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The energy, the specific heat, and the magnetic susceptibility of the bond-diluted S= T Heisen-

berg ferromagnet on a two-dimensional square lattice are studied using a Monte Carlo sampling of
the terms contributing to the partition function. The full lattice is studied in detail for sizes up to
20' 20, and evidence is presented to suggest that the low-temperature correlation length behaves as
g-e ~ with v- 1.9120.06. The temperature dependence of the susceptibility, however, is not quite
a simple exponential in P/. Knowledge of the correlation length and finite-size scaling allows the
determination of the prefactor. Our conclusion is that the low-temperature susceptibility behaves as
T 'e ". Square lattices of size ranging from 6)&6 to 12X12 are studied for kqT/J ranging from
0.1 to 3 and for several values of the bond probability p. Not surprisingly, the most drastic thermo-
dynamic behavior near the critical bond-percolation probability is the sharp increase in the low-
temperature susceptibility for p g p, . This corresponds to much larger correlation effects in the per-
colating lattice than below the percolation threshold. %'e also compare the thermodynamics at
p =p, to the scaling theories of Lubensky and Stanley et al. which suggest that the correlations at
the percolation threshold are predominantly one dimensional.

I. INTRODUCTION

It is known that the classical Heisenberg model does
not order at any finite temperature in two dimensions. '

Quantum fiuctuations would make the two-dimensional
(2D) quantum Heisenberg model even less likely to order
than the classical system. Hence, nothing as drastic as a
phase transition is expected to occur in the 20 quantum
Heisenberg ferromagnet (HF). The quantum system is,
however, not entirely devoid of interest as some real ma-
terials such as K2CuF4 seem to have very nearly the same
magnetic interactions as the 2D S = —,

' HF. ' There has
been a good deal of theoretical work on bond-diluted lat-
tices, particularly in the percolation limit, and one of the
main purposes of this article is to extend this work to the
study of the thermodynamics of the bond-diluted S=—,

'

20 HF. Bond-diluted lattices are more amenable to vari-
ous approximations such as the effective-medium approxi-
mation than are the more physically realizable site-
diluted lattices. Both quenched dilute systems are
nonetheless expected to exhibit the same qualitative
behavior, and studying the thermodynamic behavior of
the bond-diluted system will give us insight into the
behavior of the site-diluted system. The main difference
between the two diluted lattices is in the percolation
threshold probability p, . On the 20 square lattice the
threshold bond concentration is p, =0.5 while the thresh-
old site concentration in the site-diluted system is
p, =0.59. It is to be noted that the site-diluted problem
can be studied just as easily with the technique used in
this paper as the bond-diluted problem.

Most of the theoretical work done on the quantum 2D
HF can be classified in one of two broad categories: (1)
high-temperature series expansions' and the associated

where the sum is over all nearest-neighbor pairs, the spin-
wave theory described by Dalton and Wood'3 (DW)
predicts a low-temperature susceptibility of the form

3t'Dw -AN exp(2m /8),J (1.2)

where 8=ktt TiJ is a dimensio—nless temperature, pic is the
Bohr magneton, and g is the Lande factor. The more so-
phisticated Green s-function approximation used by
Yamaji and Kondo' (YK) predicts that the susceptibility
VRAes as

(Wit )'
ggK -A'X

JO 0
exp (1.3)

Pade approximations, "' or (2) spin-wave theory' and
other Green's-function approximations. ' The high-
temperature series expansions are accurate but of limited
range of validity. Some Green s-function approximations,
such as that of Yamaji and Kondo, ' appear to be valid
over a much wider range of temperatures but these always
involve some uncontrolled approximations. Furthermore,
experiments are difficult to perform and analyze because
of lattice contributions to the thermodynamics and the
fact that the magnetic Hamiltonian is only approximately
two dimensional. A numerical experiment such as a
Monte Calo calculation can provide us with new informa-
tion and insight which can be used to check existing ap-
proximate theories and guide future analytic approaches.
Here we begin with a review of various results which have
already been obtained.

Defining the bond strength J by the Hamiltonian

I=—2J+s; st,
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I,= —J, gs;s, (1 5)
'&J&' '

and ~s;
~

=1. One of the purposes of this paper is to
study the low-temperature behavior of the susceptibility
and so resolve the question posed by the differences be-
tween (1.2) and (1.3). To this end we have also studied the
temperature dependence of the correlation length.
Knowledge of the correlation length allows us to use
finite-size scaling to help determine the factor multiplying
the exponential in PJ (PJ= 1/8) in the expression for X.

