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Proximity effects in magnetic interfaces
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The Green s-function method in the random-phase approximation is applied to calculate the mag-

netization of the {111}surface planes on both sides of an interface between two semi-infinite Heisen-

berg ferromagnets with a face-centered-cubic structure. Both bulk systems are chosen with anisotro-

pic exchange interactions. Vixen there is an appreciable difference in the transition temperatures of
both sides, one finds that the stronger ferromagnet induces a permanent magnetization in the weak-

er one, which can be sustained at temperatures higher than the transition temperature of the latter.
Several branches of surface magnons are also found.

I. INTRODUCTION

The current interest in interfacei, both from the basic
and from the technological points of view, has stimulated
the study of the properties of magnetic interfaces. Yaniv'
has considered an interface between two simple-cubic
Heisenberg ferromagnets. He obtained the excitation
spectrum of the system at low temperatures and applied
the results to obtain the transmission coefficient for prop-
agating magnons.

We study in this paper an interface between two semi-
infinite fcc ferromagnets. We apply for this problem the
Green's-function formalism in the random-phase approxi-
mation (RPA) to obtain the manetization profile and the
dispersion relation for the magnons localized at the inter-
face as a function of temperature.

Section II of the present paper contains the description
of the formalism applied. In Sec. III we describe the re-
sults obtained. One interesting point is that, in general,
isotropic bulk exchange interactions lead to surface insta-
bilities, i.e., one acoustic surface-magnon branch turns
negative at small

~ k~~ ~. The effect of such instability

upon the ground state is obviously a problem in itself, but
it is outside the scope of the present paper, so we have
adopted a Hamiltonian with an exchange interaction ex-
hibiting a uniaxial anisotropy for the bulk and on the sur-
face planes which constitute the interface.

where

+2(S &gS& (k~~)S;,
I

(2)

iso at the surface on the left

i)0 at the surface on the right
%l= '

in the bulk on the left

g2 in the bulk on the right .

(3)

trum were sufficiently wide, we can Fourier transform
away the coordinates of the spin sites parallel to the inter-
face in the equations for the Green matrix, thereby obtain-
ing a RPA Hamiltonian which maps the original three-
dimensional problem onto a one-dimensional model where
the nondiagonal (on-site) interactions depend on k~~, the
wave vector for propagation along the (111)planes. »4

The Greens function in this mixed representation de-
pends on k~~ and on the indices of the planes to which the
corresponding spins belong, and it satisfies the equation:

II. DESCRIPTION OF THE MODEL
AND METHOD OF CALCULATION

It is customary to assume that the presence of the
surface —mr interface- does not perturb the translation in-
variance of the spin arrangement in the ground state along
the surface plane or indad along the whole family of
planes parallel to the surface or interface.

This assumption might be cast in doubt if the surface
instabilities mentioned in the Introduction were in fact
present. Under such conditions, the magnetization of a
certain number of planes near the surface may show a
periodic oscillation along those planes.

Under the assumption that no instabilities arise, as
would be the case if the anisotropy gap in the bulk spec-

3Iip(k~~) on the left, (i,i —1}~0
Ii,g+ i«(() =

312(()(k~~) on the right, (i,i+1)~0,
where

(I)(k~~) = —,
' I3+2[cos2m(ki —ki)

+cos2mki+cos2irki] j
' ' .

(4)

rl;i is the exchange anisotropy parameter. When g;i ——1,
that pair has an isotropic exchange interaction. All pairs
(i, l) are nearest-neighbor spins. For neighbors in the
bulk, the exchange integrals IJ have, respectively, values
Ii and Ii. We denote with index 0, quantities on the left
surface, and with 0, those on the right surface. The quan-
tities Ii (k~~),
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(So)

(S:)
, n=o; (S'-, ), n=O

k~~ is a wave vector contained in the first Brillouin zone
(BZ) of the two-dimensional hexagonal surface k space

Ioo(k, ~) =3I &(3(()'—1

Ioo(kii) =3I2(3$ —1) .

The matrix o. is diagonal:

The matrix Uo, being the inverse of col H—o is deblocked
in two parts, each one being the Greenian of the effective
Hamiltonian Ho evaluated on the left or right spaces,
respectively. The matrix V connects both blocks. Corre-
spondingly, we can express the left and right blocks of Uo

in terms of the well-known Green matrices for semi-
infinite systems.

It must be noticed that, according to Eq. (2), the matrix
elements of Uo depend on the averages ooo, ooo and these
are evaluated self-consistently with both sides coupled so
that the effective Hamiltonian can only be known after
the whole problem has been solved.

We now define the dimensionless quantities

( ) denotes the thermodynamic average. We shall as-
sume that for n & 0,

Onn =or s

(U )oo

2I)S)

0 00(U)—
2I2S2

(17)

CT- —=0'2,nn

while ooo and ooo are to be determined self-consistently.
We assume for simplicity that

We shall take for simplicity Ii I2. Then——, we define
Ei2 =Ii2/I and call

(S„')=Si bulk average on the left, for n ~0

(Ss) =Sz bulk average on the right, for n ~0,

so that we calculate self-consistently only the magnetiza-
tion on both surfaces 0 and 0, while that of all other
planes to the right and left of the surface on both sides
will be taken equal to the bulk equilibrium magnetization
at the same temperature, which was previously evaluated
also in the RPA for the bulk.

