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Comprehensive, detailed studies of radiative and inelastic-scattering transitions of fast charged
particles propagating in crystals require improvements in the description of their Bloch eigenfunc-
tions and quasimomentum bands. Progress towards achieving the required description is made here

by (a) introducing a general iterative treatment of the effects of the crystal-potential variation along
the direction of the particle propagation on the Bloch eigenfunctions, and (b) employing Hill s-

equation theory to analyze, in a unified fashion, the various diffraction regimes (including the pla-
nar channeling regime) for particles which enter the crystal at small angles relative to a set of low-

index crystal planes [the systematic-reflection geometry (SRG)j. Among the results obtained for dif-
fraction in the SRG the most notable are the following: (1) analytical expressions for the band
structure and the Bloch eigenfunctions for electrons and positrons (P particles) with energies & 1

Mev; (2) expressions revealing the existence of gaps between bands populated by P particles with en-

ergies up to a few hundred MeV (or nonrelativistic mesons) whose propagation transverse to the set
of crystal planes is unbounded; (3) analytical estimates of tunneling into the vicinity of atomic sites
and of the bandwidth, for states occupied by positrons in the planar channeling regime.

I. INTRODUCTION

The diffraction of a fast charged particle (i.e., a particle
whose kinetic energy Ex is anywhere above a few tens of
a keV) in a crystal' at small angles relative to a low-
index crystal axis or plane is described fairly well in the
projection approximation. 6 ' In this approximation the
propagation of the particle in the direction(s) parallel to
the axis (plane), hereafter referred to as the longitudinal
direction(s), is assumed to be free. This assumption is
equivalent to the replacement of the crystal potential by
its average over the longitudinal coordinate(s), known as
the projected potential, which is periodic in the transverse
coordinate(s). The transverse propagation is then investi-
gated by (a) determining the eigenvalue bands [transverse
energy bands (TEB's)] (Refs. 9—11) and Bloch eigenfunc-
tions (waves) of the Schrodinger equation for a particle
whose mass is (1 + Eltlmc )m, m being its rest mass in
the projected potential, and (b) finding the population am-
plitudes of these Bloch eigenstates for a given direction of
incidence of the particle. As the relativistic mass of the
particle increases, this description gradually approaches
the classical picture of quasifree or channeling trajec-
tories, depending on the populated TEB's.' ' Although
the projection approximation is commonly used, effects of
the longitudinal variation of the potential (LVP hereafter)
on diffraction have also been noted. ' '

It is argued below that the prevailing analytical
models ' ' ' ' do not yield certain features of the dif-
fraction that affect the radiation emitted by diffracted
particles' ' or their inelastic scattering. The
present treatment is aimed at improving the tools for
analytical studies of these processes, particularly with
regard to the following physical properties.

A. Longitudinal-mode (LM) radiation intensity

The existence of LM radiation, which results from the
effects of the LVP on the particle, has been recently

demonstrated in the pioneering experiments of Spence
et al , ' .following its theoretical prediction. 29 The
peak frequencies of LM radiation have been calculat-
ed2s sc to the accuracy required for the above experi-
ments. In contrast, the spectral distribution of its intensi-

ty is still not well understood. Even its numerical evalua-
tion, based on three-dimensional many-beam equations,
has encountered difficulties, being highly time-
consuming. The present treatment of LVP effects is in-

tended to allow a facile, yet highly accurate, analysis of
LM radiation intensity.

B. The spectrum of unbound transverse energies

The prevailing assumption until recently has been that,
for relativistic particles, unbound transverse energies
(above the projected-potential maxima) form practically a
continuum. ' ' ' This assumption has been unable to
explain the spectrum of radiation resulting from transi-
tions between unbound transverse energy states. In a re-
cent work ' a formalism has been developed which allows
computation of the unbound TEB structure for the spex:ial
case of a periodic Poschl-Teller potential. A far more
general analysis of the unbound TEB's, valid for any one-
dimensional centrosymmetric periodic potential, is given
here. It demonstrates the existence of sizeable gaps be-
tween unbound bands for relativistic particles. These gaps
must be taken into account in the analysis of the emitttxl
radiation, according to the scheme outlined in Ref. 30.

C. Bandwidths and tunneling strength
in the channeling regime

Semiqualitative estimates of bandwidths in the channel-
ing regime have been given analytically for electrons
only, 36 whereas for channeled positrons only numerical
calculations of bandwidths have been performed.
These calculations have shown that bandwidth effects are
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significant for the radiation emitted by positrons occupy-
ing highly excited, transversely bound states. As will be

shown here, this implies that tunneling into classically
forbidden regions in the vicinity of atomic sites is non-

negligible for such positrons and should contribute to
their inelastic scattering. The present treatment consider-
ably facilitates the evaluation of bandwidths and tunnel-

ing strengths for channeled particles.
In addition to pursuing the above specific objcx:tives, in

this paper we seek to unify the treatment of the variety of
diffraction regimes determined by the relativistic mass of
the particle and its direction of incidence. Such unifica-
tion is required for a complete analysis of the radiation
emitted by the particle or of its inelastic scattering, since
these processes can cause transitions between different re-
gimes.

This article is organized as follows. In Sec. II an itera-
tive procedure is constructed, which produces the Fourier
components of the Bloch eigenfunction that are generated

by the longitudinal potential variation. Those Fourier
components which arise due to diffraction in the projected
potential serve as input. Unlike previous attempts, this
procedure is carried out here to the accuracy required for
LM radiation calculations. The subsequent discussion is
restricted to diffraction in a one-dimensional centrosym-
metric projected potential, characterizing particles in-
cident at small angles relative to a single set of low-index
crystal planes. This geometrical situation allows extensive
investigation of the Bloch eigenfunctions and transverse
energy eigenvalues, using the powerful Hill's-equation
method, which has not been applied hitherto to diffrac-
tion problems. In Sec. III it is shown that the asymptotic
forms of the eigenfunctions and eigenvalues strongly de-

pend on a dimensionless parameter, thereafter referred to
as potential depth. In Sec. IV the "shallow"-potential sit-
uation is analyzed, the analysis covering both kinematic
and dynamic diffraction of electrons and positrons with
energies up to a few MeV. In Sec. V we deal with the
"deep"-potential situation, which pertains to transversely
unbound as well as channeled particles whose relativistic
mass is much larger than the electron rest mass. In Sec.
VI we summarize the results of this treatment.

Additional details and topics are found in Chap. 2 of
Ref. 29, on which this article is mostly based. These in-
clude discussions of effects of noncentrosymmetric pro-
jected potentials and of the "intermediate-depth"-potential
situation.

II. LONGITUDINAL AND TRANSVERSE
DIFFRACTION

A. Premises of the treatment

The aim of the following treatment is to take account
of LVP effects in a manner which is more suitable for
LM-emission calculations than that of previously suggest-
ed methods. We start with a brief exposition of known re-
sults which will be the premises for the ensuing treatment.
The negligibility of spin-orbit (spin-lattice) coupling for a
spin- —,

' fast particle in a crystal~ ' implies that the spa-
tial amplitude of its energy eigenfunctions satisfies the
Klein-Gordon equation. %e assume that the particle is

incident on the crystal as a plane wave exp(iko. r}. Upon
ignoring crystal-surface effmts, ' the Klein-Gordon
equation can then be cast, to first order in V/E (the ratio
of the potential energy of the particle in the crystal to its
total energy), into the following set of equations, using the
Bloch form of the eigenfunctions fz(r): '

[ko —Uo —(k+g) ]c'"'—g U c =0 . (1)
I' (+0)

Here we have used the Fourier decomposition

.i,(ir)(r) ~ c (ir)e i(ir+s) r

8

U(r}= V(r)=— V(r) = g Use's',2E 2my

c I

(2a}

(2b)

k=ko„k+ko„f+k,R . (3)

The potential used in Eq. (2b) contains the Debye-Wailer
factor.

