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Dynamical properties of long-wavelength interface fluctuations
during nucleation-dominated crystal growth
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Motivated by advances in laser scattering experiments on crystal-melt interfaces during growth
conditions, we discuss the interface fluctuations of a faceted crystal during nucleation-dominated
growth. If the nucleation rate is large enough so that each layer grows as a result of multiple nu-

cleation events, the properties of long-wavelength interface fluctuations can be understood in terms
of a simple random-walk picture. Accordingly, apart from a change in length scale, the interface
Auctuations during growth resemble those of a rough interface. This is a form of dynamic roughen-

ing. The various factors contributing to the decay of fluctuations are discussed and a comparison
with a model of Bilgram et a/. for the interface dynamics is made.

I. INTRODUCTION

In this paper we will discuss the long-wavelength inter-
face fiuctuations that occur when a crystal grows via the
nucleation of new layers. As a simple model for
nucleation-dominated growth, we wiI1 study the polynu-
clear growth (PNG) model. ' The PNG model consists
of disk-shaped clusters that nucleate at random positions
and then expand until they merge with other clusters in
the same layer, thus forming a multilevel structure of the
type sketched in Fig. 1. We will show that the long-
wavelength interface fluctuations can be understood in
terms of a simple random-walk picture, and that, as a re-
sult, the long-wavelength properties of the model resemble
those of a "rough" interface. ' The model therefore illus-
trates the idea of "dynamic roughening;" i.e., the fact that
when viewed on the proper length scale, even the interface
of a faceted crystal becomes rough during growth condi-
tions.

The work described in this paper was motivated in part
by recent light scattering experiments, s 'z

by which the
microscopic growth mechanism of a crystal is investigated
through the study of interface fiuctuations. To put these
experiments into proper perspective, we first summarize
the various growth mechanisms and the difficulty of
probing them experimentally. 'i

When a crystal-melt or crystal-vapor interface is micro-
scopically "rough", the equilibrium shape of a crystal is
rounded, and the growth rate R of the interface is linear
in the driving force b, T=T —T„ the difference between
the equilibrium melting temperature T and the interface
temperature T;. (See, e.g., Refs. 3 and 4 for general re-
views of crystal growth. ) For a faceted interface, on the
other hand, the free-energy n associated with the forma-
tion of a step is finite. A faceted interface therefore
grows via the nucleation and spreading of new layers or
by means of growth spirals ein.anating from screw disloca-
tions that provide a continuous source of steps on the
surface. In the first case of nucleation dominated
growth, the nucleation barrier is of the order of vcr /hp
and so the nucleation rate is proportional to

exp[ —n cr /(kT &u )). (Here by is the difference in
chemical potential between the crystal and melt or vapor. )

Hence for T~ close enough to T the nucleation probabili-
ty is extremely small (since 5)Li~O for T~ ~T ), and the
growth usually becomes dominated by the spiral mecha-
nism resulting from the steps already present at positions
where screw dislocations intersect the interface. The
growth rate due to the latter mechanism alone is propor-
tional to (hT) .

With the aid of computer simulation, it has been possi-
ble to investigate each of the above mechanisms separate-
ly, e.g. , by considering systems with and without disloca-
tions, or by suppressing nucleation, etc. Such studies
have verified the essential correctness of the above picture
in detail. Experimentally, it is of course less easy to iso-
late the various contributions. In a typical experiment the
growth rate of the crystal R is measured as a function of
undercooling hT. The growth mechanism is then inferred
froin a comparison of the experimental data with the
functional R versus b, T dependence associated with the
various mechanisms discussed above. For a number of
faceted materials, it has been possible to do precise experi-
ments on crystals without screw dislocations, and the ex-
perimental observations do indeed show several charac-
teristics of nucleation type growth. ' However, since the
expressions for growth controlled by nucleation events in-

FIG. 1. Schematic view of an interface in the PNG mode1.
Layer 1 has been fully completed, while the clusters in layer 2
are about to fill the last holes by merging. In the next layer, 3,
already several clusters have nucleated and some of them are
merging. A few small clusters have nucleated in the next layer
too.
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volve several quantities whose values are not well known,
it is gerierally difficult from these experiments to extract
accurate quantitative information on important surface
quantities like the step free energy, the step velocity, etc.
Moreover, in less controlled experiments of this kind, the
growth of a faceted interface may be due to both nu-

cleation and dislocations. In such cases, the growth-rate
data are usually fitted by a R -(b,T)" law over a certain
range of temperatures, with the effective exponent y de-
pending on the material, the temperature range, etc. Ob-
viously, it can often be difficult to decide whether data of
this form should be interpreted as resulting from the com-
bined effect of the two growth mechanisms, or as a signa-
ture of the presence of other important phenomena.