As mentioned above, one of the objects of this article is
to study the low-temperature behaviors of the susceptibili-
ty and the correlation length for the full 2D square lattice.
We also consider the bond-diluted S =1/2 2D HF for a
whole range of bond probabilities p. It has been suggested
by Stanley et al. ' and by Lubensky'6 that, near the per-
colation threshold, the system is made up of nodes con-
nected by one-dimensional links. As the spin correlations
propagate one dimensionally, the one-dimensional correla-
tion length gi(T) plays a very important role near p, .
Indeed, for a Heisenberg chain, ' ' we have gi(T)-8
and the spin correlation length and the susceptibility at p,
behave as' '

g-[g, (T)] -8, 8~0

TX-[gi(T)] r-8 r, 8~0.
(1.6)

From scalin~ arguments' ' and renormalization-group
calculations' ' one can define a crossover exponent

In contrast, the susceptibility for the classical HF on a
square lattice goes as

NI. 2 kS T 4~JC
(1.4)

C C 8

where the classical coupling constant is defined by the
Hamiltonian

path integral over imaginary time. These techniques map
the d-dimensional quantum system onto a system of
dimensionality 0+1 where we are to integrate over the
paths or "states" weighted by a classical action. Such
path integrals are almost invariably factored into integrals
over time slices, and the corresponding Monte Carlo algo-
rithms ' become quite complicated in higher dimensions.
Furthermore, the finite size of the time slices b,7=13/L
introduces some errors which are to be minimized or at
least estimated by using different values of L.

It has recently been pointed out by Lyklema and
Chakravarty and Stein that a Monte Carlo technique
suggested by Handscomb in 1962 converges sufficiently
quickly for the technique to be useful in the study of the
thermodynamics of the S= —,

' HF. The simplest form of
this technique is only valid for the isotropic S= —,

'

Heisenberg model and it is only efficient for a ferromag-
netic interaction. Generalizations of the methods which
allow the study of the antiferromagnetic Heisenberg
model and the XI' and XXZ models have also been
presented. ' The technique is, in essence, a Monte Car-
lo sampling of the vacuum-vacuum diagrams contributing
to the partition function. An important feature of this
technique is that the implementation of the algorithm is
basically independent of the dimensionality or which
bonds are present or missing in the Hamiltonian. Indeed,
the method is ideally suited to the study of quenched di-
luted Heisenberg systems or Hamiltonians including
next-nearest-neighbor interactions. The site-diluted sys-
tem is treated in the same way as the bond-diluted case,
the only difference being the definition of the existing
bonds. It is this method that we will use to study the
thermodynamics of the bond-diluted S= —,

' 2D HF.
As our simulations deal exclusively with the ferromag-

netic ease [J&0 in Eq. (1.1)], we shall limit our formulas
to the case Jp 0. For S= —,', we have the operator identi-

ty

4"—vp /vT ——)'p /Y T, (1.7) si'sJ =PjJ (1.9)

where vz and yz are percolation critical indices describ-
ing the divergences of the connectivity correlation length
and the size of the clusters as p~p, . For d =2, Ref. 6
gives vz

——1.33 and y~ =2.43. Coniglio predicts that
/= 1.43 for the classical Heisenberg system in 2D. Hence
the prediction is that the classical 2D HF at p =p, has
the behavior

8—0.93 8

TX-8 ', 8 0.
Stinchcombe'9 used an approximate form of real-space re-
normalization to get /=1. 13 for the 2D S = —, HF. In
this article we attempt to obtain vr and yT directly from
(1.6) and hence estimate P for the 2D S = —, HF.

Monte Carlo calculations of the thermodynamics of
quantum systems are a relatively recent development.
Most such calculations ' involve a;rath integral over the
imaginary time interval P=(kit T) . Even the stochastic
quantization method proposed by Parisi and %'u, while
it is not a true Monte Carlo technique, involves such a

where the transposition operator P;~ interchanges the spin
states of sites i and j. The Hamiltonian may then be writ-
ten as

Nb8=—J g Pi+ i JNb (1.10)

Z =Tre-&H

=g +II(C„),
n=O C„

where

where P; is the transposition operator associated with the
tth bond, and Nb is the total number of bonds in the lat-
tice. As the constant energy term JNb/2 only determines
the zero of energy, it will be neglected in what follows.
The Hamiltonian is then simply a sum of permutation
operators. The partition function can be expanded in
powers of PJ:
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II(C„)= Tr(C„),( J)"
5 (1.12) specific heat, the susceptibility, and the correlation func-

tion G(M/V 2) defined as

and

(1.13)

G(M/v 2)= —g (s,'s,', ), (2.1)

and the sum over C„ is a sum over all possible ordered se-

quences (i, iz i„). The expectation value of an opera-

tor A is given by

(a) = T—r(e Ii"-~) .z
If we again expand in powers of PJ, we have

II(C„)" n„(C„),
e=o C„

where

(1.14)

(1.15)

Tr(C„A )
Qg(C„) =-

Tr(C„)
(1.16)

Our Monte Carlo algorithm (described in detail in the Ap-
pendix) will constitute a random walk among the various
sequences C„, each weighted by the probability II(C„)/Z.
Qz (C„}is then a classical observable corresponding to the

quantum observable A. This sampling of the C„ is essen-
tially equivalent to a sampling of the vacuum-vacuum di-
agrams contributing to the partition function. We may
also consider this Monte Carlo procedure as a high-
temperature expansion which includes terms of arbitrary
order in f3J. Indeed the simulation will automatically con-
sider almost exclusively the dominant terms in the expan-
sion of Z.

We note that the index ik in the sequence C„can have
any value from 1 to Ns. This feature is unchanged if cer-
tain bonds are deleted from the Hamiltonian. Bond dilu-
tion, site dilution, or even the dimensionality only affects
the bonds to be included in the Hamiltonian. Other
Monte Carlo techniques for studying the quantum spin
problem are not so easily modified to study diluted sys-
tems or systems of higher dimensionality.

