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Using the formalism of extended irreversible thermodynamics we study the time rate of change of
the polarization vector in an arbitrary isotropic material. The corresponding time evolution equa-
tion is derived as well as its relationship with other relevant quantities in the system such as the heat
flux. From these equations a polarization equilibrium correlation function is derived and the com-
plex dielectric constant is also analyzed. We show how these quantities are related to those that
have been obtained by several methods, some empirical and others based on microscopic models.
Also the corresponding memory functions are obtained and shown to be exponentially decaying in

time.

I. INTRODUCTION

The classical theory of dielectric relaxation! is described
by Debye’s theory which gives the time rate of change in
the macroscopic polarization in terms of the motion of
the individual dipoles. The evolution of the macroscopic
polarization is finally expressed by the difference between
the true macroscopic electric field and that electric field,
which in the steady state is related to the polarization.
The relaxation time appears as a parameter depending on
the molecular properties of the system.

This result was derived by de Groot and Mazur? from
the macroscopic point of view using the linear nonequili-
brium thermodynamics, where, of course, the relaxation
time is a quantity to be determined experimentally. The
main feature of the classical relaxation theory is that the
time evolution of the polarization is related with an ex-
ponential decay, or a symmetric behavior in the frequency
dependence of the electric susceptibility.

Experiments have shown that many substances are
correctly described by Debye’s equation whereas others
deviate slightly from it when high frequency values for
the alternating electric field are used. This in turn leads
to a nonexponential decay. Recently, suggestions to modi-
fy the Debye equation to correctly fit the data are gaining
great popularity. In order to achieve that, an extra pa-
rameter is introduced, as for instance, in the Davidson-
Cole® and Williams-Watts* functions. The significance of
this extra parameter is not completely understood yet, but
presumably, it is related to an assumption on the relaxa-
tion behavior of the polarization. This may be interpreted
in two ways, namely, a microscopic one, where it is
thought of as a possible result from cooperative molecular
motion which produces an asymmetry in the frequency
response of the material to a variable electric field. The
second one is macroscopic, where it is proposed that the
nonexponential relaxation behavior of a material arises
from a superposition of exponential relaxation processes
which leads to a distribution of relaxation times.

More recent theoretical models attempt to explain this
nonexponential relaxation function and try to decide what
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it is. In this work, we extend the linear nonequilibrium
thermodynamics theory and envisage the dielectric relaxa-
tion problem from the macroscopic point of view. The
theory we will use for that purpose is extended irreversible
thermodynamics (EIT), which in recent years has been ap-
plied with success to relaxation phenomena in viscous’
and viscoelastic fluids® and reactive systems.” Also, it has
been applied to electrical systems,® but not to polarized
systems. This is the aim of the present paper.

The fundamental idea behind EIT is to provide for an
extension of the local equilibrium assumption, which in
turn allows the generalization of the Gibbs equation, valid
for the conventional slow or conserved quantities such as
the mass and internal energy densities, to include terms
arising from a set of “fast or nonconserved” quantities.
Examples of these are the heat flow, the diffusion flow,
etc. For the electric case, the conserved variable is
represented by the density of free charges and the fast
variable is the electric current.?

Following this scheme, in Sec. II we will present two
possible cases to describe a polarized system; one, when
the total charge density, the sum of the free and polarized
density charges, is considered as a slow variable and the
polarized current, 0P /d¢, is considered as a fast variable.
The other case is when the free charge density is the con-
served variable and the displacement current, dD /3¢, is
the nonconserved variable. Both results are similar in
form, in the sense that they lead to the same result when
one compares them term by term, but changing oP /¢ for
dD/dt. Consistent with the main purpose of EIT, only
the time evolution equation for nonconserved quantities
will be derived in Sec. III, since the corresponding evolu-
tion equation for the conserved variables are already
known from the beginning.