The above discussion illustrates the desirability of hav-
ing independent experimental techniques to probe surface
quantities of crystals during growth conditions. Laser
light scattering experiments of the kind initiated by Bil-
gram and co-workers in 1978 have been shown to be a
powerful tool in this respect. ' Bilgram et al. ' and
later also Mesquita et al "and .Brown et al. ' have stud-
ied the interfacial correlations of ice and salol during
growth conditions. Although, as will be discussed later,
the origin of the so-called diffusive scattering seen in
these experiments is not understood at present, clear evi-
dence for the existence of growth spirals was obtained in
the studies of salol. ' " The light scattering observed
under condition of total reflection within the crystal" was
highly anisotropic and had an oscillatory time correlation
function. This was interpreted as the light scattered off
polygonized growth spirals emanating from screw disloca-
tions. The oscillatory correlation of the scattered light is
then caused by the Doppler shift resulting from the prop-
agation of steps with velocity V, . These experiments
therefore do not only probe the growth mechanism of the
crystal, but also yield direct in situ measurements of V, as
well.

We discuss in this paper the long-wavelength interface
correlation of a crystal-melt or crystal-vapor interface
during nucleation-dominated growth. Although the aver-

age growth rate as a function of nucleation rate and step
velocity in this regime has been studied extensively, the
dynamics of interface fluctuations have, to our
knowledge, not been discussed before. One of the main
goals of this paper is to show that these dynamics can be
understood quite simply in terms of a random-walk pic-
ture. As a result of this, the interface correlations during
nucleation-dominated growth strongly resemble those of a
rough interface. In other words, an interface that is facet-
ed at equilibrium "dynamically roughens'* on long length
scales as soon as it is forced to grow. When a faceted in-
terface is far below the equilibrium roughening tempera-
ture, this dynamically induced roughness at small driving
force (nucleation rate) will only affect the interface prop-
erties at very long length scales. Thus, two interfaces can
still be very different at shorter length scales when they
have similar correlations in height at large distance scales.
The interface morphology at shorter length scales will not
be considered in this paper, however, as it cannot simply
be characterized in terms of surface roughening, a concept
which can only be defined properly as the divergence of

the interface width in the long-wavelength limit. '

In Sec. II, we introduce the PNG model and qualita-
tively discuss the long-wavelength interface fluctuations
in this model. We then present (Sec. IIB the data of nu-
merical simulations that support the qualitative picture of
Sec. II and the idea of dynamic roughening. In Sec. IV
the model of interface fluctuations of Bilgram et al. ' is
summarized and the underlying physics is compared with
that of the random PNG model. The dynamics of fluc-
tuations in the PNG model is of purely kinematic origin
{the spreading and merging of clusters), while the decay of
fluctuations in Bilgram's model is related to the depen-
dence of the growth rate on the local structure of the in-
terface. In general, both effects will be present, but for
small growth rates, we expect the first effect to dominate.
In Sec. V we discuss the experimental implications of our
results. Several of the arguments presented for the PNG
model in a two-dimensional interface can be illustrated by
explicit calculations for the PNG model on a one-
dimensional interface. This is done in Sec. VI, where we
allow the nucleation rate of the one-dimensional PNG
model to depend on the curvature of the interface. In this
case the dynamics of fluctuations can be obtained exactly;
the long-wavelength diffusive behavior indeed exhibits the
combined effect of the spreading and merging of clusters
and of the curvature dependence of the growth rate con-
sidered by Bilgram et al.

II. RANDOM-WALK PICTURE OF FLUCTUATIONS
IN THE PNG MODEL

We consider here the nucleation controlled growth of
an infinite crystal surface. In the PNG model, ' clusters
nucleate at random sites on the surface of the crystal at a
rate J per unit area. The clusters start with zero radius at
the time of nucleation and expand with radial speed V
that is independent of the radius. Each piece of the edge
of a cluster continues growing until it merges with the
edge of another cluster in the same layer. A layer is
completed when all clusters in that layer have merged.
Figure 1 gives an idea of the resulting surface.

