and (3.41) we
conclude that ordinarily a wetting transition takes place if
the triple line is approached from the less volatile liquid
phase (i.e., higher number density) and the wetting film is
formed by the more volatile liquid phase (i.e., lower num-
ber density}. As lower number densities are usually asso-
ciated with higher mass densities, we expect heavier
liquids to wet the interface between lighter liquids and
their vapor. ' 3 This is in fact found experimentally (see
the discussion of the experiments at the end of Sec. V).

The regions of parameter space which permit a continu-
ous wetting transition have now been deduced. If the in-

truding layer is 8 rich, the first requirement, that a (T) be
negative at low temperature so that an infinitely thick
wetting layer corresponds to a maximum of the free ener-

gy and is thus unfavorable, is given by Eq. (3.24) which
shows that the system should be located in regions I or II
in Fig. 2. The second requirement, that a(T„~}be posi-

I

t

M~ —Mp Mp —My+
Q -Qp Qp-Qr

(3.42)

where T~ is defined implicitly by a (Tir) =0, i.e. [see Eq.
(3.18)]:

(1+A~p)(1+Ap„)+2(1 —A~pAp„)

where

(1—A~p)(1 —Ap„)=0, (3.43)
t3,22

&3, &2

W» W22
~p

W)2 W)2 W)2
(3.44)

and a similar equation for Ap„. Note that A~p= A~p( T~~)
and that only in the case of critical wetting does Tu, de-
fined by Eq. (3.43), actually coincide with the wetting
temperature; for first-order wetting the transition occurs
at a higher temperature. With Eqs. (3.18), (3.20), and
(3.42)—(3.44) the condition for critical wetting is

tive so that an infinitely thick wetting layer corresponds
to a minimum (assumed to be a global one) of the free en-

ergy, is given by Eq. (3.40) which, in conjunction with Eq.
(3.41), shows that the system should be located in regions
Ib or III. Therefore, region Ib satisfies both necessary con-
ditions for critical wetting. If the intruding layer is
A rich, then region I, satisfies the necessary conditions for
critical wetting.

Let us now assume that we have a system which satis-
fies the above necessary conditions for critical wetting. In
that case the wetting transition is first order if b (Tu ) (0
and can be second order otherwise. To discuss the sign of
b(T+ } we introduce the following function:

22 w&t Wz2

312 f312 W)2 Wi2

r

~4, 12 A, —1 ~3,221+ 1—
t3, 12 2 f3»

T

t4 11 A, —1 t4 22 A, t4, 22 t3 11 13 221+ 1—
2 ~4» 2

for Q~ (Qp . (3.45)

Compared with the analogous condition in Eq. (2.20) for the one-component system near a wall, Eq. (3.4S) shows that
the existence of three independent interaction potentials already gives a quite complicated expression for the separatrix
between first- and second-order wetting in binary fiuid mixtures.

In Mt I' the relevant coordinates of a binary liquid mixture with respect to the order of wetting transitions in these
systems form a 12-dimensional parameter space 9' = [wj , t3 jr4 jojj.'Th'e de'scri'ption of Trr for a first-order wetting
transition and for the associated prewetting line requires an even larger parameter space because for these quantities the
behavior of the interaction potentials at small distances is important. The same is true for multicritical wetting phenom-
ena higher than tricritical. The description of critical wetting requires the smallest parameter space. The formulas de-
rived above [Eqs. (3.24), (3.35), and (3.45)] give a general expression for the separatrix

W»
w[jpr3 1jpt4 pjpofj ) E+

I
F

)2
Wz2 t3» t3 2z t&,;J

3ij
N ]2 ~3, 12 ~3„12 3,ij

which divides H into regions of first-order, second-order,
and no wetting transition. W is an 11-dimensional hyper-
surface, and F is given by Eqs. (3.24), (3.35), and (3.45) by
replacing there the inequality signs by equality signs.