The point we want to stress in this paper is that the
main resulting equation obtained here might be considered
as a generalized Debye equation from which the classical
Debye result follows as a particular case. In fact, it is ob-
tained when the fast variables are irrelevant as indepen-
dent variables in the description of the dynamical states of
the system. The generalized Debye equation is consistent
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with Maxwell’s equations and corresponds to a situation
in which the disturbance produced by the field propagates
through the medium with a finite velocity, namely the
velocity of light. Thus, Debye’s classical result, in this
case, is not consistent with Maxwell’s equations, as it is
shown in Sec. IV.

In Sec. V we show that another consequence of the gen-
eralized Debye equation is that, the relaxation process is
described by the superposition of two exponentials with
different relaxation times. This is in agreement with the
work of Berne.” Finally in Sec. VI, we will derive the ex-
plicit form for the dielectric constant and the loss factor
in terms of the frequency and two unknown parameters.

II. IRREVERSIBLE PROCESSES
IN POLARIZED SYSTEMS

In order to specify the working equations which
comprise the electromagnetic basis of EIT theory, we
shall briefly present the conservation laws for electric
charges, momentum and energy or a polarizable fluid tak-
ing into account the presence of an electromagnetic field,
in a spirit very similar to that followed by de Groot and
Mazur.2 We shall develop two alternative formulations
for dielectric relaxation processes according to which
form we adopt for the electromagnetic field and therefore,
for the sources of the electromagnetic field, without re-
storing to a moving reference system.

A. Mazxwell’s equations

The differential equations governing the electric field
(E) and the magnetic field strength (B) for an arbitrary
medium in the mks system of units when p, the total
charge density and J,, the total current are taken as the
sources, are given by

P

divE=—, (1a)
€o
JoB
2= o, 1b
curlE+ o 0 (1b)
1 3dE
—‘C—z—é‘—t—-f—curlB:qum ’ (1c)
divB=0, (1d)
where
JP
Im =Jf+—§+curlM and p,=ps+p, . (2)

Here, the quantities involved are defined as py, the den-
sity of free charges; p,, the density of polarization
charges; J;, the electric current of free charges; M, the
magnetization vector; and c, the velocity of light. We will
assume in all our treatment that M=0.

On the other hand, when the sources are taken to be py
and J, the system of differential equations for D and H
is

divD=p;, (3a)
divB=0, (3b)

curlE+40B/dt=0, (3¢c)
curli=J,+ >, Gd)

where H and D are defined by

—L1B_M and D=cE+P,
Ho
Lo and €, being the magnetic and electric permeabilities of
the vacuum, respectively.

From the thermodynamic point of view, systems (1)
and (3) offer two alternatives since they suggest the con-
served and nonconserved quantities which may be chosen
as independent variables. In particular, from (1) we can
choose p; as a conserved variable and J,, as a noncon-
served variable. On the other hand, from (3) p; can be
chosen as a conserved variable, but we have to choose be-
tween J, and dD/dt for the nonconserved variable, be-
cause they themselves are not independent. In fact, they
are related through the equation

) . oD
divly= —div vl (4)

The selection will be 3D /9t as suggested by the time evo-
lution equation for the internal energy, which contains the
same term when we use the system (3) to derive this evo-
lution equation, as will be seen subsequently.

B. Conservation equations

1. Laws of conservation of charge

The balance equation for free charges in any medium is
given by

%r .
ar +divl,=0 (5)
and the balance equation for polarization charges is
9, .. 9P
ot +div 3 =0, (6)

where in Eq. (6) the relation p,=—V-P has been used.
Thus, adding (5) and (6) and using (2) we get the balance
equation for the total density charge,

9p

a—t’ +div3,, =0 . %)

2. Law of conservation of momentum

The law of conservation of momentum associated with

the mass per unit volume (p) is given by

dv PR

—— = —div7+F (8)

dr +F,
where v is the center of mass velocity, 7 is the pressure
tensor of the system, and F is the net electric and magnet-
ic force on the polarization and free charges. F is deter-
mined by the momentum balance equation for the elec-
tromagnetic field
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d(EXH)

ot , 9)

F=divT — 1
c
where T is Maxwell’s electromagnetic stress tensor.