The above model is based on a somewhat idealized
description of nucleation events. In reality, clusters nu-
cleate with a finite radius p, and their growth velocity is a
function of the radius. In the above model, p, (=0) is un-
derestimated but V is overestimated for small radii, so the
effects of the two approximations partly cancel. In any
case, these approximations will be justified if p, is much
smaller than the typical size a cluster reaches before merg-
ing. Furthermore, since we consider disk-shaped clusters,
we neglect possible anisotropic growth kinetics of steps.
Such anisotropies will not qualitatively affect the long-
wavelength interface fluctuations, however. The most im-
portant simplification in the model is that J is a fixed
constant, independent of time and of the local surface
structure. In reality, the nucleation rate may depend on
the interface structure, e.g., on the height of the surface
through the temperature or supersaturation. These effects
will be discussed later in Sec. IV; we will first focus on the
dynamics resulting from completely random nucleation
events, and refer to this random model as the PNG model.



33 DYNAIVQCAL PROPERTiSS OF LONG-WAVELENGTH. . .

Gilmer has studied the initial growth transients of the
PNG model and also compared the data with Ising model
Monte Carlo simulations to assess the importance of
atomistic effects. ' Here we will only discuss steady-state
interface fluctuations.

In the PNG model, there are only two parameters, J
and V. Their dimensions, indicated by [],are

[J]=1/(length time), [V] =length/time .

These paraineters define a length scale A, and a time scale

(b)

I I

t=o

' 1/3

, r—=(JV')-'".V

J
The simplicity of the PNG model lies in the fact that it
has no free parameters that affect the qualitative
behavior; J and V, and hence A. and r, only set the proper
scales. For instance, the growth rate R and the number of
layers the crystal grows per unit of time must, on dimen-
sional grounds, be of the form

(2)

with ci a dimensionless constant. From the numerical
simulations of Gilmer, it is found that ci-1.40. ' This
value indicates that the typical size a cluster reaches be-
fore merging with the others if of order A.. To see this,
note that the J clusters that land in a unit area per unit of
time grow R layers. J/R clusters cover one unit area in
one layer, so the effective area covered by one cluster is
R/J. This suggests that we can define the effective clus-
ter radius r in terms of the average area a cluster covers as

R
Kl' 2—

J
Using (1) and (2), this yields

1/2
C1

0.67K, .

Similarly, the typical "lifetime" of a cluster is
r/V=0. 67'.

I.et us now discuss fluctuations of the interface in a
steady state. Consider an initial lang-wavelength fluctua-
tion of the interface with larger than average height as in-
dicated in Fig. 2(a). Since we are interested in the dynam-
ics of fluctuations about the average height of the inter-
face, it is important to note that the dynatnics of interface
fluctuations should be measured in a coordinate system
that moves with the average interface position as the crys-
tal grows; in this system, the average height remains at a
fixed position. The time evolution of a fluctuation is
governed by two processes, the spreading of clusters and
the nucleation of new layers on top of them. In every
layer, a cluster has a finite lifetime of the order of ~, so
that during the first time interval of order r, the height
fluctuation spreads out laterally over a distance of order
r=A, . At the same time, new clusters nucleate at random
positions on top of the old clusters that formed the initial
perturbation. Since their probability of formation during

L
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FIG. 2. (a) Schematic view of a lang-wavelength height fluc-
tuation in a one-dimensional PNG model. (b)—(d) Illustration
of the random-walk nature of the propagation of height fluctua-
tions for the idealized situation of a single cluster. (b) Initial
condition with a small cluster in a new layer. (c) After a time of
order 2 ~, other clusters have nucleated in the same layer as the

cluster in {b). Moreover, a new one has nucleated on top of the
old one. (d) After a time of order v, the crystal has grown one
layer, and the interface resembles the one in (1). However, the
center of the top cluster in (d) is a distance of order —,

' I, to the

right of the original one.

