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We analyze the thermodynamic properties of the metal-insulator transitions at nonzero tempera-
ture in the paramagnetic phase, within a model proposed recently. The correlated motion of elec-

trons is expressed through a band narrowing 4 which reflects a restricted hopping of electrons due

to on-site Coulomb interaction U between them, The factor 4 describes the portion of the total
number of electrons which contribute to the band motion and is calculated self-consistently. We ob-

tain discontinuous transitions from the metallic to the insulating phase above a critical value of
U/8'=1. 646, where W is the bare bandwidth. For U/8'~ 1.765 this transition is followed by a
second discontinuous transition back to the metallic phase at higher temperature. The entropy at
both of these transitions is calculated. These features provide a semiquantitative theory of the ex-

perimentally observed behavior in pure and Cr-doped VqOi in the paramagnetic phase.

I. INTRODUCTION

The purpose of the present paper is to treat electron
correlation effects in a narrow band at nonzero tempera-
ture ( r+0). The treatment given predicts the occurrence,
under appropriate conditions, of one or more discontinu-
ous metal-insulator transitions with rising temperature,
which reproduce the principal qualitative features of ex-
perimental observations encountered in compounds such
as (Vi,Cr„)zO&. Additionally, we show that for suffi-
ciently strong correlations the system remains in the insu-

lating state over the whole range of accessible tempera-
tures; NiO may represent one example of such a system.

Considerable prior effort has been devoted to the elec-
tron correlation problem, but most of these studies have
been restricted to the case of zero temperature where
thermal entropy effects play no role. Intuitively, one then
expects a changeover from metallic to insulating behavior
when correlation effects due to Coulombic repulsion be-
tween electrons become comparable to the energies of
electrons in band states. This point was first made by
Mott' and was further developed and placed on a more
formal footing by Hubbard, i Gutzwiller, ' Kanamori, ~ and
by Brinkman and Rice. There also exist treatments of
the correlation effect at nonzero temperatures by Cyrot
as well as by Moriya and Hasegawa and by Chao and
Berggren, but most of the features described in the
present article are missing in the studies by these authors.

In this paper we adopt a two-phase model composed of
itinerant and localized particles, each with an appropriate
weight calculated self-consistently. We then show that
the main features of the phase diagram (indicating stabili-
ty ranges of various metallic and insulating phases) under
appropriate conditions lead to reentrant metallic proper-
ties. This requires the self-consistent calculation of a
band-narrowing factor characteristic of correlated elec-
tron motion, which is the main conceptual principle em-
ployed in our analysis.

II. FREE ENERGY FUNCTIONAL FOR
THE TV'-PHASE MODEL:

GENERAL FEATURES

The point of departure for the two-phase inodel is our
earlier formulation of the correlation effect (hereafter
designated as I). The basic problem arises from the neces-

sity of combining two disparate starting points for an ade-

quate description of a state intermediate between the ex-
tended and localized electron configurations in a solid.
For the former the reference state is an electron gas whose
wave functions form modulated plane waves extending
throughout the crystal. In the latter the electrons tend to
be localized on atoms; for incompletely filled valence
shells, and with electrons subject to Hund's rule, one en-

counters localized magnetic moments which are one man-
ifestation of the so-called Mott-Hubbard insulating state.
The question then arises as to how to describe an inter-
mediate state in which the band and atomic portions of
the total energy are comparable in magnitude. The
method used in I was to subdivide the electron collection
into two subsystems: a category of 4N electrons in the
itinerant state and a collection of (1—4 )X electrons in the
localized configuration. This corresponds to the cir-
cumstance that both band and localized states should be
treated on an equal footing. Such a subdivision follows
froin the fact, elaborated in I, that 4 represents the proba-
bility of electron hopping between neighboring sites. The
factor 4 was then determined self-consistently by intro-
ducing a variational parameter ri=—(n;,n;, ) describing the
probabihty of encountering a doubly occupied atomic site.
This parameter, which represents a two-particle correla-
tion function for the ground state, was then used to mini-
mize the free energy functional that involves i) explicitly
as well as implicitly in 4(ri(T), T).

The fraction @ of itinerant electrons is involved in the
relation E~/X =4m, where Ez/N is the average band en-

ergy per site and c. is the corresponding quantity in the
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bare (uncorrelated) band. 4 also appears in the expression

Ez —@pz, where ei, is the bare-band energy of an electron
in state It, and Ei, is the corresponding quantity for the
correlated charge carriers (quasiparticles}. Thus, 4 may
also be considered as a band narrowing factor whereby the
electron motion is impeded by the relatively strong on-site
Coulomb repulsion U when the latter becomes compar-
able to the bandwidth 8'.