The cs"' and k satisfying Eqs. (2) (which describe the
diffraction of the particle due to its elastic scattering by
the crystal potential} constitute the input required for cal-
culations of (1) the radiative-transition matrix elements
and emission frequencies, 's' ' (2} the effects of in-
elastic scattering on the diffraction pattern, 2 zz and (3)
the radiation linewidths.

Two generic geometries are commonly considered in
treatments of fast particles diffracted in crystals. Assum-
ing the surfaces z =+6/2 of the crystal slab to be per-
pendicular to a RLV set g,z and parallel to a RLV set

g~R+g„P, these geometries are ' the following: (1)
ri:—(x,g),

kola —=kaz »
I koi

I

—=
I
ko x+koyy I

implying propagation nearly along a low-index crystal
axis z and termed the cross-grating geometry (CGG); (2)
rj =x,

I ko~[ I
—=

I ko *+koyy I
&&

I koi I
=

I ko

implying propagation nearly along a low-index crystal
plane y-z and termed the systematic-reflection geometry
(SRG) (cf. Fig. 1). In both geometries, we shall refer to
the direction(s) ri as transverse and to rt~I Iko~~ as longitu-
dinal.

B. Iterative treatment of LVP effects

The longitudinal propagation of a fast particle is ex-
pected to be nearly free (i.e., only weakly affected by the
LVP), whereas its transverse propagation can be strongly
affected by the transverse variation of the potential. We

the g's being all reciprocal-lattice vectors (RLV's) with

any allowed three-dimensional components. The "beam
coefficients" (BC's} cs"' are normalized by

(2c)

The gz'(r) and cs"' are labeled by the quasimomentum
iiik, which is required by the continuity condition at the
surface, taken to be normal to z, to satisfy
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proximately identified with the transverse energy. Hence,
ei and k, are restricted to bands of values allowed by the
transverse periodicity of the potential.

The coefficients of cg"' in Eq. (41) can be simplified,
upon use of Eqs. (21), (3), and (5), as follows:

I

Oy

/'

U rh 8' h,X

ei (k—i+Dk ') 1 —)(k '+0( V/E)
(6)

therefore consider separately the equations governing
transverse BC's (labeled by purely transverse g's} and
those governing longitudinal BC's (labeled by RLV's with
longitudinal components, hereafter denoted by h}, rewrit-
ing the set of equations (2) as the following two subsets:

[e —(k +D }]ck = g U cSj. Sj. Sl Sj. Sl
g j (+0)

Ug, -kck(k)

h (+0)
(4a)

(k) 1 (k)
e(k) (k2 +Dik) )

X k —
gq g~

Sj

+ g Uk kck"' . (41)
I(}' (+0)

The ck ', expressing the longitudinal modulation of the
eigenfunctions, exist due to the longitudinally varying
parts of the potential. Here,

(k~ )

Dg,
' =2ki g) +gi, Dk"'—=2k h+h

—ki —=kp —U() —k =kpi —U() —kg,(k) 2 2 2 — 2

(Sa)

(5b}

the last equality following from Eq. (3}. The expression
A ei"'/2my [cf. Eq. (2b)] becomes the exact transverse en-

ergy eigenvalue upon ignoring LVP effects. 6 'p Since
these effects are expected to be weak, it can still be ap-

FIG. 1. Systematic-reflection geometry. The projections of
the momentum of the incident particle on the crystal axes are
showIl.

in a large variety of crystals. If these inequalities hold,
then, in view of the fact that the (|}g decrease with the
modulus of g (and satisfy

I ((}g I
&1 in many crystals),

the coefficients given by Eq. (6) are much smaller than l
in absolute value. We may then apply an iterative process
to Eqs. (4), increasing the accuracy by an order of Xk or
~k"' in each iteration.

In the first iteration we keep only the leading terms in
both Eqs. (4a) and (4b). Equation (4a) then yields the c'"'
upon neglect of the ck (which are of order Xk):(k) ~

[e(k) (k2+D 1 )]c(k) y U c(k)
Sj. Sj Sj.—Sj

Sj (~0)
(8a)

The Fourier components Ug governing the cg"' constituteSj Sy

the projected potential. '2 The ck"' are computed in the
fimt iteration upon use of the c(gk) given by Eq. (8a) in Eq.
(41) and ignoring the ck"' therein, since their contributions
are O(Xk).

In the second iteration we use the first-iteration results
for the ck"', in order to include the LVP corrections (to
order Xk) in Eq. (4a), as follows:

A similar expression, with (()) k replacing ((}k g, is ob-
tained for the coefficients of ck"'. Here,

(tlg=—
I vg/I I'g.

I

yVg
Xh=

(y —I)' 'i)ic(kp h)

)rk""—[e~"'—(ki+ h) 1/2kpii h,

g being the shortest RLV corresponding to a nonzero
structure factor and kp)~ the longitudinal part of the unit
vector in the direction of incidence.

For electrons and positrons (P particles) with Ex) 10
keV and protons with Ez ) 10 MeV, we find that, both in
the CGG and the SRG,

I

[e'i"'—(k) +Dg,
' )]cg"'—— g U, —g Xkgp, „kUk „c'"',+O(Xk, Xk)(k) .

Sj. h( 0) j. +SI. —h h —j.
(81)

Thus the LVP-corrected transverse energies and BC*s e&"',c "' are obtainable from the same set of equations as the
projection-approximation Eq. (Sa), upon replacement of the projected-potential components in the latter equation by
corrected components, (Iiven by the expressions in large parentheses on the right-hand side of Eq. (81). The second-
iteration form of the ck" is, as inferred from Eqs. (41) and (Sb),

h = —Xh +4k, C, +Kh g((k g, cg, — Q Xh((h k g(i"k g, cg, +O(XhKh~rXh~XhKh) . (8c)
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The above scheme for the evaluation of ch"' has been

used before by Kurizki and McIver ' in LM-emission
calculations to first-iteration accuracy only. Vedrinskii

and Malyshevskii have derived, for the special case of
LM emission from axially channeled particles, a formula
of the same accuracy. However, as has been recently
shown, such accuracy is inadequate for LM-emission
calculations. This can be understood upon inspection of
the general form of a radiative-transition matrix ele-

ment,

M',f '= g csc s+ K(k; +g)5( k; —kf —K—q),
l I

where i,f label the eigenstates before and after the emis-
sion, respectively, K is a RLV determining the momen-
tum transfer to the crystal in the emission act, and q is
the photon wave vector. LM emission is obtained if
K~~+0. The component proportional to k; in the LM
matrix element can be shown to Uanish if the first-
iteration form of ch"' is used. However, upon taking into
account the second-iteration corrections to the ch"' given

by Eq. (Sc},this component is found to produce, in certain
cases, the leading contribution to LM-emission intensity. "

Buxton' has treated LVP effects using a basis of
projected-potential eigenfunctions pertaining to all non-
equivalent reciprocal-lattice layers within a unit cell in the
z direction, and then considering the longitudinally vary-
ing part of the potential as a perturbation in this basis. In
order to obtain a longitudinal BC using Buxton's ap-
proach, one must perform (even to first-iteration accura-
cy) toilsome summations over all transverse energy bands
of all the different layers and all longitudinal RLV's. The
present treatment is much less time-consuming and
simpler, since it does not involve summations over dif-
ferent layers or transverse energy bands, and yields direct-
ly the longitudinal BC's for each specific value of the
transverse energy. This association of the longitudinal
BC's with a specific transverse energy is required for the

(K)(~)
evaluation of Mf (see above), since i,f are associated
with specific transverse energies.