The remainder of this article is organized as follows. In
Sec. II we present the data for the full 2D square lattice
with particular emphasis on the nature of the divergence
of the low-temperature susceptibility. Section III deals
with the bond-diluted Heisenberg system. We present
data on the specific heat and the susceptibility for the
bond probabilities p=0.25, 0.5, and 0.75 on lattices of
size 12 X 12. We describe the p dependence of the suscep-
tibility at a fixed temperature for various lattice sizes and
we give results for the correlation length at @=0.75 and
at the percolation threshold p, =0.5. The Appendix de-
scribes the Monte Carlo algorithm in detail and gives a
discussion of its performance.

X O

HTSE

Ho x 20
6X6

X O
XO

Og nn6
Q

I

kBT/3

where N =M is the number of sites in the lattice and r is
the largest separation between two sites in an M &(M lat-
tice, i.e., r =(M/2, M/2). This last measurement enables
the determination of the correlation length by studying
different size lattices. We studied lattices of size 4&(4 up
to 20X 20. A typical run consisted of ten groups of 2000
observations. The statistical fiuctuations between the ob-
servation groups then determined the approximate uncer-
tainties in the observables. At high temperatures the
correlation length g( T) becomes very small and
g(r) «M/~2 even for the small lattices M =4 and 6.
To measure the small G(M/v 2), for small or moderate
N (N(144 sites} some high-temperature runs were as
long as ten groups of 10000 observations. [The discussion
following Eq. (A2) in the Appendix describes the limita-
tions on the measurement of the correlation function
(si'sf )].

Figure 1 shows the energy per bond as a function of the
temperature as measured using the expression (A7}. For
comparison we have also included in Fig. 1 the curve ob-
tained from the high-temperature series expansion of Bak-
er et al '0 For .simplicity we only show our results for the
6g 6 and the 20& 20 lattices. The high-temperature series
starts to deviate from our Monte Carlo results at 8 & 2 and
becomes unphysical at 8 & 1.1. Our Monte Carlo pro-

II. THE 2D HEISENBERG FERROMAGNET:
FULL LATTICE RESULTS

In this section we shall present and discuss our results
for the full square lattice. We measured the energy, the

FIG. 1. The average energy per bond as a function of the
temperature for two different lattice sizes. The solid line is the
high-temperature series expansion (HTSE) of Baker, et al. (Ref.
10}. The error bars are of the order of 0.002. for the 6&(6 lattice
results and of the order of 0.003 for the 20& 20 lattice results.
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cedure, however, gives essentially exact results albeit for
finite-size lattices. As we will see below in our discussion
of finite-size effects, it appears that the 20X 20 lattice has
the behavior of the thermodynamic limit for temperatures
down to about 8=0.7. The correlations in the 6&(6 lat-
tice saturate at low temperatures and consequently the en-

ergy is very flat for 8 &0.3.
In Fig. 2 we show the specific heat per bond as a func-

tion of the temperature for lattices of size 6X6, 10X10,
and 20& 20. %e also compare these to the high-
temperature series of Baker et al. As the lattice size
grows, the specific-heat height stays roughly the same but
shifts toward lower temperatures. The specific heat below
8=0.7 is probably affectai somewhat by the finite size of
the lattice. One can nonetheless conclude that the
specific-heat peak height is about 0.2k' per bond and
occurs at a temperature less than or equal to 0.7J.

The most noticeable finite-size effect is probably the sa-
turation of the low-temperature susceptibility. In Fig. 3
we present the susceptibility per site on a lattice of size
M XM as a function of the temperature and for several
values of M. In contrast to the high-temperature series
for the spix:ific heat we find that the high-temperature
series for the susceptibility from Baker et a/. ' is quite
good down to 8&0.7. In the low-temperature limit, the
susceptibility saturates at a value determined by the size
of the system. It is a simple matter to derive this satura-
tion level. Letting Xo denote the susceptibility of N in-
dependent spina, we have

1000

100— h
0

0

+

j

HTSE
4O x 40
ZO X ZO

16 x 16
+ 13 & 13

10 x 1O
x 8 x g

x
)

0000$10—

1

0 1 2 3
kBTjJ

FIG. 3. The magnetic susceptibility per site 4k~ T'AI%(g p~ )

(=g'go) as a function of temperature for various lattice sizes.

Po is the susceptibility of N independent spins.
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Furthermore, the inner product s; sj may be written as

s; s, = —,
' [(s;+s, ) ——', ]

4 in the triplet state
3—
4 in the singlet state . (2.4)

& s;.s, ) = —,
I

(2.5)

As the temperature is lowered, this correlation takes on
more and more a triplet character until at T =0 we have

FIG. 2. The specific heat per bond as a function of the tem-
perature for three different lattice sizes. The solid curve

represents the high-temperature series expansion of Baker et ai.
(Ref. 10). %'e have translated the y axis for the three lattice
sizes in order to separate the curves. The error bars not sho~n
are smaller than the points drawn.

for all i &j Hence Eq. (2. .3) becomes

X 4 N N(N —1) 1
lirar o J'o X 4 3 4

= —,(N+2) . (2 6)
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Figure 3 also includes the results of a short run (1000 ob-
servations) done on a 40X40 lattice. We see that satura-
tion effects become important for the 20X20 lattice for
0&0.6.