3. Law of conservation of energy

The energy balance equation is derived beginning from
the conservation of momentum of matter; that is multi-
plying Eq. (8) by v and then using the balance equation
for the electromagnetic energy (the Poynting theorem) and
F-v obtained from Eq. (9). The balance equation for the
total energy is then written in the following form:

€
i [%pv2+-—qE2+—1—B2+v EX"B—

ot 2 2110 Ko

= —div

%pv2v+(‘¥—T')ov+Ex“£ ]
0

ExB dv _

+(F—T):gradv +
cuy Ot

EJ,. (10

C. Internal energy equations
Assuming the conservation of the total energy, we have

Be _ _givy (11)
ar e

where e, is the total energy, including the internal energy
(u) in the following form:

1 2 €p 2 1 2 B
Ry —FE?, — B . =
SPU+ 5 + 2o +v- |EX

usput Ho

(12)

J, is defined as the total flow of energy including the heat
flow (q):

%pvzv+(‘?—f)-v+Ex—E—
0

J,—q— : (13)

Combining Egs. (11)—(13) we obtain the balance equation
for the internal energy, namely,
B dv

du . =
P a = —divq—(7—T):gradv—E-J,, —EX o 3t

(14)

This form for the time evolution equation of the internal
energy shall be useful in case we use p, and J,, as in-
dependent variables. However, when p, and dD/dt are
selected as independent variables, we shall use an alterna-
tive form for the time variation of the internal energy.
Considering the explicit form of F in Eq. (9), we can
show in a similar way that

- divq—7:gradv+E- id?

Par +Jp(vXH). (15
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III. APPLICATION OF EIT
TO POLARIZED SYSTEMS

Linear irreversible thermodynamics (LIT) is based,
amongst others, on the assumption of local equilibrium,
which for a neutral fluid system implies that the entropy
depends on the conserved variables of the system

S=S(up). (16)

In particular, for an electric system, the additional con-
served variable associated with local equilibrium is the
free charge density, so that the space of variables is en-
larged in order that this new variable appears in the entro-

py:
S =S(u,p,p5) . a7n

If we consider polarized systems, a new term related with
the electric work appears in the thermodynamic TdS
equation. Usually this term is given in the form

dw=—E-6P . (18)

Since the polarization vector P is not a conserved vari-
able, as it has been indicated by the Maxwell equations,
Eq. (18) is not very useful in our treatment. Hence, an al-
ternative form is appropriate and in fact is known to be
given by

Sw=po8p, , (19)

where ¢ is the electric potential at local equilibrium and
pp is given by —V-P. p, is a conserved variable as it is
stressed in Eq. (6). Thus, the entropy function should
contain this variable as p,, in order to describe the case of
an electric and polarized fluid. It has been shown that the
Debye dielectric relaxation equation can be derived with
this consideration of local equilibrium.? However, in spite
of its achievements, LIT has the shortcoming of predict-
ing an instantaneous propagation of the disturbances, pro-
duced in this case by the electric and magnetic fields, a
fact which is in complete disagreement with experiment.
In this sense the results predicted by this formalism in-
cluding Debye’s equations imply severe restrictions. On
the other hand, to remove this limitation, extended ir-
reversible thermodynamics proposes a new assumption
whereby the flows appearing in the conserved equations
are elected as independent variables in addition to the con-
served variables.’ In this way one is led to the same
mathematical structure for the local assumption of the en-
tropy but in terms of a function 7 playing the role of a
generalized entropy function, namely,

77=77(u’PnCI»Jm) ’ (20)

where q is the heat flow associated with the time evolu-
tion equation of u [see Eq. (14)] and J,, is the flow associ-
ated with the conserved equation of p, [see Eq. (7)]. For
the sake of simplicity we have assumed that the changes
in the mass density are negligible.