( h (k, t)h'(k, O) ) —(h (k,O)h '(k 0) )e

where D~, is the diffusion coefficient associated with the
kinematics of the spreading and merging of clusters. The
random-walk picture suggests that

In (5},

h(k, t}=J dre'"'h(r, t)

the initial period was enhanced at the position of the orig-
inal fluctuation, the influence of the height fluctuation
persists to the next layer. However, the center of the new
cluster will generally be displaced somewhat with respect
to the position of the center of the cluster below, because
of the random nature of the nucleation events. This is il-
lustrated in Figs. 2(b)—2(d) for a one-dimensional inter-
face. Clearly, although on the auerage the center of the
new cluster will be centered above the old one, it will typi-
cally be displaced by a distance of order A, in a random
direction. Therefore, the time evolution of average height
fluctuations corresponds to the lateral diffusion process of
a random walker that makes steps of order r=A, in a tiine

We therefore expect for the spatial Fourier transform
of h (r, t), the deviation from the average height of the in-
terface,
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is a lateral Fourier transform, ( ) stands for an ensemble

average, and e denotes the complex conjugate. In Sec.
III, we show that numerical simulations of the PNG
model support the above picture, and the validity of Eqs.
(5) and (6). The above discussion indicates that during
nucleation dominated growth the long-wavelength struc-
ture of the interface is determined by the presence of
steps. The surface structure therefore resembles that of a
rough interface, i.e., it has "dynamically roughened. "
However, one should keep in mind that this dynamic
roughening only occurs on long length scales l &~A„' as
explained in the Introduction, the interface properties at
shorter length scales depend on other factors such as the
closeness of the equilibrium roughening transition.

In an experiment with scattering vector k, the correla-
tion of interface fluctuations with wave vector k~~, the
component of k parallel to the interface, is probed. Like
the corrugated interface model of Bilgram et al. ' to be
discussed later, correlations are damped with k~~ rather
than k . This anisotropy can be made somewhat more
precise by further exploiting the resemblance of the inter-
face structure to that of a rough interface. The long-
wavelength excitations of a rough interface are the so-
called capillary waves. These are interface height correla-
tions whose equilibrium correlation function is of the
form

{h (k, 0)h '(k, O) )— (7)

(For a finite system of size L, the small k divergence is
cut off at wave vector of order L '. ) As will be dis-
cussed in Sec. III, our data also support the validity of Eq.
(7) for the PNG model.

Consider now the height correlation function at the
same position, {[h(r,t) h(r, O)]—2). With the aid of (5)
and (7) we obtain

([h (r, t) h(r, O}—] )
-D k2s

dk h(k 0)h'(k 0))(1—e }J
max

~
—D]„„k t

-lnt . (8)

This result shows that the vertical broadening of the
mean-square height fiuctuations is much slower than for a
diffusion process (-t'~ ), so that indeed in a hght scatter-
ing experiment only the dynamics of lateral correlations
[of the form (5)] will be detectable.

It is interesting to note that for the PNG model on a
one-dimensional interface the integration over a one-
dimensional wave vector results in a factor k 2 rather
than k ' in the second line of (8). As a result,
the transverse correlations in the one-dimensional PNG
inodel are predicted to behave diffusively
{{[h(r,t) h(r, )0] )—-t' ). This behavior will be dis-
cussed in more detail in Sec. VI.

III. MONTE CARLO SIMULATION
OF THE PNG MODEL

%e have extended the earlier Monte Carlo simulations
of the PNG model (Ref. 2} to test Eqs. (5) and (6) and the

picture on which their derivation is based. In the simula-
tions, discrete nucleation events are generated at randomly
located lateral positions on the surface. The appropriate
vertical position for each event is determined by a com-
parison with previous events to calculate the height of the
surface at that point.

We simulate a finite area of linear size L with periodic
boundary conditions. To ensure that many clusters nu-
cleate within one layer, proper parameter values have to
be chosen. Most of the data were taken with
V = 10 4JL, so that according to (1)

Thus, typically about 400 clusters nucleate in each layer.
We simulated 4X10 nucleation events, corresponding to
growth of some 10 layers.