In an attempt to compare our results for the susceptibil-
ity with Dalton and %'oods's spin-wave approximation'
and Yamaji and Kondo's Green's-function approxima-
tion, ' we have plotted in Fig. 4 the function

—1

0
1

2

&3.9 +0. 1

&4.5 %0. 1

5.09+0.07
5.78%0.05

TABLE I. Values of y based on Eq. (3.8) assuming certain
values of g. We implicitly assume that the trends of Fig. 4 con-
tinue toward PJ-+ ao.

f((,PJ)=ln &8~ +
N(gyes )

(2.7)

versus PJ for g= —1, 0, 1, and 2. The term 3g/2 in (2.7)
simply separates the various curves. If the low-
temperature susceptibility behaves as

X-T~exp(yPJ), (2.8)

then f((,PJ) plotted as a function of PJ will be a straight
line with slope y in the limit gl~ oo. Dalton and Wood
[Eq. (1.2)] predict (g, y) (0,2n. ) while Yamaji and Kondo
[Eq. (1.3}] predict (g„y)=(—l, n }. From the lineuity at
large PJ, Fig. 4 seems to indicate that g is near 1 or 2. If
one fixes g at —1, 0, 1, or 2, one gets the corresponding
values of y given in Table I. Neither Dalton and Wood's
prediction nor that of Yamaji and Kondo seem to fit the
results. Of course it may be that our results, vahd down
to 8=0.6, do not represent the true low-temperature
behavior. Nevertheless, the information in Fig. 4 and
Table I is not to be ignored. In the following paragraphs,
we will use finite-size scaling analysis and Table I to ex-
tract further information about g and y.

g( T)= roexp(v13J), (2.9)

with ro ——0.31+0.01 and |= 1.91+0.06. It is this expres-
sion that we shall use in our finite-size scaling analysis.

Assuming we have an exponent rI(T) such that
—II I ~4

z z( si si +I )—co (2.10)

In order to get more information about the low-
temperature behavior of the susceptibility, we studied the
correlation function G(M/V2) defined in (2.1) for vari-
ous lattice sizes (M =4—20). From these results we were
able to obtain the correlation length g(T) depicted as a
function of PJ in Fig. 5. The largest lattices used were
M=16 and 20. A 16X16 lattice shows significant sa-
turation effects for 8(0.7 while the 20X20 lattice satu-
rates for 8(0.6. Hence it is likely that the two points in
Fig. 5 at PJ pl. 4 do not represent the thermodynamic
limit. For PJ~1.4, g(T) is well parameterized by the
form

I I I I
I

I I I I
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I
I

I

20 X ZP

+ 4p x 4p

4
f

I I I ~
I

I T I I
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I ! I I
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12I
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/
1
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0
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0 o 0 00 0 0

(P
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0 0.5 1 1.5
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FIG. 4. Plot of f(g, gl) as defined in Eq. (2.7} vs PJ for
g= —1, 0, 1, and 2. The open circles are from the susceptibility
of a 20&20 lattice while the crosses are from that of a 40&40
lattice.

FIG. 5. The correlation length as a function of 13J. The two
points at gl) 1.4 are believed to be seriously affected by the
finite size of the lattices considered. The line represents the
curve g( T)=0.31 exp(1.91IIJ}.
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the susceptibility per site satisfies the finite-size scaling re-
lation

4k' TX 4

N(gu, a)2 N;, J
—r/g

=4co d

Equation (2.16) becomes quite a good approximation if
rl(Ti)=rl(Tz) but the factor [ln(Mi/M2)] ' amplifies
the statistical noise in g(T) due to the I'(T,M) if M, is
too close to M2. Hence we use the following restrictions
on (Ti,Mi ) and (T2,M2):

g/M (2,
r

M/g'
=Besot~ "f dxx' "e

0

Mi g(T2)
ln

PT&) M'

i
Ti Ti i

—(0.6,

(ln(1.02),

(2.18)

)ln(1. 1) .

-M' v'~P (-g/M) . (2.11')

In the thermodynamic limit, we have

lim
4k' TX —fJ"--&(go~)'

(2.12)

If Eq. (2.9) remains valid in the limit PS~ oo, Eq. (2.8)
leads to the relation

(2.13)

where we have used the fact that rl(T =0)=0, i.e., the
correlations are long ranged at T =0. From our analysis
of the correlation length [Eq. (2.9)] one would then con-
clude that y=3.82+0. 12. Going back to Table I, it
would appear that g is near —1 instead of being 1 or 2 as
Fig. 4 would have suggested.