It can be shown that the LVP corrections contained in
the c z",

' [cf. Eq. (8b)] do not contribute to LM emission to

second-iteration accuracy. Therefore, the cs"' and ez"' ob-

tainable from Eq. (8a), which suffice to calculate [from
Eq. (8c)] the parts of ch"' relevant to LM emission, consti-
tute the required input for the evaluation of all types of

lf e

In what follows the analysis of Eq. (Sa) will be restrict-
ed to the SRG, which allows the application of the power-
ful Hill's-equation method. The purpose will be to inves-
tigate those effects of the projected-potential periodicity
that are presently obtainable only numerically [i.e., by
solving Eq. (8a) using "many-beam" methods ' ' ].

III. HILL'S-EQUATION ANALYSIS: PRELIMINARIES

We transform Eq. (Sa) in the SRG to the coordinate
representation and thus obtain the one-dimensional
Schrodinger-type equation:

2 +e, —U(x) io(x) =0,
dx

(9a)

where

&x=—&Z ~

U(x}—:g Us e ' (9b)

io"+ A, +2+ 81 cos(2jg) io =0, (10a)

where

( )'= ( ), g=(g, );~/2,
dg

(lob)

8J ———UJ /(g /2);„= yVJ /Eg—, Ea ——fP(g~ )mm/Sin .

Here, (g, );„ is the shortest RLV of the systematic-
reflection set g, . The origin of g is at the center of sym-
metry.

The following abbreviations will be used henceforth:

q(() = —2 + 8~ cos(2jg), f(g) =A, q(g) . —

The potential function q(g) has a period n in terms of
g [i.e., q (0)=q (m )]. In the range 0 (g & m, g,„and g;„
will denote the positions of the highest maximum and
lowest minimum of q (g), respectively.

The potential Fourier coefficients VJ, and thus also the
8J, are propo rtional to the c~stal stmcture factor:

81 ~ AJ ——g (FJ )z exp[i (g );pe ], (12)

where xz stands for the position of the pth atom in the
unit cell and (F/)~ is the atomic scattering factor (form
factor) associated with the pth atom and the RLV
(g, );g. It is easily shown that

81+ ——+
~ 8J ~

sgnW~ . (13}

Here and hereafter the +,—superscripts on potential
and eigenvalue parameters refer to positive and negative
particles, respectively.

In the ease of a single potential-minimum located at the
center of the unit cell, it is advantageous to choose

=0 for both positive and negative particles. This re-
quires the following coordinate shift of the potential curve

io (x ) = g cs e
x

Because the parameter U(x) is periodic in x, Eq. (9a) is of
the type known as Hill's equation.

In order to make the treatment both simpler and more
informative, we shall henceforth restrict ourselves to cen-
trosymmetric sets of systematic reflections, for which

U~ =U g, all Ue being real. This condition confines
x X X

us to all reflections in centrosymmetric crystals and to
certain reflections in other crystals. With this condition
in mind, Eq. (9a) can be transformed to the following di-
mensionless form:
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q'(o) —q'(~/2}=4+ 182k —i I sgn~zk i
k

(14b)

In fec and bcc lattices, by choosing (g, ),„such that
5 1+0 for all j (j =1,2, . . . ), Eqs. (14) are reduced to a
simple form with sgn&; = 1 identically.

Using the relativistic Hartree-Fock model of Doyle and
Turner, we find that the Fj in Eq. (12) satisfy

—[bg(g )2 2+g 2 /2 j
FJ ~(my/m, ) g a;e (15)

Here, a; and b; are constants that characterize the atomic
scattering factor for electrons, my/m, is the ratio of the
relativistic mass of the particle to the electron rest mass,
and a 7 is the temperature-dependent amplitude of
thermal vibrations which enters into the exponent of the
Debye-Wailer factor. It is clear that for sufficiently large

j, such that the expression in square brackets is much
greater than unity for all four values of b;, the

~ 8J ~

tend
to zero very rapidly. Hence, the important convergence
condition

[Eq. (11)] for negative particles with respect to that for
positive particles: g~g+n/2. We then have, in the
single-minimum case,

HJ+= —
~ HJ ~

sgnP'J, HJ
——( —1)

~ HJ ~

sgnP'q . (14a)

The "depth" of the potential function (the difference be-

tween its maximum and minimum) in this case is given by

(1) The "shallow-potential" situation
~
8i

~
&1, which

may occur only for P particles with energies less than 5
MeV.

(2) The "deep-potential" situation
~
8,

~
&&1, which is

almost always the case for P particles with energies above
50 MeV (except for incidence along planes with rather
high indices} and for all heavier fast particles.

In order to deal with the boundary conditions imposed
by the incident plane wave exp(iko~x), we introduce the
following definition:

ko, /(g /2);„=—1=—[1]+p, (18)

(19)

where [1] is the largest integer not exceeding 1, and p
(0&}u(1) measures the deviation of the incident wave

exp(ilg) from the 1th Bragg angle. The general properties
of the solutions of Hill's equation imply that (1) the
fractional part of the characteristic exponent of the eigen-
functions must be equal to p, and (2) incidence at a Bragg
angle (i.e., 1 = [1]) induces either n-periodic or 2m-periodic
eigenfunctions (associated with eigenvalue band edges),
according to whether 1 is even or odd, respectively.

For any form of the solutions, 1 determines the proba-
bility of exciting (populating) the nth eigenstate w„(p, g}.
Neglecting the elastically backscattered waves (which are
very weak for incidence angles less than -80' with
respect to the z axis ), as well as the contributions of lon-
gitudinal BC s given by Eq. (8c), this probability P(n, p}
is found from

where n is any integer, is satisfied. It allows truncation of
all the j summations in all the formulas in this text above

j=j . Here, j,„,corresponding to the desired accura-

cy, is chosen as follows:

(17)

According to Eq. (15},
~

HJ ~

and j,„depend very strong-
ly upon (g„);„for a given set of atomic and thermal pa-
rameters. Thus, we find that, for many fcc crystals with
aT-O. I A, incidence nearly along a (101) plane implies

j =4, as compared to j,„=7 for incidence along a
(111)plane.