The crystal surface is represented in a rectangular coor-
dinate frame with the z axis the normal growth direction.
The (x,y) coordinates of the nucleation events are generat-
ed as pairs of random numbers in the interval between 0
and L. The time between events is circulated with a third
random number Z between 0 and 1, using the relation

ht = — lnZ .1

JL

This method produces values of ht that satisfy a Poisson
distribution with an average value of

(JL ) '=10 v 0.0022m .
The nucleation event is recorded in a list that is subdivid-
ed according to the layer in which the event is located.
The x and y coordinates of each new event are compared
with those for previous events to determine whether a
cluster from an earlier event has expanded to cover the
point. This comparison is performed starting with the
clusters at the highest level, and proceeding down to the
lower levels. When a cluster is found that satisfies this
condition, the new event is assigned to the next level
above, and the process is repeated. To reduce the amount
of memory needed, only the clusters in the upper fifteen
layers are retained in memory. We have found that fif-
teen layers is enough to ensure that the lowest level is al-
ways completely covered before it is removed from the
memory.

We introduce dimensionless quantities (indicated by a
tilde) that measure lateral lengths in units of A, and time in
units of r [=10 ~ {JL )

' in most of our simulations].
Thus we expect on the basis of (6)

Dkn=v~n (10)

with the dimensionless diffusion coefficient Dk;„of order
unity. The spatial Fourier transform h(k, t) is in our
simulations evaluated by summing exp(ik. r)h(r, t) on a
20 X 20 grid, so that the grid spacing is of the order of the
cluster size. In view of the periodic boundary conditions,
the x component of the dimensionless wave vector k as-
sumes the discrete values [cf. Eq. (9)]

k„=2mn —0.29n, n =1,2, . . .
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Dg„——0.37+0.03 . (12)

Note also that the data for n =4 correspond to a wave-
length of the order of 5A, ; for much shorter wavelength of
the order of I, (5) will not hold, as the interface structure
is strongly correlated on such length scales.

As also discussed in Sec. II, we expect the equal time
correlation of the interface to be similar to those of a
rough interface, or

and similarly for k„. In Fig. 3 we plot the natural loga-
rithm of (h (k, t)h'(k, O) ) from the simulation versus k t
for n =1,2, 3,4 (0.29&k» &1.17;k~=0). If fluctuations
decay indeed as predicted by Eq. (5), the data should fall
on straight lines with slope independent of k. Indeed, as is
clear from Fig. 3 the data are consistent with such a
dependence with A

o 3.0—

V

2.0—

0
0

0 0

0

( h (k, O)h '(k, 0) )— (13)
I

5.0 2.0
I

3.0
I

5.0

This behavior should be observed for k values in the range
2n/L «k «2n/A, , i.e., for wavelengths larger than the
typical cluster size but much shorter than the system size,
since the periodic boundary conditions will tend to
enhance the fluctuations with wavelength of order L In.
Fig. 4, we plot I/(h(k, O)h "(k,O)) of the PNG model
versus k . The limited range of k values that we can
probe does not allow us to extract the k dependence accu-
rately, in the regime where (13) is expected to hold, but
the data of Fig. 4 do tend to be consistent with the antici-
pated scaling behavior.

In conclusion, the data of the simulations presented in
Figs. 3 and 4 support the random-walk picture for the
dynamics of interface fluctuation, and the idea that up to
a change in length scale the long-wavelength properties of

FIG. 4. Inverse of equal time correlation function
th{k,O), h {k,O))/A, of the two-dimensional PNG vs k~. The
open circles represent data for V =10 4JL' (L =21.5A, } and
the closed circles data for V = 10 'JL '

( L = 10k,}.

an interface during nucleation controlled growth are like
that of a rough interface.

IV. EFFECTS RESULTING FROM THE CURVATURE
DEPENDENCE OF THE GROWTH RATE

Let us now compare the interface dynamics of purely
kinematic origin in the PNG model with that of the "cor-
rugated interface model" of Bilgram et al. ' In this
model, the normal growth velocity V„of a crystal is as-
sumed to be a given function of the undercooling b, T,

-2.0 V„=p(ET) . (14)

CVg

~ -4.0
A

O

+~ -5.0

&-t-.o
C

T~(a) =T~(0)— a. ,
AS

(15)

Let us first consider the effe:t of small shape fluctuations
of a rough interface. In that case, AT is the difference be-
tween the melting temperature T (v) of an interface with
curvature a and the interface temperature T, . According
to the Gibbs-Thomson relation, the former is given by

&.0
l

2.0
I

4.0

with T~(0) the melting temperature of a flat interface, y
the solid-liquid interface free energy, and bS the entropy
of melting. Thus

b.T= T~(0)— a —T; .