Tarazona et a/. located numerically the one-dimensional
intersection line between a two-dimensional subspace of
H with 5 . In the appendix we show that along that line
the analytic expression for P' [Eqs. (3.24), (3.35), and
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(3.45)] as derived by the sharp-kink approximation does
agree with the numerical solution of the full MFE's.
Furthermore, when the wetting transition is continuous
we find that the condition a (Tn ) =0 [see Eqs. (3.43) and
(3.44)] yields the critical temperature which Tarazona
et al. obtained. Thus, as in the case of a one-component
fluid near a wall, we find once again that the sharp-kink
approximation appears to give the same separatrix and
critical wetting temperature as a full solution of the
ME'E's. This enhances our confidence in the expression
for P' as given above for the whole parameter space 9'.
In such a large parameter space, it would be impossible to
locate this separatrix numerically.

IU. BINARY LIQUID MIXTURE NEAR A WALL

In the preceding section we neglected the influence of
the wall which contains the binary liquid mixture. We
now focus just on this influence [see Fig. 1(c)] and its con-
nection to the phenomena described in Sec. III. To pro-
vide a better understanding, the bulk phase diagram of a
simple binary liquid mixture in the temperature, pressure,
and chemical potential-difference space is shown schemat-
ically in Fig. 3. There are three bulk phases: the A-rich
liquid (a), the 8-rich liquid (P), and the vapor (y). These
phases are separated by two sheets of two-phase co-
existence which meet at a triple line. The tripe line ends
at an upper critical end point T p. Figure 3 also displays
the loci at which the surface free energy is singular. Each
of the sheets of two-phase coexistence can exhibit its own
line of singularities at which the interface between the
wall and one phase is wetted by the other. Thus, in Fig.
3(a), the line of wetting transitions at which a wets the
wall-vapor interface is denoted as Ii. Similarly, 12 is the
line at which P wets the wall-vapor interface, and the line
at which a wets the wali-P interface is denoted as I&.
Each point of li, 12, and I& represents a wetting transition
which can be either first or second order. If it is first or-
der, a prewetting line' is attached to such a point. Ac-
cordingly, the prewetting lines span the sheets Si, S2, and
S3. These prewetting sheets also indicate at which side of
the corresponding bulk coexistence sheet the surface free
energy becomes singular. On the opposite side it is non-
singular. Each prewetting sheet S; starts to detach at a
certain point P; from its corresponding line of wetting
transitions I; indicating that the order of the wetting tran-
sition can change along that line. P&, P2, and P3 are
points of tricritical wetting transitions. A missing prewet-
ting line indicates a second-order wetting transition. The
prewetting sheets S; meet the bulk coexistence sheets
tangentially. There is also, of course, the wetting
phenomenenon which was the subject of Sec. III, the wet-
ting of the a-vapor interface by P [see Fig. 1(b)]. This
occurs only on the triple line and is denoted as point 8' in
Fig. 3(a). If this interfacial wetting transition happens to
be first order, W is also associated with a prewetting line
1~. l~ lies in the bulk coexistence sheet which separates
the a and y phase and approaches the triple line again
tangentially.

It is easy to show that, in Fig. 3(a), Is ends on the triple
line at the temperature 8. To see this we note that at

temperatures above that at which I, terminates at the tri-
ple line (and W is such a temperature)

&u, y =m, a+cr, y (4.1}

because a wets the wall-y interface. Similarly, at tem-
peratures above that at which ls terminates at the triple
line (and W is such a temperature)

w, P=w, a+a, P (4 2)

because a wets the wall-P interface.
Because p does not wet the a-p interface below the tem-

perature 8',

o y~aa, p+py, below 8'.
Equations (4.1}—(4.3) imply

&~,y &„p+opy, below 8

(4.3)

(4.4)

Thus p does not wet the wall-y interface on the triple line
below W. By definition, then, the line 12 must intersect
the triple line at W or higher. Because p does wet the a-y
interface at and above W,

FIG. 3. Schematic phase diagram of a simple binary liquid

mixture in the temperature (T), pressure (p), and chemical po-
tential difference (IM, &