We can get yet more information from the finite-size
scaling relation (2.11'). We note that while finite-size
scaling is usually applied to a system near its critical
point, where r) can be treated as a fixed exponent, the rl in
(2.11') should indeed be a function of the temperature. If
the correlation length g(T) is not very much larger than
M, the saturation effects are still small and Eq. (2.10)
remains valid. Under these conditions finite-size scaling
will hold, and we may use Eq. (2.11') to estimate the func-
tion q(T) as per the following procedure. From the
knowledge of g(T) we may tabulate the various values of
g(T)/M. If we find values (Ti,Mi) and (Tz,M2) such
that

N(gya )X-3 exp(yPJ), (2.19)

d
4

a b
b b

Figure 6 is a scatter plot of the various estimates of i)(T)
we have thus obtained. Because of slight mismatches of
the ratios in (2.14) and the estimation of the abscissas
(2.15}, it is very difficult to estimate the uncertainties in
these points. One can see, however, that g(T) seems to in-
crease approximately linearly with the temperature unti1 it
saturates at a value near unity at temperatures greater
than 2J. As s)(T) should have a temperature dependence
of a8—((+1)gine at low temperatures, the apparent ab-
sence of such a logarithmic term is further evidence that

The author knows of no theoretical predictions for
rl(T}. Indeed, even the correlation length g(T) has not
been well studied in the current literature. Yamaji and
Kondo's Green's-function approximation'" should yield
some results on these topics but none are included in
Yamaji and Kondo's short paper on the 20 Heisenberg
ferromagnet. Our best estimate of the low-temperature
behavior of X is

g(Ti ) g(T2)

M) M2
(2.14)

b

b

to within, say, 2%, we may use the finite-size scaling rela-
tion (2.11') to obtain an estimate for g(T) where T is an
average of Ti and Ti.

T= —,'(Ti+T2) . (2.15)
n

bb
b

where

in[I (Ti,Mi)/I (Ti,Mi)]
ln(Mi/M2)

(2.16)

I ( T M) = = — (g'g'} T ~ .
4k' TX( T,M)

M (gpa) Ms (2.17)

FIG. 6. The exponent g(T) vs k~T/J as determined by ap-
plying finite-size scaling as per the procedure in the text [Eq.
(2.16)].
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where y =3.82+0. 12. The Yamaji-Kondo prediction for
the susceptibility [Eq. (1.3)] correctly predicts the r
prefactor and gives a better value of y than the Dalton-
Wood result [Eq. (1.2)].

The infinite cluster must be handled separately but the
derivation of (3.S) still applies to the small (finite) clusters.
Equation (3.3) then gives the zero-temperature limit valid
for all p:

III. THE BOND-DILUTED 2D S =
z

HEISENBERG FERROMAGNET

The bond-diluted 2D square lattice has a critical bond
concentration of p, =O.S. For p &p„ there does not exist
a cluster of infinite size in the thermodynamic limit.
Hence there could not be any long-range order. As the
2D Heisenberg ferromagnetic system does not order even
for p =1 (the full lattice), the behavior near p p, cannot
be as drastic as that of the dilute 2D Ising model which
has a phase transition at p p, . Nonetheless we can ex-
pect a significant increase in the correlation effects and
the spin correlation length for p &p, .

Let us consider the spin correlation function of Eq.
(2.3):

4kB TX
& SsSz&

X(i &(gpii )i N
(3.1)

(3.2)

Using the same arguments that led to Eq. (2.6), the low-
temperature limit of &S'S'& is given by

I
lim = gy;(y;+2) .r oX() 3N,

To proceed further we need to evaluate the sum in (3.3).
For p &p„ there is no infinite cluster. We may therefore
use the approximation that all the clusters are roughly
equal in size:

N
&y;&=y=

&
&,

&y &=y'+&',
(3.4)

where 5i, the variance of y;, is expected to be of the order
of y. Equation (3.3) then becomes

lim = (y'+2y+8') .
T—+0 g() 3p

(3.S)

For p &p„a finite fraction f(p) of the sites are part of an
infinite cluster in the thermodynamic limit. This implies
that, for p &p„

(3.6)

P i &&P'z &73 & '

For a finite lattice this quantity will saturate at some fin-
ite value as T~0 for any value of p. The saturation level
depends on the sizes of the various clusters and hence will
be p dependent. for p&1, the interacting spins form
separate clusters of size yi,yz, y&, . . . ,yi where

lim —
&
S'S'&

oE

(3.8)

where i), is the value of the exponent g appearing in Eq.
(2.10) at T=0 and p=p, . This g, is the same as the ex-
ponent rl relevant to the pair-connectedness function at
p =p, in the theory of percolation. ' We see that the
first term on the right-hand side of Eq. (3.7) will diverge

1 —g /2
as N ' in the thermodynamic limit at p=p, . We
conclude that, in the thermodynamic limit, X/Xii diverges
as T~O for p &p, . For p &p„X/Xii saturates at a finite
value as T~O in the thermodynamic limit.

Our technique studies the thermodynamics of the
bond-diluted systems and is not at all well suited to the
study of the percolation exponents which only show up at
T =0 and for large lattices. However, our simulations
can explore the nature of the divergences in &S'S'& as
T~O for p &p, .

To study the thermodynamics of a bond-diluted lattice
with a bond probability p, we generated a lattice of size
M )&M with each bond being present with the probability
p. It is important to study the thermodynamic properties
of a particular lattice for the whole range of interesting
temperatures as a method of variance reduction. The en-
semble average or configurational average is then the
average of the thermodynamic properties of several such
lattices. Generally we chose to seed the random number
generator such that the number of bonds did not differ by
more than 2% from the expected number of bonds

&xb &=2px. (3.9)

All of the results prMent~ here are the average over five
lattices for each set of values p, T, and M. For each lat-
tice the simulation typically consist~ of ten groups of,
1000 observations at each temperature.