FIG. 3. Data from our Monte Carlo simulations for
ln[(h{k, t)h*{k,O))/L ] as a function of the dimensionless
combination k t. The numbers labeling the curves correspond
to the value of n in (11}, while k~ =0. The velocity is
V =10 JL, corresponding to L =21.5X.

For small fluctuations h around the steady state
V„=p(ET ) of a flat interface,

Bh ah
Bx

+
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By linearizing Eqs. (14) and (16) we then get for the
dynamics of such fluctuations '

Bh, y Bh Bh
(17)Bx' By'

where p is the derivative of p(ET}. In deriving this re-
sult, we have neglected any fluctuations in the interface
temperature T;.

Clearly, according to (17) the interface fluctuations in
this model behave diffusively with diffusion coefficient
D, =lJ, 'y/dS. However, their dynamics have a different
origin than those in the PNG model. In the above deriva-
tion, we considered a rough interface, and the diffusive
behavior is due to the change of the growth rate with cur-
vature. For positive curvature, i.e., if the solid is bulging
forward into the liquid, the growth rate is suppressed.
The dynamics of fiuctuations in the PNG model, on the
other hand, pertain to a faceted interface and are of purely
kinematic origin —they exist in the absence of any correla-
tion between the nucleation rate and the interface struc-
ture.

The depression of the melting temperature for a curved
interface is only properly defined for a rough interface. 2'

Nevertheless, one expects different physical effects to ex-
ist during growth of a faceted interface, that have similar
consequences. In particular, the nucleation rate could de-

pend on the local structure of the interface: the nu-
cleation close to the clusters might be suppressed (e.g., due
to the existence of a depletion layer near a step in vapor
growth); similarly, the critical radius for growth of a clus-
ter might have a different inhibition time depending on
which level they occupy. Such effects could be modeled

by equations of the same form as (14) and (16), but with
some unknown coefficient e instead of y/M in (16). Al-
though y/hS possibly yields a reasonable estimate for e,
we see no reason to expect e= y/LLV for nucleated growth.

In general, therefore, the diffusion coefficient associat-
ed with the long-wavelength interface fiuctuations of a
faceted crystal will be the sum of the two terms D~, and

D, . Unfortunately, it is difficult to assess which one
will doniinate in practice. However, for small enough
driving force Dz„should dominate, since Di,n-J
and D,~-J', whereas J-+0 for hT-+0. Similarly, for
increasing driving force D~, -l /r should become less
and less important since 1~0 so that the interface be-
comes "rough" on shorter and shorter length scales. For
an interface that is already rough at equilibrium, Dh, ——0.

In passing, we note that in an effective interface model,
D, may actually go to zero near the onset of a Mullins-
Sekerka —type instability. Such instabilities are most
common for growth of a rough interface but analogous ef-
fects may exist for growth of a faceted interface. For ex-
ample, in growth from the vapor the diffusion towards
the higher points of the interface is facilitated, and hence
the supersaturation and nucleation rate ~ill increase here.
(In fact, Frank2 has argued that the enhanced supersa-
turation near corners of a crystal plays a role in the for-
mation of the peculiar shapes of snowflakes. } Such an ef-
fect would tend to make D, smaller or even negative. It
mould be interesting to observe such a "critical slowing
down.

V. IMPLICATIONS FOR LIGHT
SCA x r ERING EXPERIMENTS

Before discussing the possible experimental implica-
tions of our results, it is important to point out that in the
light scattering experiments on ice, ' '" isotropic
scattering was observed with a correlation function dif-
ferent from the oscillatory one mentioned in the introduc-
tion. This so-called diffusive scattering is also present in
salol: here it was shown"' to coexist ~ith the oscillatory
scattering. The time correlation function of the diffusive