—pz) space. a {P) is the A- {B-) rich
liquid phase and y is the vapor. L& (L2) is the critical line

which terminates the sheet of first-order bulk transitions be-

tween y and aP (a and P). The triple line TL ends at the upper
critical end point T~. As shown in (a), a wets the wall-y inter-

face along 1~, P wets the wall-y interface along lz, a wets the
wa11-P interface along Ii, and P wets the a-y interface at W
with the corresponding prewetting line l~. S~, S2, and S3 are
prewetting sheets and P~, P2, and P3 denote the loci of mul-

ticritical wetting transitions. In (b) the aP fluid wets the wall-y

interface along I.
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o.
&
——o~ ~+op&, at and above 8,

which, with Eqs. (4.1) and (4.2), implies

g y
——O.

N ~+gpy, at and above% .

(4.5)

(4.6)

This, then, identifies the point at which /2 intersects the
triple line as W itself.

Finally note that the end points of both /i and 13 at the
Tl. correspond to the wetting of the wall by the a phase.
Within the sharp-kink approximation (see below) one can
see, however, that these two wetting transitions on the tri-
ple line are not the same.

A consequence of the phase diagram of Fig. 3(a) is that
the wall-vapor interface upon an increase in temperature
is wetted in two stages along the triple line. First, the
wall-vapor interface is wetted by a. Then, at a higher

I

temperature, the a interface is wetted by P producing a
wall-a-P-vapor interface.

If the wall potential is weakened, the wetting lines li,
I3, and Iz increase in temperature, and their intersections
with the triple line become closer as the difference be-
tween the a and P phase decreases. It is possible for these
wetting temperatures to be above the critical end point
temperature T ~, in which case there is simply a line 1 of
wetting transitions at which the one-phase fiuid wets the
wall-vapor interface. The phase diagram is then as in
Fig. 3(b). Again there can be prewetting sheets. It is easy
to imagine that the two situations of Fig. 3(a) and (b) do
not exhaust all possibilities. "

In the remainder of this section we shall discuss these
wetting transitions near the wall within the sharp-kink ap-
proximation along the same lines as in Secs. II and III.
We begin with the free-energy functional

Q[{p;)]=f d r fb[Ip;(r)I]+ —,
' g f d r f d r'wj( (r—r'

( )p;(r)p (r')

+ g f d r V;(r)p;(r)p —Zp; / d rp;(r) . (4.7)

Equation (4.8) is a generalization of Eq. (2.2). Note that
we allow for two different excluded volumina d~" for the
two species. Inserting Eq. (4.8) into Eq. (4.7) we obtain (A
denotes the surface area)

Q[Ip; J]=ALQb(p;, p)+AQ, (/),

where

(4.9)

Compared to Eq. (3.2) we added the interaction V;(r)p
between particles of species i= 1(=—A), 2(=8), and the-
wall with a mean number density p„. Without loss of
generality we shall focus on the wetting of the wall-P in-
terface by a, i.e., 13 in Fig. 3(a) [see also Fig. 1(c)].
Within the sharp-kink approximation we seek to mini-
mize Eq. (4.7) with the ansatz

p;, d z 1
(i) (

p;(r)= p; p, /(z&L (4.8)

0, otherwise .

and uij(x) is defined in analogy to Eq. (2.5). The surface
contribution can be written as

Q, (/)=ap„„+/[Qb(p;, ) —Qb(p;, p)]

+&a, P+(T, +~(/) . (4.11)

The first term is the energy required to terminate the p
phase at the surface of convenience z =L,

00

p «2 pi, ppj, p 4' ~ij(p), (4.12)

with t j(y) given by Eq. (3.13). The second term is the
cost of free energy for being off a-P coexistence. The
third term describes the surface tension between the a and

P phase

1
00

&a, p= 2 g(Pi a Pi, p)(Pj a Pj, p) dVtij(f)

Qb(P , P) fh(PI, @P2, P)'

+ —,
' gp, /jp, /i f dxu);j(-~x

~
)

—Q Pip)', (s (4.10)

(4.13)