The entropy of the system is similarly decomposed into
a contribution arising from localized and from itinerant
carriers, each with an appropriate weight that is deter-
mined self-consistently.

We summarize here the main features of the model for-
mulated in I and correct several typographical errors in
the original presentation. In the model discussed earlier
the free energy functional is given by

F 1 kgT—=—g EiJ'(Ei, )+ Ui)+@ g jf(Eg)»f (Eg)+[I—f(Ei,)]»[i—f(Ei, )])N ~ N

+kqT(1 4)[r)—ing+v(lnv —ln2}+(1+i}—n)l n(1+g n)—], (2.1)

where f(Ez) is the Fermi-Dirac function for quasiparticles of energy Ez, n is the number of electrons per site (the de-
gree of band filling), T is the absolute temperature, kii is Boltzmann s constant, and v= n ——2' is the probability for
single-particle occupancy on a given site.

In this and the next sections we consider the special case of a half-filled band, n = 1, which permits us to set the chemi-
cal potential p, =0 at all temperatures, so long as the assumed density of states (DOS) for the bare band is symmetric
with respect to its midpoint.

On adopting a rectangular density-of-states function, Eq. (2.1) may be rewritten as

FiWN = —(2kii T/W)(1 —4)ln cosh( W4/4k' T) (2kii T/W)—4 ln2

—(2k~ T/W) [(24—1)J(4))+( U/W)r) k~ T(1—4—) ( (1—2g)in[2/(1 —2q)) —2i}lng j,
where

J(4)= J dx 1n cosh( W@x/4k' T),
and

(2.2)

(2.3)

4 (il )=8q(1 —2g) . (2.4)

The above expressions represent the free energy functional which must be minimized with respect to the variational pa-
rameter g.

From the requirement (BF/Bg)T ——0, Eq. (2.3), and Eq. (2.4) one obtains the following condition on i}:

(2k+ T/W)(4' 4/)(1 —4)ln cosh( W4/4kB T) —[(1—4)4'/2]tanh( W4/4k~ T) (2k& T4'/W)l—n2

(2k& T/W)(4'—/4) J(4)+ (kq T4'/W) ((1—2il )in[2/(1 —2il )]—2il luis )

+ [2kii T(1—4)/W]ln[2il/(1 —2i})]+U/W =0, (2.5)

wherein
4'—:d4/dil =8(l —4i)) . (2.6)

The above equation specifies the local extremum
=g(k~ T/W, U/W) of the free energy F=F{rl(T),T). In
general, for a given il, several solutions are found from
which one must select the one with the lowest E. The
crossing of two F(q) curves at a particular il signals the
occurrence of a first-order transition at that point, unless
the tangents coincide. It may be shown without difficulty
that in the limit T~O, the above analysis correctly
reduces to the results cited in I for iso and EG, respective-
ly.

In what follows we will numerically evaluate the fol-

I

lowing quantities:
(i) The fraction of doubly occupied sites when the sys-

tem is in equilibrium, q =g(k ji T/W, U/W). The calcula-
tions are based on Eq. (2.5}, using (2.3), (2.4), and (2.6).
Since on the average there is one electron per site (n =1),
g is a measure of the equilibrium density of charge car-
riers per site in the system. It is therefore a parameter of
fundamental importance in determining whether a given
system in the ground state is an insulator or a metal.

(ii) The reduced free energy per site, according to Eqs.
(2.2), (2.3), and (2.4).

(iii) The total reduced entropy per site S/kaN as ob-
tained from the relation S= BE{g(T), T)/BT. —
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FIG. 1. Temperature dependence of double occupancy q for
various values of U/O'. Note the logarithmic scale on y axis
and the change of abscissa scale for k& T/8'~ 0.1.

GI. METAL-INSULATOR TR.MVSITION
AND THE INSULATING PHASE AT T~

In what follows we shall briefly summarize the thermo-
dynamic properties of correlated electron systems for the
case n= 1 and for a rectangular DOS in the context of
three physically distinct regimes.

Regime I. U/W& 1.646; the system is a correlated met-
al.

Regime II. 1.646 & U/W& 2.0; with rising k&T/W the
system changes from a correlated metal to a paramagnetic
insulator and back to a correlated metal via two sharp
phase transitions, as long as 1.646& U/W&1. 765; only
one sharp correlated metal to paramagnetic insulator tran-
sition is found for 1.765 & U/W& 2.0.