—Dk2tscattering decays as e ', where k is the scattering vec-
tor. As yet, no convincing physical interpretation has
been given for the "diffusion constant" D, which is found
to be several orders of magnitude smaller than the thermal
diffusivities of water and salol or than a typical solute dif-
fusion constant in the liquid phase of these materials. Bil-
gram et aL ' originally associated D with D,~ discussed
before. However, in the model of Bilgram et al. the decay
rate of fluctuations should be proportional to k~~, with k~~

the component of k parallel to the interface. When exper-
iments showed that the decay rate is Dk2 rather than
Dk ~~,

this model was rejected. '
Fortunately Mesquita et al. "have shown that it is pos-

sible to isolate the scattering from interface dynamics
from the diffusive scattering by working under conditions
of total reflection within the crystal. Under these cir-
cumstances there is no light scattered in the melt, and the
diffusive scattering is absent, in agreement with the con-
clusion of Boni et al. that the diffusive scattering ori-
ginates on the melt side of the interface.

Our analysis indicates that it would be particularly in-
teresting to do a light scattering experiment on a material
during nucleation-dominated growth, with a setup similar
to the one of Mesquita et al. " In general, one would ex-

pect to see the e " '~ time dependence of interface
fiuctuation (assuming that D, «Dz„). Moreover, if the
material is sufficiently anisotropic, it might be possible to
measure both the step velocity V and D~„. For, the clus-
ters will become polyganized for large anisotropy, and the
steps will all propagate in certain crystallographic direc-
tions. Light scattering from these steps would be highly
anisotropic and its time correlation function would be
damped oscillatory: the damping would result from the
finite lifetime ~ of steps and the oscillatory component
from the Doppler shift caused by the step motion. The
latter measurement would therefore yield V. If, in addi-
tion, the scattering resulting from the random-walk nature
of the interface fluctuations would be detected, one would
obtain direct measurements of Dz„and V, and therefore
of the nucleation rate R.

VI. THE ONE-DIMENSIONAL PNG MODEL

In this section we illustrate the foregoing discussion by
explicit calculations for an extension of the one-
dimensional (1D} PNG model in which the nucleation
rate depends on the curvature. In the 10 PNG model,
steps nucleate in pairs and then move apart with velocity
+ V. As first realized by Frank, ' the simplicity of the 1D
PNG system lies in the fact that a left moving step with
velocity —V is uncorrelated with the right moving steps
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by which it can be annihilated. Let l(x) and r (x) be the
densities of steps moving to the left and right. Then the
balance equations for these densities read

+k (1+e)=0,Qp 2 N

V A, V

81 Bl=I+ V —2Vlr +i,
Bt Bx

(18)
with solutions

Br Br=I—V —2Vlr+i .
Bt Bx

(19)

Here we have split the total nucleation rate into two
terms, a "systematic" part I and a random term i that
acts as a random force with zero mean ((i)=0). The
other terms on the right-hand side of (18) and (19)
represent the drift and annihilation of steps. The product
form of the annihilation terms reflects the fact mentioned
earlier that steps that can annihilate each other are un-
correlated. (This is not true in the 2D model. )

A possible dependence of the nucleation rate on the cur-
vature Vrh of the interface is included by writing

I=Io+ 2eVVzh=Io+ 2~eVV(l r) . —

Here Io is the (position independent) nucleation rate of a
flat interface, and e is a dimensionless parameter; for e & 0
the nucleation is suppressed on regions of the interface
with positive curvature, as in Bilgram's model. In (20),
we also used the fact that the interface length h (measured
in units of the layer spacing) is related to 1 and r by

V'h =l —r .
For convenience, we define lt, and r in this case by

' 1/2

, r=(2Iov)-'".
2Io

(21)

(22)

The average values (1) and (,r } are space and time in-
dependent so that using (18)—(22)

' 1/2

We are interested in the average relaxation following an
initial perturbation in r and 1 at time t =0. Following de
Groot and Mazur, ' we denote these conditional averages
by r and 1. Since i =0 (the random current is uncorrelat-
ed with the initial conditions), r and 1 obey, according to
(18)—(20},the linearized equations

Bl I M= V(1+ —,e) ——,eV —VA. (1+r},
Bt Bx Bx

Br I Br I i)i= —V(1+—,e) + —,eV —VA, (T+r) . (26)
dt Bx Bx

For modes of the form e "'+' we obtain the charac-
teristic equation

The average growth rate R is clearly equal to the product
of the velocity and the local step density,
R =V((l)+(r))=A'v=r Def, ining i.n analogy with
(3) the average distance d a step travels by R =2Vd, we
find

a)+ ————
[ —1+[1—k A, (1+e)]'~ I .