It follows from the above discussion that the ratios
pj~ =HJ /

~
Hi

~
[cf. Eq. (7)] are fixed once the crystal, tem-

perature, and direction of incidence [i.e., (g, );„]have
been specified. The information on the strength of q (g) is
in

~
Hi ~, whose magnitude plays a crucial role in deter-

mining the nature of Hill s-equation solutions. The pro-
portionality of

~
Hi

~

to y [Eq. (2b)] is determined from
Eqs. (10b), (12), and (15). For electrons or positrons (p
particles}

~
Hi

~
ean range from values smaller than 0.1y

[e.g., for fcc crystals with atomic numbers less than 30
and incidence along (101) planes] and up to y [e.g., for fcc
crystals with high atomic numbers and incidence nearly
along (111) planes]. For both n mesons and protons,

In what follows we shall analyze Hill's equation for two
ranges of

~
8,

~
values, which, in view of the above discus-

sion, can be characterized as follows:

IV. THE "SHALLOW-POTENTIAL" SITUATION

A. Large angles of incidence: The kinematic regime

In the limit of large-index eigenvalues (corresponding to
high levels of transverse energy) of the

~
8i

~
& 1 situation,

the asymptotic expressions for the eigenvalues are [cf.
Eqs. (10) and (11)]:"

A,z, '-A,z,
'

i 4r + —— f q (g)dg+0(1/A, ),
32mr

(20)

i-A g =(2r —1)'+ ' f q'(g )dg+ 0 ( I /X'),
327Tr 0

where A,
' ', A,

' ' denote the eigenvalues of m.-periodic and
2m-periodic solutions, respectively. The approximate
equality signs suggest that the forbidden energy gaps are
extremely narrow in this limit.

The "normalized" even and odd solutions y, and yo,
from which the eigenfunctions are to be constructed in
this limit, are given by Eqs. (Al) and (A2). The applica-
tion of the boundary conditions [Eqs. (18) and (19)] for an
incident exp(ii)) wave (

~

1
~

&&1) to these solutions shows
that the eigenfunction associated with

1,=12+ f q (g)dg/8m[i].



GERSHON KURIZKI 33

wi. (g) =y, (&,g)+ily, (&,g)

=exp(ii))+0(
~
8i

~
/1), (21)

is the only one that is strongly excited, i.e., populated psmith

probability 1 —O(8i/1 }. When 1=2r, only y„(Az, ', g)
are excited, whereas y„(k,z, ', ,g) only are excited for
1=2r —1. No Bragg reflections occur in this limit, the
only "strong-beam" coefficient being that of exp(ilg}

The potential effects amount here to a weak perturba-
tion of the incident plane wave, which is described by
Eqs. (20), (Al), and (A2) to the same degree of accuracy
as the second Born approximation. The advantage of the
present formalism is that both the potential effects and
the boundary conditions are contained in the solutions,
thus making the formulas more concise. It also allows
unification of the treatment of this regime with that of
other regimes.

$. Smaller angles of incidence: Dynamical diffraction

One of the features of dynamical diffraction is the em-
ergence of a distinct energy-band structure, or, equivalent-

ly, the appearance of appreciable gaps in the energy spec-
trum. ' s' In the "shallow-potential" situation, the width
of the nth band gap in the transverse energy spectrums is
of the order of

~
8,

~
for n &j,„[Eq. (17)], then drops

down to —
~ 8, ~

—10
~
8i [ for n =jm», and becomes

negligible for n &2j,„. We may therefore conclude that
the kinematic treatment is certainly appropriate for
n & 2j and, to a good approximation, even for n &jm»,
whereas for the first several bands dynamical diffraction
of the incident wave may take place.

Solutions appropriate for low band-indices have been
given in a detailed form by Ince. s' Ince's approxima-
tions for the eigenvalues can be written to first order in 8J
as follows:

(22a)

where the parameter o is a complex quantity which may
be defined for stable (allowed) solutions 2 to the same ac-
curacy, as

sin(2o „"+0)=2ni p, /8„ (22b)

A stable Ince's solution y„(p,g) can be written to first or-
der in

~ 8J ~

as [cf. Eqs. (A3) and (A4) for details]

y„"' (l,g)=e'"& 1+ g O(8 )e+-'2J&

1=1
(23)

&m~

y„'+0(p, g')=e'"~ sin(ng o„)+g O—(8~)e+-' J+—"'~
j=l

Although the eigenfunction w„(p,g) should, in princi-
ple, contain a term that is proportional to
y„(—p, —o'„,g), we can show that the boundary condi-
tion [Eq. (18)] implies in this case

—1/2
w. (V k)= ~ ' I, ly. (V Pl'~k (24)

For @=0 the eigenfunction becomes periodic (m periodic

for n even, 2n periodic for n odd). Then w„(0,$} is even
for o„=n/2 and odd for o„=O.

It is readily seen from Eq. (23) that when p=O the
coefficients of the leading harmonic exp(+in/) acquire
the same magnitude. This marks the occurrence of the
nth Bragg reflection, which is caused by the incidence of
a exp( in/) wave. Only two "strong beams" may be simul-
taneously excited in w„(g) in this regime. The coeffi-
cients of the "weak beams, "

expIi [p, +(2j+n}g'I,

represent the total projected-potential perturbative effect
on the incident and reflected waves.

The basis difference between Ince's eigenfunctions and
those given by Eq. (21) lies in the form of the leading har-
monics. In the latter case, these are of the form
exp[i(p+n}g], which produce only running waves that
are uniformly spread transversely to the crystalline planes.
In the former case, exp[i (@+n)g] and exp[i (p n) g—] can
combine to yield a standing wave at a Bragg angle. Such
a wave is spatially localized either at the atomic planes
bordering the unit cell or halfway between them [depend-
ing on the parity of w„(g) and the charge sign]. This
difference between the solutions in the two regimes is re-
lated to the fact that in the limit of high transverse ener-
gies p is part of the eigenvalue 12, which varies continu
ously with 1 =n +p, , whereas for low-index bands p, is re-
lated to A, indirectly through o, thus leading to discon
tinuiries in the transverse energy. An analogous state of
affairs will recur in the "deep-potential" situation.

The width of the gaps separating the bands described
by Eqs. (22) is equal, to lowest order, to 2~ 8„~. The
lower edge (p, =O) of the lowest (n=O) band can be shown
from Eq. (22a} to be situated below the barrier (Fig. 2) ir-
respective of the magnitude of

~ 81 ~

. The condition for
the lower edge of the nth band to be located below the
barrier is [cf. Eqs. (22) and (11)]:

ni+
~
8„~ & —2+8J-cos(2jgm») . (25)

The right-hand side of Eq. (25) is always positive for fcc
and bcc lattices. However, even in that case it can be just

n=4

/'0=3

FIG. 2. Band structure for positrons in a shallow potential.
Allowed (stable) transverse energy bands are shaded. The top of
the n = l band is shown to lie below the potential barrier.
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barely satisfied for n =2 (and not at all for n & 2) without
violating the condition

~
8i

~
&1, which is necessary for

the validity of Ince's approximation. For fcc and bcc lat-
tices,

f(g) & 0 for all g [cf. Eq. (11)], are the travelling
waves:

y+(g) =A exp +i f f ' (g)dg
L

(26)

hence, positive particles are more likely to be trapped by
the "shallow potential. " The explanation for this
phenomenon can be found in Fig. 2. Because the poten-
tial for positive particles is more strongly cusped near the
maxima, as compared to that for negative particles, it is
more likely to confine the motion of a particle with ener-

gy in the vicinity of the barrier energy.
The approximations discussed above can be used, in-

stead of numerical "many-brim" calculations, for a
reasonably accurate analytical evaluation of matrix ele-
ments for all types of radiative transitions in the shallow
potential: (a) interband transitions, in which n; nf co—r-
responds to E„mome ntumtransfer (cf. Sec. IIB); (b) in-
traband transitions (n; =nf) across the band gap 2

~
8„.~;

(c) LM transitions, involving either n; =nf or ni&nf.