The assumption (20) leads to a generalized Gibbs equa-
tion, which is of the form

dy_ldu ¢ dp @1 dq
dt Tdt Tp dt  Tp dt

a, . dJm

;F ar 21
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At this point, a moment’s reflection points out that
separation of the two subspaces of variables is important.
The subspace consisting of the conserved variables, which
defines the local equilibrium state, can be taken as a refer-
ence state around which we assume that a Taylor series
expansion may be performed. On the other hand, the sub-
space containing the nonconserved variables may be taken
as a deviation from such a state. This implies that the
scalar coefficients, which appear in the linear differential
form, Eq. (21), can be written as

1 1 1 |d/T |, 1 |d/T |,
s = - | L= \J cee
T~ To 72| ag? 2 [ az |m7
(22a)
do 1 |3%/T 1 |3%/T |2

where T, and ¢, are the local temperature and the local
electric potential. ¢ and J2 are scalar invariants of the
space of variables and the subsequent terms of the series
could be constructed from the scalar invariants of higher
order.

On the other hand, the coefficients which are vectors
in Eq. (21), according to well-known representation
theorems, are the most general vectors which can be con-
structed in the complete space of variables. Hence, one
may write that

(23a)
(23b)

ay=a;q+apdn, ,
a=a39+a»Jn, ,

where a; are also scalars which may be expanded in series
in the form of Egs. (22).

In order to compute the unknown time evolution equa-
tions for the fast variables q and J,, appearing in Eq. (21),
we restore to the second postulate of EIT requiring that 7
satisfies a balance equation of the form

p%’t1 = —divl,+oy,, (24)

where J, is a vector and o, is a scalar both defined in the
space of state variables. Thus,

J'r/‘_‘qu'f'BZJm ’ (25)

where B; are scalars with the same form of Egs. (22),
namely,

Bi=Bio+Big*+Bixm+ -+ (i=12). (26)
In this way we can derive an expression for o, using Egs.
(24), (25), (26), and (21), considering for the time variation
of the internal energy Eq. (14). Nevertheless, this expres-
sion for the internal energy has a viscous contribution and
an acceleration term whose inclusion would unecessarily
complicate the resulting equations. Thus, we introduce
the assumption that v=0 implying that a nonfree charge
flow exists since we are dealing with the case of one com-
ponent; and that we have J,, =3P /0.

Under these assumptions, o, has the form

a0 dIpm

ap d
gradBo+ ”0’1"1'

In=q T, dt ' T, dt

E @120 dq | @220 dIm
Hme | Heradfot T T+ T

| .
+ | — ——divq+B;divq

T,

$o dp .

+ T—o—;t'—+320dw1,,, ) @n

To derive Eq. (27), we have restricted ourselves to
second-order terms in the products involving fast vari-
ables, that is, third-order products in the nonconserved
variables are taken to be negligible.

In Eq. (27) we have two unknown parameters, ;o and
B, whose value is obtained by consistency with local
equilibrium. In fact, if we consider that local equilibrium
is reached when dq/dt=dJ,, /dt =0, o, reduces to

0,,=q-gradﬁ,o+J,,, :

E
T, +gradBy

+ | — —L-divg+Byedivg
T,
$o dp .
+ -7:;-;1% +Byodiv],, | . (28)

and expression which is required to be identical to the en-
tropy production of LIT. Comparing it with the classical
dielectric theory of relaxation? we notice that just the first
two terms should appear and therefore the last two terms
must be set equal to zero. So it is mandatory that

1 bo
Bio= T, and By= 7; , (29)

where Eq. (7) has been used.

To complete the derivation of the evolution equation
for the fast variables, we consider now the requirement
that o, is a scalar in the space of variables and thus has
an expression in scalar invariants of the form

Op=00+1119°q+L12Tm Tm - (30)

However, if we compare the form of (30) with (27) using
(29), two obvious consequences arise. First oy is equal to
zero and secondly, Eq. (27) contains quantities such as
gradTy 'and B+ grad¢,, which do not belong to the
space of state variables. Hence, the quantity o, may be
thought of as a scalar defined in the space but which also
depends parametrically in those other quantities whose
presence arises through the conservation equations. With
these ideas in mind, we may rewrite Eq. (30) as follows:

op=X1-q+ Xy, , 31)

where X; (i=1,2) takes into account the above-
mentioned parameters by requiring that
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i + grad ﬁ

T, T, (32)

Xi=pi1q+piTm +H1i3

Here, the coefficients u;; depend on the conserved vari-
ables only.