As the energy and the specific heat scale with the num-
ber of bonds, we have plotted in Fig. 7 the specific heat
per bond for the 12)& 12 lattice at p =0.25, 0.5, and 0.75.
For p & I the spatial correlation between spins dies away
more rapidly, and it appears that for p &0.75, the 12& 12
lattice is already large enough to describe the thermo-
dynamic limit for 8)0.7. For comparison we have also
included in Fig. 7 the specific heat per bond of the 20&(20
p = 1 lattice. As p decreases from unity, the specific-heat
peak occurs at lower temperatures and the peak height de-
creases from roughly 0.2kii per bond at p =1 to about

(y'+2y+&')+ [2+f(p)&] (3 7)
3y 3

where y is now the average size of the finite clusters.
Above p„f(p) & 0 and the second term on the right-hand
side of Eq. (3.7) diverges as X in the thermodynamic lim-
it A.s p~p, , f (p) =0 but y diverges. The mean size of
a cluster on an M &(M lattice at p =p, is given by
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at various values of the bond concentration. For p =1
and 0.75, the 12x12 lattice has noticeable saturation ef-
fects at the lowest temperatures studied. The function
plotted is bounded above by —,(%+2) which is 48.7 for
the 12)&12 lattice. The susceptibility at @=0.25 is sa-
turating at a value much less than this upper bound, a fact
consistent with expression (3.7) which says that, for
p &p„ the limit
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FIG, 7. The specific heat per bond at various bond concen-

trations. The p =1 curve is the specific heat of the fu11 20' 20
lattice, while the curves for p g1 are from a study of 12X12
lattices.

0.14kii per bond at p =0.5. At p =0.5 the specific heat
peak is very broad and it is nearly flat for 0.3 & 8 & 1. At

p =0.25, we only have small clusters and the specific-heat
peak position has shifted back toward the higher tempera-
tures occurring roughly at 8=0.8.

As is to be expected, the magnetic susceptibility shows

a much stronger p dependence than the specific heat. Fig-
ure 8 depicts the susceptibility per site on a 12X 12 lattice

y(p =0.75)=1.246+0.007 . (3.11)

Furthermore, from Fig. 11, we see that the low-

temperature correlation length is well fitted by the expres-

sion

exists. The curve at p=0.5 seems to be diverging (or
reaching saturation) as an inverse power of the tempera-
ture as predicted by Stanley et al. ,

' I.ubensky, '6 and oth-
ers. ' ' The behavior at p=0. 5 will be studied further
below. Figure 9 gives the susceptibility as a function of p
at the temperature 8=0. 1 for three different lattice sizes.
At this temperature we see significant saturation effects
for all p p 0.5. We immediately note that there is a large

increase in the low-temperature susceptibility as p in-

creases through p, .
For p, &p & 1, the dilute lattice still behaves much like

the full lattice. Indeed it appears from Fig. 10 that the

susceptibility at p =0.75 behaves as

4k' TX —A exp(yPJ), (3.10)
&(g) a)'

with
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FIG. 8. The magnetic susceptibility per site for the 12&12
lattice at various bond concentrations.

FIG. 9. The magnetic susceptibility per site as a function of
the bond concentration p at the temperature k~T=0. 1J for
three different lattice sizes.
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FIG. 10. The magnetic susceptibility per site as a function of
the inverse temperature at the bond concentration @=0.75.
Dashed line corresponds to 1.085e '

lattice where v=1.91+0.06 and y=2v. Rewriting the
scaling relation (2.12) as

y=v(2 —g), (3.14)

rl(p =0.75, T=0)=0.74+0.05 . (3.15)

Even at T =0, the correlations are not long ranged when
p& l. 1n the bond-diluted lattice some sites are totally
uncorrelated with the rest of the lattice.

We now turn our attention to p =p, to study the ther-
modynamic behavior near the percolation threshold. Fig-
ure 12 is a log-log plot of the susceptibility versus the
temperature for the 12)&12 lattice at the bond concentra-
tion p =p, =0.5. The low-temperature susceptibility ap-
pears to behave as [see Eq. (1.6)]

a comparison of Eqs. (3.11) and (3.13) indicates that, con-
trary to the full lattice result, we have

g(@=0.75, T=O)&0,

but instead it appears that

TX(p =p„T)-8 (3.16)

yp 0.95+0.08 . (3.17)

g( p, T)= ro(p )exp[v(p )Iff'J ], (3.12)

v(p =0.75)=0.99+0.04,

ro(p =0.75)=0.396+0.025 .
(3.13)

We see that the exponential divergence of X and g is
weaker for the bond-diluted lattice than it is for the full

For comparison, the 10' 10 lattice gives yT-0. 86+0. 18
and for the 8&(8 lattice yT-0. 77+0.04. These values of
yr were obtained by neglecting the lowest-temperature
values where the saturation effects are apparent. The
finite-size dependence of our yr values suggests that
(3.17) is not yet characteristic of the thermodynamic limit.