V. THE "DEEP-POTENTIAL" SITUATION

A. Unbound (above-the-barrier) states

We shall seek to obtain a more accurate description of
unbound states than what is presently used in this field.
The commonly used' lowest-order Wentzel-Kramers-
Brillouin (WKB) solutions in this case, which implies

If an accuracy of 1% is sought, it then follows that we
need r & 2/logio

~
8i

~

——,
' . We shall be content with using

[f'"(f)]'/ in subsequent calculations, thereby making the
treatment accurate within 1% for ~8, ~

&30 (which is
typically the case with P-particle energies above 100 MeV
or at most 300 MeV). This changes the integrand in the
exponent of Eq. (26) to

f '"(k)—=[f'"(k)]'"=f'"(4)+ f(4)

where

(27a)

In the exponent of y+(g) in Eq. (26), terms smaller than

~
8i

~

' are neglected. Such terms, however, become iin-
portant for

~
8i

~

& 10 (which is typically the case with p
particles below 1 GeV, nonrelativistic protons, and pions)
Therefore, for moderately large values of

~
8i

~

we adopt
an ameliorated solution using an iteration procedure
which allows the calculation of the (r+ 1)th-order ex-

ponent for y+(g) from the exponent obtained after the rth
iteration [f'07(g) =f(g)].

It can be shown by induction that [f'"'(g)']'~ contains
terms as small as

( (
8 [

/g)z~g —~+i~2
~

8
~

—~+i~2

f"
gf 3/2

Jnax

g (()&-j2cos(2jg)
5(f')' 58i Jmax Jmax

92f' A,
' [1—q(g)/A, ] 2A,

5 [1—q(g) A, ]'8) jj' — —sin 2j sin(2j'g (27b)

The corresponding approximate form for above-the-barrier eigenfunctions, anticipating the result expressed in Eq.
(31a), is

I'

w„(g)=A'"'f '~ (g)exp +i(p+n) f f „' (g)dg/P„ (28a)

Here, P„ is the closed-orbit action integral (tI p dx, given in our notation by

P„=n-' f f„'"(g)dg . (28b)

The above-the-barrier eigenfunctions resemble the "large-angle" (kinematic limit) eigenfunctions in that both represent
running waves as opposed to Ince's solutions: the latter form standing waves at the Bragg incidence angles. A compar-
ison between Eqs. (28) and Eqs. (21) and (23) shows that the role of the phase (p, +n)g in the shallow-potential situation
has hen assumed by the phase integral [(p+n)/P„] I f „' (g)dg in the deep-potential situation. This suggests that the
many harmonics p(e+xi 2jg) contained in f„(g) can significantly affect the behavior of the eigenfunction in the deep-
potential situation, so that w„(g) associated with bands not too high above the barrier should consist of many beams of
comparable strength.

This expectation can be confirmed by an explicit analytic evaluation of the eigenfunctions. Since A, & q (/ma„) [Eq. (11)]
for above-the-barrier states, the square root [f"(g)]' can be expanded in powers of q(g)/A, ~ 2

~
8i

~

/A, . The terms of
the expansion are proportional to powers of QJ QJ cos(2j)) and derivatives thereof, and therefore the integration of the
expansion to obtain the exponent of the eigenfunction, i f [f'"'(g)]' dg, is straightforward:
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Jmax C]0

exp +((p+n) f deaf„' (i) /j) =e xp[+ (( )s+ n)i] ii je(zj"'" )+2 X jss(ZJ"'" )ees(4(ej[)
k =].

(.

2i g J2k+](Zj"'"')sin[(2k+1)2jg] exp[iO((
~
8[

~

/A, ) )],
k=1

(29a}

where the J*s denote Bessel functions, jm,„ is defined in Eq. (17) and ZJ'"'"' is defined as

ZJ"'"'—(@+n—}(1—I/P„A, „' )
~
8,

~

P-/2/(, „j . (29b)

Terms of each higher order in
~
8[

~
/A, can be expanded analogously in terms of Bessel functions, but the work involved

in their evaluation will increase with the order m, since they will contain m multiple product series in j,j, . . . in lieu of
the first-order single-product series. s

The character of the expression in Eq. (29a) is determined by the magnitude of ZI]'"'. Again using the result

A,„=m n to be discussed later, we may estimate Z] in terms of the ratio R =)[,„/~ 8] ~. Such an estimate yields

Z]-(
~
8] )

/R/2rr}'/ For R & 10, which allows us to approximate the exponential of i times higher orders in
~
8]

~

/A,

by 1, we may have either Z»&1 (this will commonly occur for
~
8]

~
&&10, i.e., for ]8 particles with energies well above

a GeV or relativistic protons), or Z] & 1 (this is likely to occur for
~
8,

~

& 10, i.e., for P particles with energies up to a

few hundred MeV). Still, even for very large
~
8, ~, the limit Z] && 1 will be attained for 2/n &&

~
8]

~

(see below).

For Z»&1 we haves7

Jp(ZJ)=(2/mZj}'~ cos(Zj —pir/2 —n/4), p =0, 1,2, . . . .

Hence, the coefficients of many of the various harmonics cos(4kjg), sin[(2k +1)2jg] in Eq. (29a) are roughly of the

s]ime magnitude, and w„(g) is expected to exhibit a strong many-beam character in this case. No drastic enhancement of
particular beams occurs, as Bragg reflections are absent. '

For Z] & 1 and R &10, we finds7

+
Jmax

exp +((p+n) f f „' (i)di j/)e [+xp( +()s)i]nX i+((p+nl(i —(/j)„A,„' )
' s sin(2')

j=l 2A)( J
(30)

Thus, sufficiently high above the barrier, where
2ir n »

~
8[ ~, the eigenfunctions reduce to the form of

weakly perturbed plane waves, similar to the kinematic-
limit states in the shallow-potential situation.

While the corrections 5f(g) [Eq. (27b)] to the eigen-
functions in this regime have no qualitative significance,
their effect on the eigenvalue spectrum is much more
marked. The allowed unbound eigenvalues A,„can be con-
veniently expressed as follows:

1

d g +L„cos(2cr„),

transitions. It is then found that these frequencies devi-
ate from the pure coherent bremsstrahlung frequency '

[which is obtained in the kinematic regime, i.e., upon ig-
noring the L„ term in Eq. (3 la)] by the factors
+(

( L„, ~

+
( L„~ )/(n; nf ), w—here, as in Sec. II B, i and

f label the initial and final eigenstates. These deviations,
which are not accounted for by the prevailing
models, ' introduce a rich structure into the spectrum
of unbound transitions.