Regime III. U/W&2. 0; the system remains in the
Mott-Hubbard insulating state.

Regime I. The changes of ri with temperature in re-
gime I are displayed as the upper curves of the logiori
versus kqT/W plot in Fig. 1 for U/W=O, 1.0, 1.5, and
1.64. No discontinuities are encountered in this range of
U/W. The band-narrowing factor 4 diminishes from
4=1 (for U/W=O) to 4=0.33 (for U/W=1. 64). Thus,
an appreciable fraction of charge carriers remains
itinerant, which is why this state has been identified as a
correlated metallic phase. The corresponding free energy
curve for U/W=1. 5 is shown in Fig. 3 as a plot of
F/WN versus k&T/W; it diminishes approximately as
T2 with increasing reduced temperature.
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FIG. 2. loglog as a function of inverse temperature 8'/k&T
for U/&=1. 64, 1.65, 1.66, and 1.68. Note the semiconducting
character of the PI phase. The inset shows the inverse tempera-
ture dependence of conductivity for (V& „Cr„)203with x=0.01
(lower curve) and x=0.006 (from Ref. 12).

Regime II. The variation of logiog with k&T/W for
regime II is shown in the lower set of curves in Fig. 1 for
U/W=1. 68, 1.7, and 2.0. In contrast to regime I, one
now encounters two first-order transitions whose locations
on the reduced-temperature scale vary with U/W. The
lower transition occurs in the range 0& k+T/W&0. 07,
wherein q changes by 4 to 22 orders of magnitude at the
transition. This is interpreted as reflecting a changeover
from a lower-temperature, quasimetallic state (PM;
ri-5X10, 4=0.32 for U/W=1. 66) to a paramagnetic
insulator configuration (PI; i)-10 ' to 10,4« 10 ).
The upper transition occurs in the range 0.07
& k&T/W&0. 11, depending on the value of U/W. This
represents a transformation from the PI configuration
back to a paramagnetic metallic state (PM', ri-9X10
4=0.3 for U/ W= 1.66), very similar to the low-
temperature metallic state. In this latter transition the
discontinuity in ri amounts to 1.5 to 2 orders of magni-
tude.

Another perspective on the succession of phase changes
is provided in Fig. 2, where log&og is plotted against the
reciprocal reduced temperature W/k+T for U/W=1. 64,
1.65, 1.66, and 1.68, close to the lower critical U/W
=1.646 ratio which separates regions I and II. The reen-
trant nature of the metallic phase is immediately ap-
parent; for the intervening insulator ri varies exponentially
with temperature. One should note the progressive reduc-
tion in the stability range of PM phase as one proceeds
from the upper initial value of U/W=2. 0 (the limiting
value which separates regime II and III) toward
U/W= 1.646 (the limiting value which separates regions I
and II and where the intervening PI phase is eliminated).
The sharpness of delineation of these regions is charac-
teristic of phase changes governed by electron correlation
effects.

That these transitions are of first order is documented
by free energy calculations. In regime II one obtains three
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sets of I'/WE curves of which the lower two, correspond-
ing to metallic and insulating states, are plotted in Fig. 3
as a function of k~ T/W for U/W= 1.68. Two intersec-
tions are clearly evident which occur at the two kaT/W
values where il suffers the discontinuities discussed ear-
lier.

The phase transitions are also mirrored by the variation
of entropy with temperature. Within any one of the
phases PM, PI, or PM' the entropy changes continuously
as shown by the slopes of the free energy curves (see Fig.
3), whereas a discontinuity occurs at the phase boundaries.
Plots of the entropy changes Mlk&E versus U/W at the
transitions PM~PI and PI~PM' are exhibited in Figs.
4(a) and 4(b). In the range where the PM phase is stable,
5/kaE rises nearly linearly with k&T/W until the PM-
PI phase boundary is reached. At that point there is a
sudden jump in reduced entropy to the value ln2 charac-
teristic of localized carriers with spin —,, which value is
closely maintained until the high-temperature PI~PM
transition is reached. At that point the reduced entropy
again increases discontinuously [cf. Fig. 4(b)]; in the
high-temperature region S/k~E ultimately reaches the
value of 21n2 characteristic of free fermions in the high-
temperature limit. It should be emphasized that all of the
above phase changes occur solely as a function of T, for
fixed U/W. Although the fraction of doubly occupied
sites is extremely small in the PI phase, it suffices to ac-

0.5

h, S: PM-PI
(a)

count for the observed conductivities of the (Vi,Cr„)zOi
system on the assumption that the excited carriers are
delocalized.