Finally, the evolution equations for the fast variables
are obtained by the comparison of Eq. (31) and (27) with
Eq. (29). They are

Q1o 9, . (E 460)
TO at “12 - +gm ¢0
_ (1 1 2110 dq
=pq—(1 #x3¢o)8fad—To+——”To 2 (33a)
a0 0 3, : To E 60)
T, o —H2 To + s +gradd,
- 1 %0dq
=p219—do(1 #za)gradT + To dt (33b)

Equations (33a) and (33b) are two coupled equations for q
and P and the coefficients a’s and u’s are unknown func-
tions of the local equilibrium variables only. They consti-
tute the main goal of this paper, since together with the
time evolution equations for the conserved quantities,
given in the preceding section, they form the complete set
of equations for all of the state variables. These equations
may in principle be solved for given boundary and initial
time conditions and the knowledge of the coefficient a;;
and y;;.

IV. DEBYE RELAXATION EQUATION AND EIT

In this section we shall use Egs. (33) to obtain a time
evolution equation for the polarization which will turn
out to be a generalization of Debye’s equation. In fact,
from this set we can eliminate dq/dt to arrive at an equa-
tion for P, which has the form

aZP +‘r2 —(XoB— P)=ylgrad—1———72q, (34)
ar? at T,
where
Qzio  QA110 A220
= - A ’ (353)
! Ty ap Ty
— U
= aj10M220—H120120 4, (35b)
a0
Y11= *#134’0— ¢o(1—#23) (35¢)
Q110
Y= [pu———pHau |4, (35d)
ai120

where A is the resulting coefficient of the term (X(E—P)
and is given by

-1
K13 ajlo HMH23

ToXo ain ToXo
In Eq. (34) we have used the relation P= —X,gradd,

T,

A= 1+ (36)

H23
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where X is the electric susceptibility.

Equation (34) is the time evolution equation for P in
terms of the electric field, grad1/T, and q. Clearly, it is
coupled to the time evolution for q which we have not
written here explicitly. For the time being, we are not in-
terested in solving it for a special case, but rather to learn
about some of its general properties. First of all, using
Maxwell’s equation [cf. Eq. (1c)] and the definition of J,,
one can easily transform Eq. (34) into a wavelike equation
for the vector E, with sources. In fact one obtains that

18E
2 32

where f and g represent the sources given by

— +VE=f+g, (37

f= grad +—J,,,+-—(P—X0E) (38)
g=ﬁgrad 1 +——q (39)
Thus, Eq. (34) corresponds to a noninstantaneous

transmission for any perturbation of P in the system,
whose velocity is given by c.

Another interesting point to discuss related with Egs.
(34) and (37) is the classical Debye equation which arises
here when the fast variables no longer play a role in
describing the state of the system, which is then described
by the local equilibrium assumption. Hence, if dq/dt
=dJ,, /dt=0, and we further assume that the system is
in an isothermal condition and q=0, then Egs. (33)
reduce to

R (P-xB), 40)
ot
which is the well-known Debye equation. Here 7 is speci-
fied by

112ToXo 122Xo
r=— . . (41)
Hi3 p23(14+To/pa33)

The last equality arises because under the above imposed
assumptions, Egs. (33) are formally the same equation and
they lead to Eq. (40). In order that they are consistent we
have a relation between the coefficients expressed by the
equality of two relaxation times. That means that not all
coefficients are independent and one of them could be re-
placed using Eq. (41). The interpretation of Eq. (40) is in
fact a relaxing equation and the rate of change of P is
proportional to the difference between the polarization of
the material at any time and that value given by the non-
equilibrium field XoE. Only in a steady-state condition,
dP/dt=0, we get the equality given by X(E=P. Thus,
Debye’s equation is consistent with local equilibrium in
agreement with de Groot and Mazur.?2 Notice, however,
that this result implies an instantaneous response of the
system, because it follows immediately from Eq. (37)
when ¢— o and also gradp, =0 and g=0. In this sense,
we can interpret Eq. (34) as a generalization of Debye’s
equation.