(31a)

where n =2r+p, , and

Lsi (2no„) =2ni][i,
~ L„~= I 5f„(f)dg . (31b)

We see from Eq. (31a) that in the unbound regime, n is
even for n-periodic states (@=0) and odd for 2m-periodic
states (p, = 1). Equation (31b) shows that, in analogy to
Ince's solutions [cf. Eqs. (22)], energy gaps of width 2L„
emerge, due to the correction 5f(g) (Fig. 3). It is easy to
show that L„~(8,IA,„) ~ 8]In The kinema. tic regime
of Sec. IVA is retrieved when

~
8]

~
/2n n &&1 [cf. Eq.

(30)]. '

The significance of the above gaps is revealed when
computing the emission frequencies for unbound-unbound

/ //

i
V/// .- .' &/l VZZ: / IXI t 8;~lZr'Zl

It II ilI l(
/k /4 /

/ X/ K/
-7r 0 7T PUT

FIG. 3. Single-minimum deep potential for positive particles.
Allowed transverse energy bands are shaded near the potential
barrier and above it, marked by bold lines well below the barrier,
and by thin lines (negligible bandwidth) near the bottom of the
potential.
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a(n)

exp P~"'+ —
f& If.(k) I

'"dC

where

~
f„(g) ~

'/', (32a)

B The channeling regime in a single-minimum potential

We turn now to the case in which the potential has a
single minimum and f(g) [Eq. (11}]has two simple zeros
in a m period, corresponding to bound states, i.e., to trans-

verse energies below the potential maxima. The bound re-

gime in a single-minimum potential has been extensively
investigated by Berry' with an emphasis on the transition
to the classical picture of channeling trajectories. Our
goals in considering this regime are to elucidate the points
which have not hen analyzed hitherto in detail, namely

(a) the eigenvalue band structure and (b) tunneling into
classically forbidden regions.

Instead of Berry's solutions, in which the penetration
into classically forbidden regions is ignored, here we shall

employ improved WKB eigenfunctions in which there is
a nonvanishing (albeit small) component that persists
throughout the entire g space. These eigenfunctions [Eqs.
(Bl) and (B6)] allow the determination of the bandwidth
imposed by the periodicity of the potential on the trans-
verse energy levels.

The penetration of the nth-band eigenfunction into a
classically forbidden region, e.g. , the region 0&(&a&, is

governed by the factor

f„(~/2+5$) =b A,„
Jmm 8-+

+4 b 'g'-+ g ( —1)I ' j'@4+
j ] 3

&max

b =g (+1}I+'j
~ 8i ~

sgnP', .
j=1

(37a)

(37b)

Upon substitution of this expansion inta Eqs. (32} and
(33), we can obtain the anharmonic transverse energy
spectrum (including bandwidth corrections} for low-lying
bands of both negative and positive particles.

For positive particles the 5$~ contribution in Eq. (37a)
predominates. Hence, upon neglect of the higher-power
contributions, we obtain, from Eqs. (33a) and (35),

4b+K„=4(b+)'/i(n + —,
'

) . (38)

The parameter 4(b+)'/ corresponds to the frequency of
oscillation in this harmonic-oscillator approximation.
The requirement K„«1 [Eq. (35}],on which this approxi-
mation is contingent, is seen fram Eq. (38) to be
equivalent to

where q'-(ir/2) [«. Eqs. (11) and (14)] is the minimum of
the potential function, we obtain for f„(g) the following
expansion:

(32b)
(b+)i/2

~

8
~

i/2 yl/2 (39)

is the action associated with the patential crest, and

~
f„(g)

~

' is given by Eqs. (27). For the WKB approxi-
mation to hold, we need Pz"' to be considerably larger
than 1. However, we shall see that even with this condi-
tion appreciable tunneling and bandwidth effects emerge
in the bound regime.

The allowed transverse energies A,„are obtained from
the quantization condition on the action associated with
the potential traugh:

a2(n)
P',"'= f, , f '(i)di (m+ —,„' )w —3„=, (33a)

where the parameter

The harmonic-oscillator appraximation for the eigen-
values can be obtained by a more formal method, consist-
ing of an extension to Hills equation (with

~
8i

~
~&1,

A, & 2
~
8i

~
}of a proof given in the literature for Mathieu's

equation. This method, which is free of the inherent
limitation of the WKB method on the minimum spacing
of the turning points

2K, =2(b-) ' (n+ —')'

ensures the validity of Eq. (38) for all low-lying n, n=O
included. It also confirms the intuitively expected result
that for low-lying bands of positive particles the w„(g)
reduce approximately to the following superposition of
parabolic-cylinder (harmonic-oscillator) functions D„:

5„=( —1)"cos(pn )e

causes the nth band to be of the width

(33b) w„,«(g)=w„,«(g)h,

D„((4b+)' [g (m + —,
'

}n-]) . (—40)

~
5„(p,=O)—5„(@=1) [

=2e (34)

=&/2 —K„, ct2 =7T/2+ K„, K„«1
(n) (n) (35)

This requirement [which will be shown to hold as long as
Eq. (39} is satisfied] allows expansion of the integrand in
Eq. (33a) in powers of 5g=g —m/2. Defining

b A,„-=A.„—q+-(3r/2), (36)

In order to obtain explicit expressions for the low iying-
bands, we require their turning points to be situated close
to the potential minimum:

The p dependence of these Bloch waves causes them to
lack definite parity unless the particle is incident at a
Bragg angle (p, =0,1). Hence (for @&0,1) they allow dipo-
lar radiative transitions

e/2f dg w(3 «(dw(3. «/dg),

with n; —nf ——2, whereas the single-well harmonic-
osciHator eigenfunctions used by Kumakhov and Wedell
forbid such transitions. The cross section for the 2—+0
transition can be shown, using Eq. (40), to be smaller by

16ir(b+)i/ [2+~(b+) / /2] exp[ —/(b+) /2/2]
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than that of the fundamental 1~0 transition {anharmon-
ic corrections [cf. Eq. (41b)] do not change this ratio con-
siderably). For b+ ( 10, this ratio is approximately
greater than 10, and hence the projected-potential
periodicity has then a non-negligible effect even on the
low-lying channeling states.

The above form of the eigenfunctions may be used to
calculate the effects of anharmonicity for positive parti-
cles. Treating the 5( term in Eq. (37a} as a small pertur-
bation, we take its expectation value with respect to the
D„and thus find the quartic anharinonic correction to the

I

eigenvalues to be

&max
I
e.

I
( 1)Jj4

(hA, „)+~—(EA,„)h, —g (2n +2n+1) .n rm
4b +

(41a)

The quartic correction to b,A,„ is thus of zeroth order in

I ei I
(i.e., independent of it) and roughly proportional to

n2 Th.e corresponding first-order perturbative correction
to the w„&(g}can be easily shown to be

jm~
HlX

w„q(k)=w„„(k}h~m+ g g [8J(—1 "j /3(b+)' (n' —n)] f d(54)w„„(54}harm5 w„q(N)im~'.
n'j 1 IIlSX

(41b)

Here the elementary integrals can be evaluated for each n, upon use of ~„[cf.Eq. (38)], which corresponds to the max-

imum n value satisfying Eq. (39). Corrections due to 5g, 5g', g', etc. (which are proportional to
I
8,

I

'/,
I
8,

I

I
ei

I
/, etc., respectively) can be obtained similarly.