Regime III. In this regime all plots of intel versus 1/T
are found to be essentially linear, with an Arrhenius-type
activation energy e, =U/2. The reduced free energy in
the range U/W&2. 0 is given in first approximation by
F/WE= (ki—iT/W)ln2. It follows that the entropy in
this regime is approximately 5/kiiE=ln2. All of these
findings are consistent with the extremely low i) values
encountered in this regime (q & 10 for W/k+T& 10)
which also renders 4 extremely small (4&10 in the
same range). Thus, one deals with an exceedingly small
concentration of available carriers: the free energies and
entropies are governed by electrons of spin —,

'
located at

singly occupied sites. These results are in agreement with
an intuitive notion of the Mott insulator which is
represented by a Heisenberg magnet.
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tively. The curve for U/8'= l.5 was drawn for comparison.

FIG. 4. (a) Entropy change M =Sr —S~ of the PM~PI
transition as a function of U/8'. (b) The same for the
PI~PM' transition.
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IV. PHASE DIAGRAM

The phase diagram which may be constructed from the
above data is displayed in Fig. 5 in the ( k&T/W}-( U/W}
plane. One should note several items.

{i) There exist three distinct phases already described
earher, two quasimetallic regimes PM and PM', separated
from a paramagnetic insulating region by first-order tran-
sition curves, except at the critical point (0.07, 1.646).
The insulating state at T 0 and U & U, =2W may be
called the Mott-Hubbard insulator. The phase between
two metallic states, encountered for 1.646 & U/W& 1.765,
we propose to call the Mott-Hubbard semiconductor since
the temperature dependence of carrier concentration is an

exponential function, with a temperature-independent ac-
tivation energy.

(ii} A second critical point is encountered at
kg T/W=O, U/W=2. 0.

(iii) The point ks T/W=0. 1125, U/W= 1.765 ter-
minates the boundary hne PI-PM'. This means that for
increasing temperatures and with fixed U/Win the range
1.765& U/W&2. 0 one encounters only one first-order
PM~PI phase transformation at low ka T/W and super-
critical behavior for ka T/W& 0.1125. Unfortunately, the
numerical accuracy is not sufficient to establish whether
the point (0.1125, 1.765) is a critical point. One should
also note that we distinguish between PM and PM' phases
because they are separated by the critical point (0.07,
1.646).

The sequence of phases PM, PI, and PM' may be un-
derstood using the following argument that is supported
by detailed numerical analysis. For 1.645 & U/W&2. 0
the band energy E~ slightly outbalances the correlation
energy U. However, at nonzero but low temperature the
contribution to the entropy of itinerant electrons (-T) is
small compared to that associated with electrons in the in-
sulating phase (kaln2}. Therefore, the insulating state
may have a lower free energy than the metallic state above
a temperature T for which kii Tln2 &

~
Ea/E+ Uvl

~
. On

the other hand, at sufficiently high temperature, the en-

tropy of the itinerant state approaches the limit 2k' ln2
and hence, eventually overcomes the entropy of the insu-

lating phase. Thus, under appropriate conditions, the
»gh-temperature phase may again become metallic.

V. DISCUSSION AND OVERVIEW
OF THE PRESENT APPROACH

Historically, electron correlation effects were first con-
sidered by Mott' who essentially approached the problem
in the spirit of the Feririi-Thomas model. The electron in-
teractions in the metallic phase were handled in terms of
the mutual screening of charge carriers in the metallic
phase. The degree of screening diminishes with charge
carrier density. At a critical electron density, n '
=0.26/ao, where ao is the Bohr radius of the ls state in
the solid, the system changes discontinuously into an insu-
lating ground state in which every electron is localized on
an atom. In the Hubbard treatment of the problem the
ratio U/W was used as the relevant variable; the correla-
tion effects were studied for the case T=O via operator
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FIG. 5. Phase diagram on the plane kT/8' —U /$' with
border lines separating the paramagnetic metallic (PM,PM') and
insulating (PI) phases. Note the two critical points with coordi-
nates {0.07, 1.646) and (0, 2.0), respectively. The limiting point
(0.1125, 1.765) terminates the first-order transition boundary,
separating reentrant metallic behavior from a supercritical
behavior.