As we mentioned in the Introduction a similar deriva-
tion may be given using p, as a conserved quantity and
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dD/dt as the nonconserved one. However, since this is
secondary to the main line of the paper it is only sketched
in the Appendix.

V. CORRELATION FUNCTION

The aim of this section and the following section is to
present the results obtained here in a proper form to es-
tablish the connection with the results given by other au-
thors. The correlation function and the Kramers-Kronig
relations are the proper form to seek such a comparison
and also with experimental data.

We now proceed to calculate the time correlation func-
tion of the polarization from the time evolution equation
derived in the preceding section, cf. Eq. (34). Using this
equation with y;=y,=0 and taking its Fourier transfor-
mation, the differential equation for the correlation func-
tion of the polarization is

D" + 7,0 +&=X(E(k,?)-P(k,0)) , (42)
where ® is defined, in the Fourier representation, by
&= (P(k,?)-P(k,0)) , (43)

where the angular brackets denote an equilibrium average.
Equation (42) has been derived taking 7; and 7, as con-
stants. The correlation function appearing on the right-
hand side of that equation may be rewritten as a product
of a static factor (E(k)-P(k,0))X, times f(¢), the time-
dependent part of the electric field. For homogeneous and
slightly inhomogeneous field the k dependence of the elec-
tric field may be ignored and E(k) may be pulled out of
the equilibrium average, so that the expression now takes
the form

XoEf (1)-( P(k,0))~0 . (44)

Furthermore, we are also restricting ourselves to those
materials for which the equilibrium average of the polari-
zation value vanishes.

If we denote the initial value of ®(k,0) by ®, whereas
®'(k,0), the initial condition for the time derivative van-
ishes identically owing to the general time-reversal invari-
ant properties of any equilibrium autocorrelation func-
tion,!° then the solution is given by

®(k,1)=Cre "' +Ce Y, (45)
where m, and m, are defined by
, , : 172
2 2
= ||| —— , 46,
e 2T1 27’1 Ty ( 2)
, T : 172
2 2
=4 ||| -=] . 46b
M2 27'1 27’1 71 I ( )
and C, and C, are
Cl = —-ECZ and C2=—_¢9_”_“ . 47)
m, l—mz/ml

Berne!! has obtained a similar result using a model in-
volving a dipole-dipole interaction and writing an equa-
tion for the rotational and translational diffusion with
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forcing terms that arise from the torques and forces on a
molecule, resulting from the electric field generated by the
other charges in the system. A comparison between
Berne’s result for a mixture of polar and nonpolar com-
ponents and Eq. (45) leads to the following values for the
constant involved in our calculation, namely,

C1=-§_”’2’ C2=%.u'2’ m=2Dg, and m;=2Dg(1—A),
(48)

where y is the dipole moment, A =4mu’p,/3kT,, and p, is
the dipole number density. Dy is defined as the rotational
diffusion coefficient from which Debye’s result is speci-
fied with A=0 and m, =m,, that is
—Dpt

S=p’e (49)
Anderson and Vaughan'? using Eq. (45) instead of Eq.
(49) have obtained a better fit for the experimental data
for pure polar liquids and mixtures with polar and nonpo-
lar components. Relations between Eq. (45), in the form
presented by Berne, with other results, have been men-
tioned by Vaugham.!?

Now, we proceed to evaluate the memory function of
the relaxation processes involved in Eq. (42). First, we
take its Laplace transform in time to get

T IS =+ T,

D(k,S)=— T2 g (50)
‘T]S +T2:S +1

It is now clear that this result may be compared with the
one based on the microscopic Mori-Zwanzig theory,'*
which gives an exact equation for the time evolution of a
correlation function in terms of a memory function,
K (k,t —t'), namely,

L oik,n=— [ Kkt -0k t)dr’ (51
at el - 0 3 t] .