By studying lattices of size ranging from 4)&4 to
12X12 we obtained estimates of the correlation length

100
I

I f I f I I I I f I I I I

X
X

I I I I I

X
X "x

"X
XX

XX
X XXXX

I I I I f f I I

10

FIG. 11. The correlation length as a function of the inverse
temperature for the bond concentration p =0.75. Dashed line
corresponds to (=0.396eo ~9~.

kBT/J

FIG. 12. The magnetic susceptibility per site vs the tempera-
ture for the 12X 12 lattice at the bond concentration

p =p, =0.5. Dashed line corresponds to 1.678 *



33 THERMODYNAMIC PROPERTIES OF THE T%0-DIMENSIONAL. . . 4915

! I ! I I I ! I I I ! ! I I

p = 0.5

al Sciences and Engineering Research Council of Canada.
This work was also supported in part by the National Sci-
ence Foundation under Grant No. DMR83-20481.

APPENDIX

I I I I I I I I I

1

V,T/J

{ I I I I I I I

10

FIG. 13. The correlation length vs the temperature at the
bond concentration p =p, =0.5. Dashed line corresponds to
/=0. 5818

We prment here a full description of the Monte Carlo
algorithm including some technical details we used to
speed up the algorithm. We also comment on the perfor-
mance of the algorithm and we discuss why the method
fails when we try to use it with an antiferromagnetic cou-
pling.

It is clear that the simulation outlined in the Introduc-
tion can be implemented if there exists some simple and
efficient method of calculating the traces involved in Eqs.
(1.12) and (1.16). It is here that we use the fact that C„,
being a product of permutations, is also a permutation
operator. Upon factoring C„ into a product of disjoint
cycles, one readily sees that

Tr(C„}=2 (A 1)

where k(C„) is the total number of cycles in the permuta-
tion C„ including the trivial cycles of length one. One
also finds that

v~ ——0.76+0.05 (3.19)

The above results are to be compared to the experimen-
tal values obtained by Birgeneau et al. for the 2D 5= —',

Heisenberg antiferromagnet:

vr ——0.9+0.1, yT ——1.5+0.15, (3.20)

and the renormalization-group predictions for the classi-
cal ZD HF:

g(p=p„T). These estimates are plotted in Fig. 13, and
we see that the low-temperature correlation length does
behave as an inverse power of the temperature [see Eq.
(1.6)]:

(3.18)

1 if sites i and j are part4Tr(C~s! $1 )
of the same cycle

0 otherwise

or two spins are uncorrelated unless they belong to the
same cycle. Equations (Al) and (A2) allow us to perform
the simulation and measure the susceptibility and the
correlation length. We note that any contribution to
4(s,'sj') is either 0 or 1. Measuring a correlation of order
10 will therefore necessitate several times 10 observa-
tions. This technique is clearly not suitable for measuring
very small correlations. Using Eqs. (1.1S), (1.16), (A2),
and the fact that (S') =0 in 2D, the susceptibility is
given by

4kjtTX, ,)
(gIj jt ) I.j

vT ——0.93, yT ——1.7 . (3.21}
k(C„)

QJ (A3)

Our value for yr [Eq. (3.17)] is definitely lower than these
other values. However, our value of vz [Eq. (3.19)] is not
so far from the experimental value of Birgeneau et al.
when the uncertainties in the two values are considered.

Further studies of the bond-diluted lattice are in pro-
gress on lattices larger than 12& 12 in order to study the
thermodynamic limit at the lower temperatures with par-
ticular emphasis on the percolation limit p =p, .
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We found that the statistical properties of the measure-
ments were improved if we used the estimator
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Tr(P; C„)X{C„)=
Tr{C„)

(A6)

%ith this estimator we have the alternative expressions
for the energy and the specific heat:

To get the ratio of the traces in (A10) and (All) one

does not need to count the cycles in P; C„as suggested by
(Al). One simply needs to know if the sites k and l in-

volved in the bond I'; are already in the same cycle in C„.
%e have

and

E= J(—X)n+JNs 12,

C=k,PJ((nx)„—&n &„&X&„).

{A7)

(AS)

Tr(P.C ) 2 if k, l are in the same cycle in C„
l 8

if k, l are not in the same cycle .

To perform the Monte Carlo random walk among the
sequences C„we set up a Markov chain with the limiting
distribution II(C„). We proceed along the lines of
Hands comb's original proposal. 2s We only consider
moves which change the length of the sequence n by one:
a forward move corresponding to the addition of the one
bond at the end of the sequence or a backward move cor-
responding to the deletion of the first bond in the se-

quence. The forward move is attempted with the proba-
bility

max(n +1,2)
2(n +1)

and we choose the bond to be inserted at random from the
bonds in the Hamiltonian. A forward move

C„~C„+i C„i is a——ccepted with the probability

f(„+1)II(C„i)

f(n)/Ns Il(C„)

{A13)

This determination can be evaluated very quickly by keep-

ing an up-to-date evaluation of the permutation C„at all
times. Similarly, we use Eq. (A13) while evaluating the
observable X(C„) definixl in (A6). This concludes our
description of the algorithm, and we shall now present a
discussion of the performance of this technique.

At low temperatures, we have the approximate expec-
tation value

(n)n-PJNi, [1+0(PJ) " '], (A14)

where x is some positive exponent (x = —,
' for the 1D

Heisenberg model). ' Hence the length of the sequences
of interest grows linearly with pJ. As the specific heat
remains finite and indeed goes to zero as pJ —mao, Eq.
(A5) implies that

& n'&n —&n &n=&n )„.