The preceding results can be used to study the growth of bandwidth and tunneling depth with n for positive particles.
The phase integral over the classically forbidden region p2" [Eq. (32b)] can be shown to depend on n [satisfying Eq. (39)]
as follows:

p',"'= J dg( q+(n/—2)+q+(g)}'/ 1 —(2n+1)
J

7T 2 +g

+(b +)'/ /q+(n-/2) +0(
I ei

I

') (42)

Since q+(n/2) &0, the n-dependent term in Eq. (42) de-
creases p2"' as n grows, thereby increasing the bandwidth
according to Eq. (34) and the tunneling depth according
to Eq. (32a). The rate of this increase is seen from Eq.
(42) to be proportional to n/

I ei
I

'/2 —a physically plausi-
ble result.

For high-lying bands, a detailed calculation of the al-
lowed A,„can be carried out, in principle, by the following
method: Expand b,A, as a power series in

I
ei I

with un-
specified coefficients and terms of the order of

I
ei

I

'~,
Ie I' Ie I-'", Ie, I-', . . . , Ie I-'+'" intron~

the corrected form I'f"(g')]'/2 (cf. Sec. V A), which is ac-
curate to

I
ei I

'+I~/z, into w„(f) [Eqs. (81)—(86)]; sub-
stitute the resulting expressions into Hill's equation and
compute the coefficients of the expansion of b,A, by equat-
ing all terms of the same power in

I 8i I
to zero. This

method is manageable only numerically, yet it can provide
much more insight regarding the y dependence of the
transverse energies than the "many-beam" calculations
now in use.

As the eigenvalue spectruin is inaccessible analytically

~max

u i =——4 g j 81+ cos(2ja2 '),
j=1

Jma

u2—:—4 g jeJ' sin(2ja2 } .
j=1

(43)

Using these expressions, we find, to second order in
'8 0 a2 (0+54 &

I
u2

I /»»

I

for high bound states, their transverse energy must be
specified in order to estimate the bandwidth and tunneling
depth from Eqs. (32) and (34). We shall obtain such esti-
mates for the case of positive articles. In this case, the
classically forbidden region ai +m —a2 ' is small enough,
so that it is well covered by a second-order expansion in

g—a'i"' (without violating the condition for the validity of
the WKB method, p2"'»1), since the potential crests are
high and narrow (Fig. 3). Then we determine, for a given
A, , the two turnin points a'i ', a2 ' (the two roots of
fi+. ——0) and use az (the larger of the two) to evaluate

f, Ifi.(k} I
'"d(N)=—

8(u ) IugI 2 Iu2I 2
sin '

1 — g' ——+ 1—
I

3/2
@3/2 I i I gl/2

4u1

(44)

To the same accuracy, the bandwidth exponent [Eq. (34)] is found to be

„) nuq m I8iI'Pz"'-
~/2

—— g P&+j sin(2jaz"') g j PJ+ cos(2jaz ')
8u1 j=l

3/2

(45)
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Equations (44) and {45}can be used in Eq. (83) or (32a) to obtain the amplitude of the eigenfunction in the classically

forbidden region. Estimates of Eq. (44) show that, for

g= I Q2 I
/4u, ={a'& '+m —a'i"')/4,

the tunneling is still strong, i.e.,
'P

1/2 A)

(47)

and used to approximate the eigenfunctions by

whereas for 5)=
~
uz

~
/2ai it becomes small. Thus, roughly half of the barrier width is strongly penetrated from both

sides when the crest is high and narrow. This penetration should enhance the Bloch-wave absorption constant (caused by
inelastic scattering) (Refs. 20 and 21) compared to that obtained using the single-well approximations (cf. Sec. VI).

For bound states (of both negative and positive particles) situated close to the barrier, where Pq" & 1, the conventional
WKB approximation fails, and we must resort to the use of the parabolic-cylinder equation as a "comparison equa-
tion. " 7 In this approximation we define p and S(g}as follows:

PIP) fI/2(f )(2p S2)I/2 (46)

The explicit dependence of Son f can be now obtained from

S(2p —S2)'/ /2+p sin '(S/v 2p )+n./2= f, ,fz (g)dg,a)(p)

w~(g)=[S'(g)] ' [/I' 'D~ i/2(v2S(g))+8' 'D~ i/, ( —v2S(g))], (48)

where Dz I 2 is a fractional-index parabolic-cylinder function. The explicit evaluation of Eq. (48) is possible for the edge
of a band of index p =n + —,. Since n && I for high-lying bands, we find, using the appropriate asymptotic form for
Hermite functions, '

( —1) (2k —1)!!cos[v'4k + 1S(g)], n =2k
( —1) (2k —1)!!sin[v'4k+3S(g)], n =2k+1 . (49)

The eigenfunctions described by Eq. (49} exhibit an os-
cillatory character in the classically allowed intervals,
where S(g) is real. They have the form of standing waves
and thus constitute a vestige of Bragg refiections, just like
w„(g) in Appendix B. Since the classically forbidden in-
tervals are small for levels close to the barrier, there will
be no a reciable decay of the amplitude for
ni" & g& ai", where the argument S(g} is complex. This
means that tunneling and bandwidth, which are measured
by

w„(/=a'I"'+n )/w„(g =ay"'),

will be strong.

transverse energies for which there is more than one pair
of turning points —m potential minima allow, at most,
2m turning points per m. period.

A generalization of the WKB formalism used in Sec.
VB to the case of 2m turning points a&, . . . , a2~
(ui~+, ——5I+m ) involves the replacement of the two nor-
malizing constants and the two phase angles characteriz-
ing the single-minimum potential eigenfunctions [ri&, riz in
Eqs. (81)—(85}]by 2m quantities of each kind. These are
determined by the matching conditions at the turning

C. Effects of multiple minima of the potential

A number of experiments have dealt with chaime1ing in
composite crystals [e.g., I.iF (Ref. 68)], in cases where

q(g) possesses several minima per unit cell (nperiod). .
Multiple minima arise because each unit cell contains
atomic planes of different potential strength and sign. In
what follows the principles of planar channeling analysis
for such cases are presented.

If the transverse energy is such that there are no turn-
ing points or two turning points only (Fig. 4), the regimes
discussed in Secs. VA—VB are retrieved [although cer-
tain formulas no longer apply, e.g., Eq. (36), and all esti-
mates have to be rederived using Eq. (13)]. The nontrivial
change from the single-minimuni case takes place for

{n+ I)
Qp

{n+ I

(n+ I) (n I I)
a, a&

r ——

gn) {ng J~~2.ah

FIG. 4. Potential for positive particles in LiF transverse to
(111) planes. The turning points are marked for the bands
n, n+ 1. Note that whereas the bands n, n+ 2 are virtually
discrete levels, there is a sizable splitting effect on the ( n + 1)th
level.
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points, by the periodicity, and by the normalization re-

quirements. This WKB approximation is valid when all
the phase integrals over the potential crests

a2, +z&g&a2, +3 (r =0,1,2, . . . , m —1),

~2r+3
&zr+2, z.+i= f If(k) I

'"dC
~2r+2

(50)

are considerably larger than 1.
The quantization condition of the single-minimum case

[Eq. (33)] is replaced here by m alternative conditions of
the form

P2r+1, 2r+2 4'f (k)=«&+i+ 2 )rr ~2r+1
1/2

»,+i-—exp( —P2.+2, 2.+i»

VI. CONCLUSIONS

In this paper an attempt has been made to improve the
analytical treatment of the eigenfunctions and band struc-
ture characterizing fast charged particles diffracted in
crystals. This attempt has been motivated by the require-
ments for the analytical study of radiation from the parti-
cles, their inelastic scattering, and their interactions with
external fields. To comply with these requirements, the
following endeavors have been made.