The fourth term is the surface free energy between the
wall and the a phase if the a-P coexistence would be ap-
proached from the a side:

(i) 00

CT )()
= —

2 gd~jPiaP) a dX ii)~j(
~
X

~
)+ g d P;P; + gP; aP~ dZ V (Z)+Pi Pg f Cf)i ri2(y)

l,j

+ I
d j'2

I Ifb( Pi,

'a0)+f b(,0P,.Z)+[2@d)—1][fb(o'P2,a) —fb(Pi, a', o}]I d(,fb(pi, a'P2, a)+aa,—v«, (4.14)
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where

(4.15)

and 8(d) is the Heaviside function. The final contribution
to Eq. (4.11}represents the correction to the above due to
the finite thickness of the a film

ai(l)= g(p; p; —ji) pj I (j)dy t&)(y)

(along I 1 ),

(B)~3B Po

t3,BB Pw
(along l2), (4.23b)

from Eqs. (4.19}—(4.22} concern the n(xAzsary condition
a (T=0) & 0 for critical wetting [see Fig. 3(a)]:

(A)

(4.23a}
t3, AA Pm

—5,jp I dz Vj(z) (4.16)

(B) (A)
ii3,B Po Po

i(3,X P() Pw

3,AB POt

r3 AA po
(A)

where 5,j is the Kronecker 5 function. With the expan-
sion

Vi(z) = (u—3 iz +u4 iz + . ),
ro(l) takes the form, for large I,

ai(l)=al 2+bi

where

1 g ( Pf,a Pi, ii}(Pw 3,j5ij Pj,ar3, ij }
i,j

and

(4.17)

(4.18)

(4.19)

(2= 4(Qa —Qp)a++ 4(Ma —Mp)(2 (4.21a)

Ma
(2+ Pw(i(3, 1 —ii32) T ~ (t3, 11 f322)

&a

and

1 a
2 M (r3, 11—2t3, 12+r3,22) &

I

b =—,
'

(Qa Qp)b++ ——,
'

(Ma Mp)b—

(4.21b)

(4.22a)

where M, Q
b+ =Pw(ii4 1+ii4 2) —T ' ~ 'b+ —T '

M b+'
&a

(4.22b)

b= —, g(p; p; ji)fp—ii4j5j pj (t4—,j+3d t3;j)] .1 (j)

i,j
(4.20)

r3 'j and r4,j are given by Eq. (3.16}. The temperature
dependence of a and b can be more easily understood in
terms of the variables M, Q as defined in Eq. (3.4):

Pa (T)4)/P =ii3 z/t3 wz (along I)) . (4.24a)

If we neglect along I3 as above in the A- (8-) rich phase
the density of the B- (A-) particles compared to the densi-
ty of the A- (8-) particles we arrive at

(along 13) . (4.23c)

uations (4.23a) and (4.23b) are more likely fulfilled if
po

' and po ', respectively, are large which will be the case
if the pressure p is high. If one goes away from the triple
line along I, or 12 the pressure decreases, and therefore
Eqs. (4.23a) and (4.23b) can be violated on that way.
Therefore, the trend towards first-order wetting increases
in these directions as indicated in Fig. 3(a). If one moves
at low temperature on the coexistence sheet between the a
and the P phase away from the triple line the pressure in-
creases and so do po"' and po '. In the case that their ratio
p(() '/po"' remains fairly constant, the right-hand side of
Eq. (4.23c} will increase in that direction enhancing the
possibility for critical wetting. Along l3 this trend again
is indicated in Fig. 3(a}. Therefore, for a binary liquid
mixture the critical wetting of the wall-vapor (wall-liquid)
interface is more likely to occur close to (away from) the
triple line.

In the case of critical wetting the transition temperature
T~ is given by a(T=T)4)=0. Equation (4.19) shows
that Pj(Tw}-u3 Jlt3,j. For a weak substrate, PI(T)4) is
small, and therefore T)4 is high. This is the same trend as
in the case of a one-component system near a wall and
leads to the representation in Fig. 3(b).