PJNs Tr(P; C„)
=min ' 1

max(n + 1,2)
(A10)

At low temperatures the distribution of n then becomes
very nearly a Poisson distribution with mean

A =pJNbz,

while the acceptance probability for a backward move
C„=i i C„ i ~C„ i may be written as

(„2) Tr(P;, C„)
CEI c c =61111' 1,

Tr(C„)
(Al 1)

In the event a backward move is rejected, we rotate the se-
quence by one bond

& 1cn —1~en —1~ 1 ~ (A12)

The acceptance probabilities (A10} and (All} correspond
very closely to the usual Metropolis algorithiii, ' the main
difference being that in a true Metropolis algorithm each
move is reversible.

In contrast to the work of Lyklema and Chakravarty
and Stein, one should not rotate the sequence by a ran-
dom amount after a backward move is rejected. For
Handscomb's proof that II(C„) is the limiting distribution
of the Markov chain to be valid, we need to use the
single-bond rotation described by (A12). One can use ro-
tations by a random amount as long as such rotations do
not depend on the rejection or acceptance of any move.
Indeed we rotated the sequence by a random amount after
each observation.

& ~)= g g 11(C„)(—1}"1 Tr(C„A )

ZAF g c Tr(C )

(( —1)"n„(c„)&„

&(-1)"), (A18)

where II(C„) is the same distribution as for J& 0 and can
therefore be approximated by the Poisson distribution for
large

~
pJ

~

. A straightforward calculation then yields

(( 1)n) e
—2A. e b~ (A19)

The normalization factor (( —1)")n for all observables
goes to zero exponentially with the product of

~
pJ

~

and
the number of bonds. Statistical fluctuations will there-

where z= 1. This approximate Poisson distribution allows
us to make certain statements about the behavior of the
simulation in the low'-temperature limit.

We first use this approximate Poisson distribution to
discuss the antiferromagnetic case (J &0). Instead of Eqs.
(1.11}and (1.15), we would have in the antiferromagnetic
case

ZAF ——g g ( —1 }"Il(C„),
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( n (t)n (0) ) —(n )'=&
The relaxation time is

r=2A=2pJN. bz =2pJNb

(A21)

or it takes roughly 2A, steps in the random walk for the se-

quence to lose its memory, at least as far as the observable
n is concerned. Because of these correlations, there is no
point in making an observation after every step in the ran-

dom walk. s If one makes an observation after every m

steps, m should be of the order of A, or PJNb for max-
imum efficiency. In our simulations we usually used m

equal to the number of lattice sites N With N. b given by

N, -pdN =2', (A23)

where p is the bond probability, the relaxation time mea-
sured in observations is then

r=4pPJ .

We usually allowed a time of 50 or 100 observations to
reach equilibrium before taking measurements.

By not taking measurements too often, the speed of the
simulation is essentially determined by the speed with
which one can evaluate the ratio (A13) for the successive
random walk steps. At lower temperatures and for larger

fore become very important even for moderate
~
PJ

~

if
Ns becomes large. Hence a naive implementation of
this Monte Carlo technique is simply not appropriate to
the antiferromagnetic Heisenberg problem. Other tech-

niques ' must be used.
One can also use the approximate Poisson distribution

to estimate the relaxation time in our Monte Carlo simu-

lation. With this distribution we have the approximate
equation of motion (A, »1)

Bn(
)

(n —A) (A20)
Bt 2A,

It follows that

lattices the typical cycle length grows [see, for example,
Eqs. (1.3) and (A3)], and it takes longer to determine
whether two sites k and 1 belong to the same cycle or not.
Most of the simulations were done on a Texas Instru-
ments TI-99/4A microcomputer programmed in assembly
language. The typical time needed per possible step
ranged from about 1.5 msec at 8&1 (any lattice) to 2.4
msec (6X6 lattice) and 6.0 msec (20X20 lattice) at
8=0.3. This corresponds to roughly 12—20 observations
per second for a 6X6 lattice and 0.42—1.7 observations
per second for the 20X20 lattice. The same program
written in FORTRAN on a Digital Equipment Corpora-
tion VAX 750 was only about 2.5 times faster. The dedi-
cated TI-99/4A was therefore faster and much more
economical than the time-shared VAX 750. Of course,
this is so because the simulation uses almost only integer
arithmetic.

The largest lattice that can be studied by the TI-99/4A
computer is 22X22. Furthermore, we are restricted to
temperatures such that 13JNs (4500. The 40X40 lattice
result in Fig. 3 was obtained on a VAX 750 which is not
so limited by memory. On a large lattice even a short run
gives quite good relative precision in the measurements of
the macroscopic observables.

One final note concerns the measurement of the specific
heat. From Eq. (A8) we see that for a specific heat behav-

mg as

C -Nb&*

in the low-temperature limit, we need to subtract two
terms of order PJN~ to obtain a residual of order
Nsl(PJ)'+'. We would need to know (nX)n to a rela-
tive precision of roughly [Ns(PJ)" + ] '. For this reason
it becomes impractical to measure the specific heat direct-
ly at low temperatures. We instead get the low-
temperature specific heat by differentiating the energy
with respect to the temperature as it is quite easy to get
very good relative precision for the energy at any tempera-
ture.
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