Usually, the memory function is modeled mathematically,
although, in our case, we may calculate it by taking the
Laplace transform in time of Eq. (51) and comparing it
with Eq. (50). We explicitly find that

Rus=0_g-— 1 (52a)
) TS +7,
or
K(k)=mmpe ™*m" (52b)
where e "' and e "' are the exponentials appearing in

Eq. (45). The memory function in Eq. (52b) shows a su-
perposition of two relaxation processes with different re-
laxation times as it was also pointed out in Eq. (45).

The correlation function, Eq. (45), and the memory
function, Eq. (52b), complete the dynamic description of
the relaxation processes in a polarized material according
to EIT.

VI. KRAMERS-KRONIG RELATIONS
AND EMPIRICAL MODELS

One may ask how the present model can be compared
with the experimental data available in the literature, a
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task which is better accomplished through the relation be-
tween the frequency-dependent dielectric constant €(w)
and the parameters which appear in our relaxation equa-
tionsis To evaluate e(w) we can use the following expres-
sion:

(0)—€, © .
fw_e__=__fo e —iot _d_‘tk dt

€s—€y,

(53)

where Y=®(k,?)/P,, €5 and €, are the static and the
high-frequency limit of the dielectric constant. The result
is that

elw)—e, 1

= > - (54)
€s—€, (1+ow°r)—ior,

which may be separated in its real (¢') and imaginary (€”')
parts to get the well-known Kramers-Kronig relations

() L+t (55a)
€ = . a
@ (1 +w27'1 )2+w27%

601'2
()= (55b)

(1+(u2‘rl)2+a)27'% '

In Egs. (55), if @?>7;—0, we get the result given by the
classical theory of dielectric relaxation due to Debye.

The Cole-Cole locus given by relations (55) is a circular
arc with center and radio depending on &:

) (56)

L
26

where 8§=1+w?r,. Again, if ©*r;,—0 we get the semicir-
cle given by the Debye model. 81 shows a deviation
from the Debye model and furthermore is a frequency-
dependent quantity.

For materials composed by simple molecules, the exper-
imental dielectric relaxation is very well fitted by the
Debye model. However, for materials composed by com-
plicated molecules, such as polymers, the Debye model is
no longer appropriate and several authors fit experimental
data introducing an empirical parameter. For instance, in
the Cole-Davidson® model it is assumed that

elw)—e, 1
= , (57)
€5 —€, (1+iwr)?
whereas in the Williams-Watts model* one has that
Yo s® (58)

where a and B are numerical parameters determined by
the fitting of the dielectric relaxation data. 7 is the pa-
rameter associated with Debye’s description.

Finally we only want to point to that the success of the
use of Berne’s, Cole-Davidson and Williams-Watts models
shows that the main features for nonDebye behavior are
described at least by two parameters, a fact which is
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strongly supported by the results derived here [cf. Eqgs.
(55)] using EIT.

VII. CONCLUDING REMARKS

A generalized version of Debye’s equation for the
dielectric relaxation in isotropic materials has been de-
rived using the formalism of EIT. This equation arises
when the polarization vector P itself is raised to the status
of a state variable. The resulting equation is thus related
not only to standard conserved variables of LIT such as
density, charge density, etc., but also to other variables
similar in nature to P, such as the heat flux q. Another
interesting feature of this equation is that it may be writ-
ten as a wave equation with sources, showing that the
propagation of the perturbation in the material is not in-
stantaneous, whereas the classical Debye theory implies
instantaneous response. This case is recovered from the
former one when we ignore the presence of the “noncon-
served” or fast variable in the description of the system.