(A} An iterative procedure has been proposed (Sec. II)
allowing calculation, to a greater accuracy than in previ-
ous attempts, of the Fourier components (beam coef-
ficients) of the eigenfunctions that are generated by the
longitudinal variation of the potential (LVP) from those
BC's that arise due to diffraction in the projected poten-
tial. The improved accuracy of this procedure, leading to
Eq. (8c), is essential in many eases for a correct evaluation
of the intensity of the radiation induced by LVP effects.

(B) A single mathematical apparatus, that of Hill's-
equation theory, has been employed to analyze in a sys-
tematic, unified fashion the variety of diffraction regimes
determined by the relativistic mass of the particle and its
angle of incidence relative to a set of low-index crystal
planes [in the systematic-reficction geometry (SRG)].

where r is any one value among the r =0, 1, . . . , m —1

values labeling the troughs a2, +i &g&a2, +z. Hence,
each single-minimum level is split into m levels which are
determined by the different »„+i and, in general, the dif-
ferent shapes of q(g) in the integrand of each P2, +i 2„+i.
If all Pz ~2 2 +3 are small compared to Pi~ 2~+I, the
bandwidth of low-lying states due to the overall periodici-
ty, which is governed by exp( —P2~ i~+i) will be much
smaller than the level splitting governed by
exp( —P2„~z, z +3). This can be illustrated for the rela-
tively simple ease of two equal minima per m period (Fig.
4), e.g., the (111)-plane potential in LiF.6s Since
P4&

——P2 z +i is very large for y~&1, the effects of
overall periodicity for low-lying states become negligible
and the problem reduces to that of the ammonia mole-
cule. It is then found that the levels corresponding to
odd and even eigenfunctions, which are degenerate in the
single-minimum case, are separated by -2 exp( —Pi 3).

This unified treatment of the various regimes is a neces-

sary prerequisite for a unified analysis of radiation from
the particle or its inelastic scattering, since such process-
es can cause transitions between different regimes (by

changing both the band index n and the potential depth,
i.e., the relativistic mass). It also allows one to obtain
more analytical information and insight regarding the
band structure and the eigenfunctions in the various re-
gimes than the procedures presently in use, by employing
several useful calculational methods, among them: (1)
Ince's approximations, which can be used to describe the
dynamical diffraction of nonrelativistic electrons and pos-
itrons in the SRG (Sec. IV B); (2) improved WKB
methods which yield nonclassical features (band structure
for transversely unbound states f. Sec. VA, bandwidth
and tunneling for positron channeling states —cf. Sec.
V B} that cannot be obtained in the previously used stan-
dard WKB approximation'; (3) a prescription for the
analysis of barrier-region states (Sec. V B); (4) a procedure
for the study of channeling in a projected potential with
multiple minima per unit cell (Sec. V C).

These methods can be used to investigate radiative and
inelastic-scattering effects that have not been revealed by
the less refined previously used methods:

(a} The gaps between unbound bands of positrons and
electrons of energy below 1 GeV, predicted by Eqs. (31),
introduce a rich structure into the spectrum of radiative
transitions between unbound states, which is not account-
ed for by the prevailing models. '

(b) The penetration of Bloch waves of channeled posi-
trons halfway through the potential barriers about atomic
sites, revealed by Eqs. (44) and (45), should augment the
absorption (decay) constant of these waves, 2'22

k„=—I dg U (g) i w„(g) i /2ko, ,

because the imaginary reduced potential U (g) has a part
that is strongly localized in the vicinity of atomic sites. '

(c) The lack of definite parity by channeling Bloch
waves described by Eq. (40) (unless the particle is incident
at a Bragg angle), which manifests the periodicity of the
projected potential, implies that dipolar transitions with
n; —n~ ——2 are non-negligible in certain cases, whereas
single-channel eigenfunctions forbid such transitions.

(d) Equations (42) and (45) allow investigation of the
contribution of the bandwidth of positron channeling
states to the linewidth of the radiation they emit. This
contribution has been previously obtained only numerical-

37—39y.
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APPENDIX A: EIGENFUNCTIONS IN THE SHALLOW' POTENTIAL
All formulas will be given for centrosymmetric sets of reflections. First we present the "normalized" even and odd

solutions, respectively, in the kinematic limit:

y, (g)=cos(~Xg) — I8, I g '. sin(2jg)
sin(v A,g) NJ.

2 A, J ) J

jma gf j, +

+ 2
I 8) I g Pj~(1 —cos(2jg)) — g . sin(2jg) +0 (g—3/2)

+
sin(v A,g) cos(V +)

2A, ~ ) j
sin(v A,g')

2
I

8& I g pj-(1+cos(2jg))+
8f Jmsx

4A, j=1

Second, we write the Ince approximation solutions ' [cf. Eq.

~ ~

sin(2jg) +0(A, '~ ) .
J

(23)] to second order in
I 8, I:

(A2)

y„o(P,g)=e'+ 1+ g 8J-
z z cos(2jf) 2 sin(2jg)

2V —p ) 2j V' p')—

(2j +p, ) cos(4jg)
J 16J2(Jz p2)(4J z p2)

3ipsin(4, jg)
16j(j' p')(4J' —p')— (A3)

jmax

y ~p(p, f)=e'"& sin(ng —cr„)+ g 81- sin[(2j+n)g o„]-
j=1

r

jm~
1

»n[(2j+n)g —o„]— . . sin[(2j n))+o—„]
„+, ' 4j(j+n) 4j(j n)— (A4}

g (n) a(n) a(n)

to„(g)= sinai& exp f dg'
I
f„(g) I

'~ + —,
'

costi~ exp —f dg'
I
f„(g')

I

'~

I f (g)
I

1/4

for aI"'&g&a,'"', by
(n)

cos ' ' ' —m 4
[f.(4)]'"

te„(g)=
[fn(k)]'"

for a,'"'&g(aI"'+m, by

g{n)
tu„(g')= sinvy2exp f, ,

dg' If„(g')
I

' + —,
'

cosq2exp —f, ,
d4' If„(4')

I

'

If (4} I

'" a{n) a(n

cos d q + 1+'g2 —K 4

and, due to the periodicity,

APPENDIX 8: BOUND SINGLE-MINIMUM EIGENFUNCTIONS IN THE DEEP POTENTIAL

The bound single-minimum potential eigenfunctions are given in the WKB approximation, for 0(g & aI"', by

(81)

(82)

(83)

(84)

T

g(n) a(n) a{n)

»nn2exp 4—f d(if. (k)l'" +-,'c~n2exp P2+ f d(—lf.(f)I'"
If (k)I'"-

for 0(g (a'P'.
In the domain of validity of the WKB approximation, the constants A, 8, ri&, and g2 can be determined from [cf. Eqs.

(32) and (33)]

ri) n(m+e+, g2
——n2n+e, e~ ———,

' 5——„+—,
' [5„—exp( —2'"')]'~, (85)

where n1 and n2 are integers,

8'"'=( —1)"2e+A'"'exp(smp, +Pq" ),
and the normalization condition.

(86}
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