Finally, let us come back to the relative position of the
two end points of /) and 13 at the triple line. In both
cases the wall is wetted by a. Let us assume now the
situation —different from Fig. 3(a}—that at both end
points critical wetting occurs. Then, as just stated, their
loci are determined by (2(T)=0. If we neglect along Ii
the vapor densities compared to the liquid densities and in
the A-rich liquid the density of 8- particles compared to
the density of A particles this condition leads to

and

&+ =~4, 11 —4,22

+3(d'"r3, ii —d"'r3, 22+«3, 12) (4.22c)

PA, (~IF}/P =(~3,A x+3 B}/(r3,AA yr3 BA ) {along j3 }

(4.24b)

where p = (cruz /(TBB ) . Similar arguments give for I2

~+ ~4, 11 —2~4, 12 +~4, 22 PB,p(Tw)/P =u3B/t3BB (along l2) . (4.24c)

+3(d(1) d( )r +(d())+d(2))r (4.22d)

The most transparent conclusions which can be drawn
Along the triple line the two other arguments of p„
namely the pressure and the chemical potential difference,
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do not vary much so that at the triple line pz practically
depends only on T. So the different right-hand sides in

Eqs. (4.24a) and (4.24b) lead indeed to different end points
of Ii and li.

Among the systems with a(T =0) &0 only those will

undergo a wetting transition for which a goes to zero at
some higher temperature. For ii this means that if we
start at a certain point on the bottom of the a-P co-
existence sheet we must require that along a line of con-
stant pressure in this sheet a has to become zero at least at
the intersection of this line with the critical line I i in Fig.
3(a). The corresponding condition for Ii (li) is somewhat
ambiguous but a sufficient one would be that starting at
the bottom of the uy- (Py-) coexistence sheet along a line
of constant chemical potential difference a must become
zero at least at the intersection of this line with the plane
T =T~. Then critical wetting will occur if b(T+ ) &0.
To have a wetting transition line like I in Fig. 3(b) we
must have a (T) &0 for all T & T~ and a becoming zero
along a line of constant chemical potential difference at
least at the critical line Li. Given the expression for a
and b in Eqs. (4.21) and (4.22) this results in rather com-
plex expressions for the various separatrices between first-
and second-order wetting transitions. We refrain from
discussing them and refer to the general trends as
described above.

V. SUMMARY

The sharp-kink approximation has been used to calcu-
late surface quantities within the framework of mean-field
theory which in the experimentally relevant case of three-
dimensional systems with long-range forces will yield the
correct critical exponents for critical wetting. ' ' '
Within the sharp-kink approximation, the smooth varia-
tion of all densities between the values appropriate to the
bulk phase on one side of an interface to those appropriate
to the bulk phase on the other is replaced by a discontinu-
ous jump between these bulk values. The only parameter
which is varied in order to minimize the surface free ener-

gy is the thickness I of a film of a third phase which in-
terposes itself between the two bulk phases. We have seen
that in all cases in which the full inhomogeneous mean-
field equations were solved and which resulted in smooth
density proflles, the results for the transition temperature
of critical wetting and for the location of the separatrix
between critical and first-order wetting was the same as
that obtained from the sharp-kink approximation. Be-
cause these quantities depend on the first two terms of the
thick-film expansion of the surface free energy co(i), of or-
der al and b/, respectively, we are led to believe that
the effect of the smooth profile must only appear in
higher order. Indeed, the authors of Ref. 16 find that, in a
low-temperature-series approximation, the effect of the
profil appears first in order I