algebra involving the Green function technique. For a
semielliptic DOS the critical U/W ratio, close to 0.83,
was the end point for a continuous transition from metal-
lic to insulating behavior as U/W increases. Brinkman
and Rice found explicit solutions that characterized the
metal-insulator transition at T=O within the Gutzwiller
approach. Their results for T=O are equivalent to the
critical ratio (U/W)„=2 for a rectangular DOS. The
changeover from metallic to insulating state was found to
be mirrored in a continuous drop of rl to zero at the tran-
sition. These authors also obtained an enhancement in the
paramagnetic susceptibility in the above scheme. Chao
and Berggren generalized this approach to nonzero tem-
peratures and specifically introduced a band-narrowing
factor as a means of handling electron interactions at
T&0. Venule the authors considered the electron correla-
tion problem in terms of the two-phase model considered
in Secs. II and III, they did not explicitly adopt such a
scheme in their treatment. Cyrot, as well as Moriya and
Hasegawa examined the Hubbard model in the coherent
potential approximation at T&0 within the functional-
integral scheme. In their approximation the metal-
insulator transition is once again continuous both as a
function of U/W and as a function of T. No reentrant
metaBic behavior was reported for any of the above treat-
ments.

Within our approximation scheme we obtain the fol-
lowing new features which may be compared with experi-
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ment: a reentrant metallic phase, a phase diagram with
several critical points, entropies of transition in their
dependence on U/W, and discontinuous phase transitions
across phase boundaries.

VI. COMPARISON %ITH EXPERIMENT:
(VI „Cr„)203

So far the theoretical analysis has been based on the use
of U/W as the independent parameter. However, this
quantity is not directly accessible to experiment; instead,
it is the chromium mole fraction x (or, equivalently, ' the
effective pressure p) that is subject to direct experimental
control. Thus, it is necessary to establish a relation be-
tween U/W and x before a comparison between theory
and experiment can be undertaken.

There are two distinct mechanisms by which the Cr
substitution for V affects U/W. The first involves the
direct influence of Cr content on electron interactions. In
the virtual crystal approximation the Hubbard parameter
U is replaced by an effective parameter,

the second factor x, the probability of encountering a Cr
site. In other words, we explicitly take into account that
the inhomogeneity of the system enhances the localization
as expressed through the factor (1—4). This correction
must be added to —( W/4)N of Eq. (2.9) which specifies
the total band energy.

One then obtains the effective band energy,

(6.3)

Since b,a&0, the term [1—(4
~

be
~
/W)x] represents an

additional band-narrowing factor associated with lattice
disorder induced by the random distribution of Cr atoms.
In the limit of strong disordering one encounters Ander-
son localization which is not treated here, since we assume
that the principal source of localization are electron-
electron interactions.

The total variation of U/W with x is then given by

U Uv 4~be~ Ucr —Uv ~v —~c,l+ + +
U= Uv(1 —x)+ Uc,x, (6.1)

where an obvious notation has been adopted. For the cor-
responding effective bandwidth we assume the elementary
proportionality W t,j--exp( —A,R,J) between Wand the
transfer integral i j that involves nearest-neighbor centers
i and j, as well as their separation distance R,J. Next, set
E.;~ =A,J+~;~, where 8;J. is a standard separation dis-
tance and M;~ is the deviation from this value. The
first-order term in the Taylor's series expansion may be
replaced by the corresponding change of volume
(bV/Vo)'~ x; at very dilute concentrations of Cr in the
ViOi host lattice one may introduce Vegard's law which
involves a linear scaling of distances with the concentra-
tion of diluent. In the above bV is the change in volume
Vo of the unit cell for the V20& host per unit replacement
of V by Cr. Under this set of assumptions

t; -[exp( —AR; )][1+x(bV/Vo)'~ ],

~= ~[i+(b~/~o)'"x] = ~v+(~c.—~v»
On combining the above contributions one obtains

U Uv+(Uc. Uv }x—
~ -

Wv+(W„Wv}x

Uc. —Uv ~v —8'c
+

Uv Rv
x . (6.2)

A second change of U/8' with x arises from the effect
of the atomic potential Quctuations. The substitution of
Cr for V produces deeper potential wells that are random-
ly distributed among the vanadium potentials. I.et
be—=ec,—ev ~0 be the difference in energy of an electron
localized at a Cr and at a V atom. The energy value of
the localized electrons is given by g&,. i E~ (n; }, wherein

E; assumes the value e~, or ev. This expectation value is
represented by (1—@)xb,e; the first factor specifies the
probability of finding an electron in a localized state and

(6.4)

In summary, for dilute dispersions of Cr among V sites,
the effective Hubbard parameter U/W varies linearly
with x as specified by Eq. (6.4). This permits a direct
comparison to be made between the specification of vari-
ous thermodynamic quantities (including phase diagrams)
in terms of U/W and their correspondence to the experi-
mentally accessible composition variable x. As deter-
mined empirically, ' x in turn is proportional to an ap-
plied hydrostatic pressure. The change of U/W with x
reflects both the lattice disorder and additional electron
correlations introduced by formation of the (Vi,Cr, }20i
alloys.