We can separate the Hamiltonian into two parts:

a=a'+ v,
where Ho contains only interactions between pairs of
spins both on the right or on the left, and V only has ele-

ments in the subspace of two dimensions spanned by the
planes 0 and 0, and in this subspace it can be written

23
J

V=6I)2

0
—P(So)

(S',),0

(12) 3--

Let us introduce a matrix U such that

G, =QU, , (S,')S, (13)

0 0.& 0.2 0.3 O4 0.5 O.S 0.7

Upon defining

0 0
——col —Ho,

U= —(1—Qo 'V) igo ' .
1

FIG. 1. Dispersion relations for the interface localized mag-
nons. a, b, and c are interface modes. In the lower part of the
figure below the thick horizontal line, frequencies v (in units of
12 ICOSI ) are read on the left vertical scale, while in the upper
part, the scale is on the right, as indicated by the arrows. The
vertically hatched region is the lower continuum. The upper
continuum is hatched horizontally. A(k~~) =

~ (1 —()) ). S~ ———,,
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~o=6&iz~o ~

Uo =6&i&o
(19)

Uoo =g'(1 —g'Uo)/D,

Uoo ——do(1 d—uo ) /D,

D =1—g Qo —d Uo+g d QoUo(1 —P } &

(21)

(22)

(23)
g =/go,

(20)

In terms of these quantities, we write the diagonal ele-
ments of Uas

so that the zeros of D are the poles of U and determine
the frequencies of the localized modes. In order to obtain
the magnetization of the two interface planes and the
spectrum of the coupled system, we must solve self-
consistently a system of two equations

(& —0.{»Jf1+it'. (»)"+'+[& +1+4.{»1[4.{»)"+'
f. 1+4.(s))""—tf.(s)l"+' (24)

where P„(s) is

Im U„„(oi+te, k~~ )
P„(s)=2 do) d kii4g» exp(oilkT) —1

with n =0,0.

(25)

III. RESULTS AND DISCUSSIONS

5~=241(re —1)S~, a=1,2 .

In Fig. 1, we plot the limits of the continuum spectrum of
each semi-infinite side and the surface magnon branches
for T =0.155 in units where T, i ——0.38 and T, z ——7.98.
Abscissas represent A(k~~) = —,(1—P ).

We find both acoustic and optic interface magnon
branches. Abscissas represent A{k~~). A=O is at the
center of the two-dimensional Brillouin zone. A= —, is
the zone edge. The thick horizontal line in the figure
separates different ranges of frequencies. In the lower
part, curve a, the optic magnon branch, starts at k~I

——0,
very near the upper bound of the lower continuum
(hatched vertically in the figure) and it grows linearly.
Curves b and t. are acoustic-magnon branches. Above the
horizontal line we plot the uppermost part of the lower
continuum, the region of the upper continuum {horizon-
tally hatched), and the whole of the optic magnon branch

In our example, we chose the strong (right) magnetic
side with spin —, and the weak (left) one with spin —,. The
exchange integrals in the bulk on both sides were taken as
equal: Ii —It, I. Th—e rat——io of the critical temperature of
the right-hand side T,2 to that of the left-hand side T, i is
T,z/T, i

——21. The coupling between both surfaces was
taken as Ii2 ———,I.

We chose the anisotropy constants n,j equal in both
bulk materials, with a value i)s ——1.5 and its value on both
surfaces as il, = 1.2, while the coupling between both sides
was taken as isotropic, with il~ ——1. There is a gap in the
continuum of each side with a value

I

(curve a).
It is worth while to remark that the interface local

modes differ from the simple-cubic (sc} case, wherein no
acoustic branches are found. Yaniv' has already stressed
that the absence of local magnon branches below the
lower subband in the case he considered (sc structure) was
specific to that case, and that such modes should be ex-
pected in a situation where bonds across the interface are
nonperpendicular to it, as in the (111}interface in a fcc
structure. Our results are in fact a confirmation of those
remarks. An acoustic interface magnon branch had al-
ready been obtaineds in a theoretical treatment of an inter-
face produced by a stacking fault in a Heisenberg fcc fer-
romagnet.

As to the local magnetization, the range of tempera-
tures considered, 0 & T & T, i, does not allow for any no-
ticeable change of the right-hand-side surface plane. On
the other hand, in spite of the decrease of the bulk mag-
netization of the weaker ferromagnet, which tends to zero
at T~T, i, we did not find any change of the left-hand
surface either, so that (So) = —,'fi up to T, i.

The main conclusion of our calculations is, therefore,
that one should expect effects of induced magnetization at
an interface, just as those that were found for a system of
an anisotropic layer deposited on a semi-infinite isotropic
Heisenberg ferromagnet. We expect that similar process-
es could be found in superlattices consisting of different
magnetic materials, and even that bulk magnetism could
be induced in a superlattice where one of the materials is
paramagnetic.
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