Therefore, within mean-field theory the location of the
separatrix between first- and second-order wetting transi-
tions and the transition temperature of critical wetting are
given by analytic expressions in terms of the bulk densi-
ties of the coexisting phases and the first two leading
terms of the interaction potentials of the particles. These

expressions can then be used to predict general trends in
such diverse systems as one-component fluids near a wall,
binary liquid mixtures near a wall, and binary liquid mix-
tures at three-phase coexistence. Furthermore, these gen-
eral analytic expressions demonstrate explicitly that the
wetting phenomena are examples, in which details of the
microscopic interaction potentials —like their next-to-
leading-order terms at large distances manifest them-
selves in a macroscopic effect, namely whether the cover-
age of a substrate increases continuously or discontinuous-
ly upon a rise in temperature. This, however, makes it
very difficult to make a precise prediction for a specific
experiment. Given the knowledge of the bulk densities,
from experimental data for example, one has to determine
precisely the interaction potentials. This problem
represents a wide field of research of its own and we re-
frain from discussing it. Reference 58 can serve as a re-
cent guide through the corresponding literature. The ef-
fect of retardation of the van der Waals forces, however,
requires some additional remarks. At distances larger
than ro"=c/vo", where vo'~ is the dominant absorption
frequency of the particle i in the ultraviolet, w;; is propor-
tional to r instead of r . This leads to a behavior
ai(l)-I for 1»ro. This has been confirmed by the ex-
periments of Sabisky and Anderson5 and of Kayser
et a/. in which they found a quantitative agreement with
the theory of Dzyaloshinskii et ai.s' From that we draw
three conclusions. First, the coefficient a describing the
leading asymptotic behavior of co(I) is I dependent. This I
dependence becomes important for I in the order of
several hundred angstroms, such that a vanishes propor-
tional to rolI. Note, however, that in the case of critical
wetting the thickness of the wetting film grows linearly by
approaching the wetting transition temperature in both re-
gimes, llro «1 and Ilro »1, because the corresponding
critical exponent depends only on the difference between
the exponent of the leading- and next-to-leading-order
term in co(l)," and there should be correction terms in
both regimes. The critical exponent of the diverging
parallel correlation length, however, changes from 2.5 for
I «ro to 3 for I »ro." Second, the quantitative agree-
ment between experiment ' and theory ' indicates that
at least the leading asymptotic behavior of ai, i.e., a, can
be estimated quite accurately once the frequencies vo" are
known. From the sign of a at low temperatures alone one
can deduce significant information. If it is positive, the
system is expected to be either always wet, and thus un-
dergoes no wetting transition, or to undergo a first-order
wetting transition. If a is negative at low temperatures, a
critical wetting is not ruled out, and one must then ad-
dress the far more difficult task of determining the sign of
the coefficient of the next-to-leading-order term, b, at the
temperature at which critical wetting could take place.
As we have argued in Sec. II, this coefficient depends
inter alia on the structural details of the substrate. Our
third conclusion concerns the binary liquid mixtures.
There it is quite possible that, for example, ro" is much
larger than ro ' due to different absorption spectra of the
two molecules. Because a and b depend on linear com-
binations of the potential parameters of molecules 1 and 2
[see Eqs. (3.18)—(3.20)] this constellation means that, for
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ro ' ~&1~~ro", a depends only on r&», whereas the lead-

ing, retarded part of molecule 2 contributes to b.
Finally, we want to discuss briefly the experiments

which are connected to our theoretical work. The wetting
phenomena of a one-component system near a wall have
been reviewed recently by Bienfait. Surprisingly, out of
a large number of experiments only a few wetting transi-
tions have been reported. Along its sublimation curve
carbon tetrafluoride adsorbed on graphite displays a first-
order wetting transition. ' He adsorbed on copper ex-

hibits wetting transitions when the melting line is ap-
proached from the liquid side. Carmi et al. report a
continuous wetting transition in the case that the He
crystals grow in their [0001] direction perpendicular to
the substrate and a first-order wetting transition if the He
crystals grow along their [1010] direction perpendicular
to the substrate. This sensitivity of the order of the wet-

ting transition on the growth direction agrees with our
findings. A different crystallographic orientation of the
adsorbate with respect to the substrate results in a change
of the potential parameter t4" in Eq. (2.26) and can bring
about a change in the order of the wetting transition.
However, as already pointed out, one must be cautious in