In the long-wavelength limit, ~ turns out to correspond
to fluctuations with r 1 and so, according to (21), Vh =0.
Thus this short-lived long-wavelength mode is mainly
connected with local disturbances that do not entail inter-
face height fluctuations; it is of no further interest here.

The long-wavelength co+ mode is indeed related to
height fluctuations. For k A, (1+e)~~ 1, we get

to+- —, VAk (1+e)=— (1+e)k (28)

where d is the average distance a step travels, given by
(24). Equation (28) agrees with the discussion of the
preceding section in that the effective diffusion coefficient
D is the sum of Dz„and D,„„with Dk;„——,'d /~, a—nd

D, = —,
' ed /~. Note that Dz„ is exactly equal to the dif-

fusion coefficient corresponding to a 1D random walker
that makes steps of size +d in every time interval v. The
reason that the picture of Sec. II is also quantitatively
correct in this case is a result of the absence of correla-
tions between steps that encounter each other.

In the short-wavelength limit k gpss,
' and for e=0,

to+, and co are damped oscillatory modes of the form

e
—t/r+ik (x+ Vt) (29)

This form reflects the fact that 1 (+ sign) and r ( —sign)
consist of steps moving with constant velocity V and
whose annihilation gives rise to an average lifetime r.

These considerations show that the long-wavelength
behavior of lateral correlations in the 1D and 2D PNG
model have the same origin. The main difference between
the two cases is the existence of short length scale correla-
tions in the 2D model which prohibit exact evaluation of
D) n.

In Sec. II, we briefly discussed the correlation in time
of height fluctuations at the same position, and noted that
([h(r, t) h(r, 0)]—)-t'~ for large times. This diffusive
behavior results if the times at which successive layers
cover a position r occur randomly. Then the times t„at
which a position r is covered in layer n form a Poisson
process with mean time ~ between the covering events.
For a Poisson process, the probability P„(t) that n cover-
ing events have occurred at time t is given by

P ( )
(t/&} —g/

pg l
(30)

(31)

This corresponds to a transverse diffusion coefficient

Accordingly, if b is the layer thickness, the mean-square
height fluctuations are'

([h(r, t) —h(r, o)] )=b ([n(t) —(n(t))] }=b
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D~~
——b /2r .Note, however, that although even the trans-

verse correlations are diffusive, there is still a large aniso-

tropy since

(32)

This ratio is small because in nucleation controlled growth
the layer spacing is much smaller than the typical cluster
size A, .

VII. CONCLUSIONS

In this paper we have discussed the various physical ef-
fects that govern the dynamics of interfacial fluctuations
during crystal growth by the nucleation and spreading of
2D clusters. Up to a change in length scale, these fluctua-
tions behave qualitatively the same as those above the
roughening transition. That is, in the limit of an infinite
surface area the surface height correlations are similar to
those in the equilibrium crystal surface above its roughen-

ing transition temperature. This is true for arbitrarily
small values of the chemical potential driving force for
crystal growth, hp. As hp-+0, the nucleation rate J is
expected to decrease much more steeply than the step
velocity V, and hence the length scale (V/J)'~ should
diverge. The surfaces of finite crystals will, of course,
tend to be localized at a single height during most of the

time, except for the period just after a nucleation event
while the cluster is expanding to cover the surface. Kinet-
ic roughening occurs only in the sense that the length
scale (which measures the average distance between steps
on the infinite surface) decreases with increasing hp; but
there is no unique definition of a kinetic roughening tran-
sition with an associated value of hp at which transition
is observed. Only in the case of strict equilibrium is a
qua&itative change in surface structure observable at a
unique transition temperature.

We have shown that the decay of small surface height
fluctuations in the 1D PNG model is diffusive in nature,
and therefore similar in behavior to the equilibrium sur-
face. Diffusive behavior is also expected for the 2D PNG
model, and the Monte Carlo simulations are consistent
with this result. The effective diffusion coefficient for
this process has the value derived from dimensional argu-
ments, with a dimensionless constant that is approximate-
ly unity. Capillarity effects, absent in the PNG model,
are shown to increase the effective diffusion coefficient
for the decay of the fluctuations.
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