In other words, nonconserved variables introduce a
desirable consistency between thermodynamics and the
electrodynamic formalism given by the Maxwell equa-
tions. The consequence of this fact in the results is em-
phasized by the presence of an additional parameter 7, be-
sides 7, which describes Debye’s law. Both parameters
appear in the complex dielectric constant (Kramers-
Kronig relations) and they have to be determined experi-
mentally or by using a specific molecular model. Such is
the case with Berne’s model.

The presence of the parameter 7; shows an invariable
deviation from the Debye’s law present in most dielec-
trics, mainly polymeric, glasses, amorphous materials, etc.
From the thermodynamic point of view the description of
the processes in these materials when an electric field is
present is characterized by a memory showing an ex-
ponential decay, as it was pointed out in Eq. (52). Also,
the correlation function is given by a sum of two exponen-
tial terms. Berne’s model shows that these characteristic
terms are associated with the presence of the internal elec-
trostatic field effect. But recent results suggest that such
a model might be more general, since it remains a valid
one even when the assumption of the electrostatic field
breaks down.

At this stage, two points remain to be done for the fu-
ture, one is to seek what modifications have to be intro-
duced in the correlation function when some assumptions
made here are relaxed, namely, the nonviscous regime,
nonfree charge currents, and isothermal systems, and also,
when we take into account nonlinear terms into the for-
malism. The other point is the comparison of our results
with the above-mentioned empirical models and micro-
scopic and stochastic models. In particular, the physical
interpretation of the Williams-Watts model seems in-
teresting since it shows the existence of a universal repre-
sentation of the relaxation data, as it is broadly indicated
in the literature.!®* Moreover, since there is evidence of
the fact that this model may also be derived as a limit
theorem of a stochastic process'’ involving the concept of
a fractal time, one could further seek to establish a bridge
between these recent useful concepts and the more stan-
dard language of thermodynamics.
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APPENDIX

As was mentioned in the Introduction and Sec. II, there
are two groups of independent variables to describe the
dielectric relaxation processes using EIT. One of these
groups was described in Sec. III when p, and J,, are
selected as conserved and nonconserved variables, respec-
tively. Now we are dealing with the case when p, and
0D /3t are selected as independent quantities. Thus, the
generalized Gibbs equation from the function

oD
n=n uypfyq)'? (A1)
is now given by
dy _ 1 du %o dpy @ dq 6 * d°D
dt  Todt  Top dt ' Top dt ' pTo dr?
(A2)

where T and ¢¢/T are given by an equation similar in
structure to Egs. (22), and a; and a, are similar to Egs.
(23); in all these equations we have to include dD/dt in-
stead of J,. Now, we cannot make the assumption of
J;=0, since it leads to 0D/t =0. Then, we have to as-
sume separately that the viscous dissipation and the mag-
netic effect are negligible and these effects do not appear
in the description of the evolution of the polarization in a
dielectric material.

Since we use Eq. (15) for the time evolution of the
internal energy, we can see that both J,-(vXH) and
dD/dt —3D/dt are in fact nonlinear terms. Then, we
can reproduce all the steps doing as before for the first

4951

case, and obtain, without a problem, the evolution equa-
tions for dD /3¢ and q:

e SR B gy
=#11Q*(1—#13¢o)gfad'%;—a1~l_:)%(} )
(A3)
a;(z)o %2:2) i Egt) ’;f: 1+% (E+ gradé,)
=H21q—Po(1 -#za)gfad%o - %9‘%% - (A4)

From these equations we can eliminate dq/dt and get the
generalized Debye equation for D, which has the form

2
D
7O 47D —(eE-D)=yigrad 1+ 720,

where the coefficients are the same as before, given in
Egs. (35) and (36) but replacing €g, the static dielectric
constant, by X,. To obtain Eq. (A5) we have used the re-
lation given by

(AS)

D= —eggradd, , (A6)
the corresponding Debye equation for D is
2 — _(D—eE) (A7)
ot
where
Toe €
rp= Hi2lo€s U2€Es (A8)

K13 #23(1+To/li23)

Equations (A7) and (A8) are similar to Eqs. (40) and (41).
The system of the evolution equations for D is an alterna-
tive formalism to that given for P.
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