applying directly our results to the melting curve Alo.ng
the gas-liquid coexistence line, where our calculations
should work best, only two wetting transitions have been
found recently: liquid He adsorbed on gold and on
silver. However, the outcome of these experiments is
not yet quite understood. First, it is not obvious why He
does not wet the very attractive Au and Ag substrate.
The formation of a few layers of solid He next to the
substrate may be important for this finding. Second, the
coefficient a is about certainly positive at low tempera-
tures so that a first-order wetting would be expected. '
Yet a continuous growth of layer thickness consistent
with I-(T& T) which—is expected for critical wet-
ting' is observed up to thick films. Third, if a wetting
transition occurs, its temperature appears to be 10 mK off
the He liquid-gas critical temperature which is certainly
surprising. So, to the best of our knowledge up to now, no
clear cut transition at gas-liquid coexistence for the wet-

ting of a substrate, neither first- nor second-order, has
been reported recently. In all the other experiments ei-
ther the substrate is already wet at low temperatures or
the wetting transition along gas-liquid coexistence is
preem ted by the triple point (see for example Krim
et al. ) or higher temperatures have not yet been studied
systematically.

In the case of binary liquid mixtures we are aware of
three systems in which a transition of the wetting of the
vapor phase has been reported: methanol-cyclohexane, '

isopropanol-perfluormethylcyclohexane, ' and cyclo-
hexane-acetonitrile. Only in the second example have
strong efforts been made to determine the order of the
transition, and it was found to be first order. ' The
striking effect that the heavier phase interposes between
the lighter phase and the gas (see also Refs. 75 and 76) ap-
pears to have a rather simple explanation. According to
our considerations in Sec. III, the more volatile phase
which tends towards the vapor has the lower number den-
sity, and it happens that this goes along with a higher
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APPENDIX

In this appendix we show that the separatrix for the or-
der of interfacial wetting in a binary liquid mixture and
the transition temperature for critical wetting as calculat-
ed numerically by Tarazona et al. do agree with our ana-
lytic sharp-kink expressions in Sec. III. Tarazona et al.
consider a binary liquid mixture in which atoms of type i
interact with those of types j with a long-range van der
Waals potential of the form

(Al)

With these particle-particle potentials the coefficients t&,J.

and t4;J of Eq. (3.16) are

ti,j ne;Jo /6—— (A2)

r4 (~
= —31Tv()egjcT /5 .7 (A3)

In Ref. 4 the value of e,z and v,j are not given directly,
however. Rather, Tarazona et al. define the total
strengths

aj= — d r wj(r),3
(A4)

and the second moments of the potentials

fj=— d r r 8J(r),3 2— (A5)

from which they form the dimensionless ratio

i);, =f;Jl(&;Jo' ) .2 (A6)

For the special ease v,j.——0, this ratio takes the value

g;j ——3. In the vicinity of this special value, which will
turn out to be the most interesting parameter region, we
can express e,j. and v;J. in terms of a,z and i),J. and thereby
obtain ti,j and t4,J. which we need. From Eqs. (Al) and
(A4)—(A6) we have

mass density resulting in this surprising behavior.
Two wetting transitions concerning the wetting of a

wall by a binary liquid mixture have been reported:
glass/methanol-cyclohexane ' and silica/water-(2, 6-
lutidine). ' In the latter example the transition was
found to be first-order and the corresponding prewetting
line was identified. This corresponds to a part of Sz in
Fig. 3(a) with the only difference that the water-(2, 6-
lutidine) mixture has a lower critical end point.

It seems, then, that in the system we have addressed
there have been very few determinations of the order of
wetting transitions and much experimental work remains.
One aim of this paper has been to provide some guidance
for this work.
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and

a~=(2n/. 15)o e,j(1+v,j) 5(v,i+5v~i+10) (A7)

t4,&
———(4o/5)(i)7 —3)t3 j'+0((il; —3) ) .