One should finally note that the above treatment
involves a subdivision of charge carriers into localized
and itinerant groups. It should be noted that the two-
phase model leads to a residual entropy of
So=kate(U/2W) ln2 for the correlated metallic phase
and to a value So ——kite ln2 for the Hubbard-Mott insu-
lating state. This nonzero value of So was also encoun-
tered in prior treatments ' of the correlated problem.
The nonzero value of So can be ascribed to the disorder
present in any mixed system.

The various features described above have their experi-
mental counterpart in the (Vi,M, }iO& system, where
M= Cr, Al, Ti, or C3 (cation vacancy); an extensive litera-
ture concerning the physical properties of this alloy sys-
tem has accumulated over several decades. Some
representative papers are listed in Refs. 10 and 11. For
certain concentration ranges x the (V-Cr) zO& and
(V Al)203 alloy systems display reentrant metallic proper-
ties in the range 180—900 K although the PI—+PM'
transformation at higher temperatures is spread over
roughly 50 K instead of being sharp, as predicted by the
present theory. (Compare Fig. 2 and the inset. } The cal-
culated bSpi pM values of the sharp PM-PI insulating
transition in the range 180—300 K for the various alloys
matches the observed values'0 within a factor of 2. The
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above indicates that correlation phenomena do play an
important role in accounting for the physical characteris-
tics of the V203 system. On the other hand, there are un-
mistakable signs that the lattice also is of importance in
determining the properties of the system at temperatures
above 200 K, whereas magnetic ordering effects dominate
the low-temperature regime. These features must be built
into the present theory before any quantitative compar-
ison between theory and experiment can be attempted.
Nevertheless, the various physical characteristics of the
VQO3 system can be reasonably matched by the present
theory on adopting the linear dependence of U/W on x.

The present model contains two characteristic features:
it takes into account the correlation phenomena stressed
by McWhan and collaborators" in their interpretation of
the metal-insulator transition. Also, it enables the Mott-
Hubbard insulating phase to be described in terms of
two-band semiconductor as proposed by Kuwamoto,
Honig, and Appel. 'o In this sense the theory mediates be-
tween the two previous formulations. The two-fluid
model proposed here thus permits one to interpret mea-
surements such as magnetic susceptibility in terms of lo-
calized carriers. By contrast, measurements such as con-
ductivity in the semiconducting phase reflect the proper-
ties of thermally activated itinerant carriers present in a
narrow lower Hubbard subband and in a wider upper
Hubbard subband, which play the role of valence and con-
duction bands, respectively.

The present theory allows also for identification of NiO
as a Mott insulator, with U &28'. Namely, in this case
e, = U/2; one can estimate' that then U-4 eV » $V ( 1

eV.

VII. CONCLUSIONS

In this paper we have provided a detailed discussion of
metal to insulator transitions at nonzero temperatures.

The theory was developed in the spirit of Landau's ap-
proach by introducing the extra variable q into the free
energy. The coefficients of the expansion are determined
by comparing the results with known limiting cases of the
microscopic theory for narrow-band electrons (cf. I for
details).

The cardinal feature in the present analysis in Secs. II
and III is the ansatz that on a macroscopic level electrons
may be divided into two groups: a portion (1—4)
representing the local moments and a portion 4 represent-
ing a Fermi fluid. The weight 4 is calculated self-
consistently.

The theory depends parametrically on the ratio U/W.
It was shown that for fixed U/W the system as a func-
tion of temperature can undergo zero, one, or two metal-
insulator transitions (and exhibit reentrant metallic
behavior in the latter case) depending on the chosen value
of U/W. The conditions leading to these various transi-
tions are summarized in Fig. 5. The specific formulation
here deals with the case of a half-filled band ( n = 1) and a
rectangular DOS; also, lattice effects and magnetic order-
ing at low temperature must still be introduced. Addi-
tionally, we disregard in our analysis in Secs. II and III
the explicit dependence of the band-narrowing factor 4
on T. Work designed to eliminate some of these restric-
tions is currently under way.
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