Tarazona et al. further restrict their potentials to

a i&/a i
——1.21,

uiz/aii ——0.88,

(A10)

(Al la)

(Al lb)

v11 —v22 —0 . (Al lc)

We can now evaluate the coefficients aq, ax, ac and
bg, bx, bc of Eqs. (3.19) and (3.20). We find in the vicinity
of rli2 —3

ag/ao ——1 —3.911(ili2—3},
uir/&0=8 822[1+o 443(rliz —3)],
uc/uo= —0 467

(A12a)

(A12b)

(A12c)

and

ao ——0.007 (A12d)

bJ/(oao) =2.086(rliz —3),
4= —bJ

bc=0

(A13a)

(A13b)

(A13c}

We can determine from Eq. (3.18) the coefficients a and b
in the expansion of the surface free energy, Eq. (3.17).
I.et us first focus on b From {Al1.}and (3.18) we get

b = bJ[(Q~ —Qp)(Qp —Qr ) (M—~ M—p)(Mp —Mr ) j . —

(A14)

Note that Tarazona et al. denote the vapor as the a phase,
whereas we call it y. They call the bulk liquid y; we call
it a. The intruding film is formed in both cases by the P
phase. Contrary to our notation in the main text, in the

rlgg
6——(v(~j+ 5vgq+ 10v~~g+ 10vj +5)/(v~~j+ 5vgJ + 10) .

(A8)

From Eqs. {A7) and (A8) we get

ti,j (o——ia,~/. 8)[1+(g;J.—3)+0((il,q —3) ) t

numerical calculation of Ref. 4, which we want to
analyze, the bulk liquid is 8 rich and the wetting film is
A rich (A —= 1, 8 =—2). Furthermore, the overall density of
the bulk liquid is higher than the overall density of the
phase which wets the liquid-vapor interface. Translated
in the language of Eq. (A14) we have M &0, Mp&0,
M„=O, Q & Q~, Q& & 0, and Qr —-0. This means that
the square bracket in Eq. {A14) is positive along the whole
triple line, and therefore especially at the wetting tempera-
ture Ta. Combining Eqs. (A13a) and (A14), our sharp-
kink expressions for the separatrix applied to the numeri-
cal analysis of Tarazona predicts for their model

rIi2&3~( ' '„& I order wetting . (A15)

Equation (A15) coincides with the numerical data present-
ed in Fig. 10 of Ref. 4.

Next we construct the coefficient a(T) from Eqs. (3.18)
and (A12). Because in the model of Tarazona et al. all
hard-core radii are equal to a, the low temperature densi-

ties of the A-rich and 8-rich liquid phases are equal.
Therefore, the condition of Eq. (3.24) gives together with

Eq. (A9) the necessary condition alii&3. 375 for critical
wetting. Going beyond the linear approximation in Eq.
(A9) one finds that for i)ii&3. 13 (alii&3. 13) i=00 is a
local maximum (minimum) of Q, (l, T=O). This condi-
tion is indeed satisfied in the region g,&& 3 for which
Tarazona et al. find critical wetting. On the other hand,
the fact that they find a first-order wetting transition in
the region ili2 & 3.13 is no surprise because in that region
Q, (l, T=0) has already a local minimum at I = 00. Only
in the narrow regime 3 &i)ii & 3.13 the wetting transition
is driven to first-order by the next-to-leading-order term
in the expansion of Q, . Finally, we have to check whether
a (T) can change sign from a negative to a positive value
at T~ & T~. For that purpose one needs explicitly the
temperature dependence of the six bulk densities

M~~r, Q~ ~r along the triple line. Fortunately, suffi-
cient data about them can be read off from Figs. 1—3 and
7 in Ref. 4 and from Fig. 2 in Ref. 52 to decide this ques-
tion. In doing so we confirmed two features of the
sharp-kink approximation: (1} In the case of critical wet-
ting the numerical values of T~ which Tarazona et al.
report coincide with the temperatures at which a van-
ishes. (2) In the case of first-order wetting the transition
temperatures as calculated from the full MFE's are higher
than the corresponding temperatures at which a change
sign. This reflects the contribution of the smooth kink to
the higher-order terms in the expansion of Q, (l}which are
important for Tz of a first-order wetting transition.
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